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Abstract: Due to the good hydrophobicity and chemical resistance of poly(ethylene trifluoroethylene)
(ECTFE), it has been an attractive potential material for microfiltration, membrane distillation and
more. However, few porous hydrophobic ECTFE membranes were prepared by thermally induced
phase separation (TIPS) for membrane condenser applications. In this work, the diluent, di-n-octyl
phthalate (DnOP), was selected to prepare the dope solutions. The calculated Hassen solubility
parameter indicated that ECTFE has good compatibility with DnOP. The corresponding thermody-
namic phase diagram was established, and it has been mutually verified with the bi-continuous
structure observed in the SEM images. At 30 wt% ECTFE, the surface contact angle and liquid entry
pressure reach their maximum values of 139.5◦ and 0.71 MPa, respectively. In addition, some other
basic membrane properties, such as pore size, porosity, and mechanical properties, were determined.
Finally, the prepared ECTFE membranes were tested using a homemade membrane condenser setup.
When the polymer content is 30 wt%, the corresponding results are better; the water recovery and
condensed water yield is 17.6% and 1.86 kg m−2 h−1, respectively.

Keywords: membrane condenser; hydrophobic membrane; ECTFE membrane; thermally induced
phase separation

1. Introduction

Membrane contactors are membrane systems designed to achieve contact between
two phases. Examples of membrane contactors include membrane distillation (MD),
membrane crystallization (MCr), and membrane emulsification. These systems have been
used in wastewater treatment, desalination, the medical industry, and other applications [1,
2]. Along with the development of society and technology, many new problems occur
and may threaten the environment. The problem of waste flue gases, which come from
the power plant, steel industry, coking industry, and other industrial facilities, represents
one of the challenges to be solved. Many toxic substances, such as nitrogen oxides, sulfur
dioxide, smoke, and other harmful things, are produced in the fabrication process and
are ejected with the flue gases. The wet removal methods are the most common methods
utilized to remove toxic gases to meet the emission standards. However, in these methods,
the humidity of treated gas increases and even reaches near saturation levels. When the
treated and wetted gaseous stream enters the atmosphere, the vapor in the stream can
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reach the supersaturated state since the hotter stream can be cooled as soon as it comes in
contact with the surrounding colder air. The water vapor condenses to tiny droplets and is
atomized to form smoke, the so-called ‘white smoke’ phenomenon. This always tends to
cause air pollution and light pollution. When these tiny droplets lose moisture, they leave
countless small, suspended solids in the atmosphere, i.e., aerosols, which is also the main
reason for smog formation. In addition, some harmful substances remaining in the high
humidity steam are also the reason for acid rain. Most importantly, the direct emission of
moisture with such a high-water content causes a waste of valuable water resources and
dramatically increases the production cost of the industries.

In response to this problem, the membrane condenser based on hydrophobic mem-
branes was first introduced by Drioli et al. (2013) [3], the principle of which is shown in
Figure 1. This is a relatively new process of the membrane contactors’ group, designed
initially to dehumidify the white, high moisture waste stream to recover the water vapor.
Due to the hydrophobic nature of the applied membranes, the vapor in the feed gas starts to
condense when it comes in contact with the membrane surface because of the temperature
difference between the gas and the membrane. Finally, the condensed water is rolled down
the membrane surface and collected on the upstream side while the dehumidified dry air
penetrates through the membrane to the downstream side.
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Though some other concepts for using membrane contactors for moisture condensa-
tion were suggested earlier, the hydrophobic membrane condenser operation is still an
innovative step with many irreplaceable advantages. Traditional technologies, such as
cooling with condensation, liquid and solid sorption, and cryogenic separation [4], provide
simple solutions to recover water. The main limitations of these technologies are corrosion,
ash fouling, and extra physical and chemical costs. However, the membrane technology is
environmentally friendly, highly efficient, and does not cause secondary pollution during
the treatment process. Cao et al. [5] compared three membrane-based dehydration models,
including dense, hydrophilic, and hydrophobic membranes. For the first one, extra-high
pressure is required to force the condensed water to penetrate through the membrane.
Though the quality of the recovered water can be kept well, it is bound to increase energy
consumption [6]. In the hydrophilic membrane model, also called the transport membrane
condenser, the water vapor condenses inside the membrane pores before it passes to the
downstream side of the membrane. Hence, the quality of the recovered water can be af-
fected by the pollutants contained in the flue gas [7]. The innovative membrane condenser
concept ensures the high quality of the recovered water and simultaneously enables heat
and mass transfer at lower energy consumption.

To date, the fluorinated polymer family is the most popular for preparing hydrophobic
membranes, including polyvinylidene fluoride (PVDF) and its copolymer (PVDF-HFP),
(PVDF-CTFE), (PVDF-TrFE), and polytetrafluoroethylene (PTFE) [8–10]. Indeed, some
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other non-fluorinated polymers, such as polypropylene (PP), or other novel materials, such
as graphene oxide (GO) and carbon nanotubes (CNTs), are also used to prepare hydropho-
bic membranes [11–15]. As for ethylene-chlorotrifluoroethylene copolymer (ECTFE), it can
be considered a relatively new member of this fluoropolymer family. ECTFE is a semi-
crystalline, thermoplastic fluorinated copolymer polymerized by ethylene and chlorotriflu-
oroethylene at a molar ratio of one to one. As for the ECTFE, the fluorine content can be up
to about 40%, which contributes to its good hydrophobicity and is even better than PVDF.
There are some studies about the MD application of ECTFE membranes indicating good
anti-wetting for desalination [16–24]. Moreover, ECTFE has excellent chemical corrosion re-
sistance against acid, alkali, oxidant, and reducing and corrosive agents. It has a significant
advantage over the non-alkali-resistant PVDF, though the membrane formation property
of the latter is easier. Therefore, the ECTFE is also used as an anti-corrosion coating layer of
pipes, tubes, and other equipment [25,26]. Moreover, the mechanical properties, abrasion
resistance, and creep resistance of ECTFE are still excellent [27,28]. Therefore, ECTFE is
a potential candidate material for preparing hydrophobic microporous membranes for
membrane condensers, mainly when the membrane condenser is used to treat wasted
streams containing acid, ammonia, etc. There is no doubt that the PTFE still has the best
hydrophobicity among fluoropolymers, but the relatively complex fabrication process and
expensive cost make it out of our consideration [10].

However, owing to its excellent chemical resistance, ECTFE is not soluble in the typical
solvents at room or low temperatures. Therefore, ECTFE membranes are usually prepared
by thermally induced phase separation (TIPS) at a relatively high temperature. Table 1
summarizes the published work on ECTFE membrane preparation. The table indicates that
there is only a little work on ECTFE membranes compared with PVDF or other membranes,
and almost all researchers have used the TIPS method to prepare ECTFE membranes. In
the TIPS method, the polymer is dissolved at a high temperature, and the phase separation
happens at a lower or colder temperature. Usually, the membranes prepared by TIPS have
a narrower pore size distribution and higher mechanical properties than those prepared by
non-solvent-induced phase separation [29,30].

Table 1. The related published work about ECTFE membranes.

ECTFE Code Solvent (s) Membrane Type Ref.

Halar® 901 DBP, DOP, TCB Flat sheet [31]
Halar® 901 DBP Flat sheet [32]
Halar® 901 NMP Flat sheet [33]
Halar® 901 GTA Flat sheet [34]
Halar® 901 GTA/DEP Hollow fiber [35]
Halar® 901 NMP Hollow fiber [36]
Halar® 901 DEHA/DEP Hollow fiber [19]
Halar® 902 DOA Flat sheet [37]
Halar® 902 DBS/TPP Hollow fiber [38]
Halar® 902 DEHA/DEP Flat sheet [18]
Halar® 902 ATBC Flat sheet [16]
Halar® 902 DEP Flat sheet [39]
Halar® 902 DEHA/DEP Flat sheet [40]
Halar® 902 TOTM Flat sheet [17]

Halar® 901 and LMP ECTFE DEA Flat sheet [41]

In this work, the TIPS method is used to prepare ECTFE hydrophobic flat sheet
membranes using DnOP. The compatibility of ECTFE and DnOP is calculated, and the
phase diagram of this ECTFE/DnOP system is drawn. One ECTFE concentration gradient
has been prepared. The prepared membranes were characterized and analyzed concerning
morphology, contact angle, liquid entry pressure, pore size, porosity, and mechanical
properties. Finally, the prepared ECTFE membranes were tested under the membrane
condenser process to determine the dehumidification performance, which can be analyzed
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from the water recovery and the condensate flow. The study involved in this work proposes
a potential preparation method and application of ECTFE membranes.

2. Materials and Methods
2.1. Materials

ECTFE was supplied by Zhejiang Chemical Research Institute (Hangzhou, China).
DnOP and kerosene were purchased from Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). Ethanol was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). GQ-16, which acts as the wetting agent for pore size measurement, was
purchased from Jiangsu Gaoqian Function Material Co., Ltd. (Nanjing, China). Table 2
shows the basic properties of ECTFE and DnOP.

Table 2. The basic properties of ECTFE and DnOP.

ECTFE DnOP

Molecular structure:
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Density (g/cm3) 1.68 Flash point (◦C) 218
Melting point (◦C) 242 Spoiling point (◦C) 340

2.2. Membrane Preparation

ECTFE membranes were prepared by thermally induced phase separation. Firstly,
the ECTFE powder was dried at 40 ◦C overnight. Then the desired amount of ECTFE and
DnOP were weighed and placed in one three-necked flask. Five different mixtures of ECTFE
and DnOP were prepared where the range of ECTFE content in the mixture was varied
from 15 to 35 wt%. The mixture was stirred in an oil bath at 250 ◦C for three hours until
a homogeneous casting solution was formed, followed by one hour of defoaming. Then,
the appropriate amount of casting solution was poured into the pre-heated customized
stainless steel membrane mold. Then, the mold was pressurized for 15 min to allow the
polymer solution to cast and shape. Finally, the mold was taken out and quenched into
a water bath at 25 ◦C to induce phase separation. The residual diluent contained in the
ECTFE membrane was extracted by ethanol overnight. After cleaning with pure water, the
ECTFE membranes were obtained by freeze-drying.

2.3. Characterization
2.3.1. Basic Properties of ECTFE Membrane

Membrane morphology and topography were observed using a field-emission scan-
ning electron microscope (FESEM, Hitachi S4800, Tokyo, Japan) and an atomic force micro-
scope (AFM, Bruke Icon, Karlsruhe, Germany), respectively. For such membrane condenser
processes based on a hydrophobic porous membrane, the water repulsion properties are
fundamental, including water contact angle (WCA) and liquid entry pressure (LEP) mea-
surement by a commercial contact angle instrument (Dataphysics OCA 25, Filderstadt,
Germany) and a homemade dead-end filtration setup, respectively. The relationship be-
tween WCA, LEP, and pore size can be analyzed using Equation (1). Mechanical properties,
including tensile strength and elongation at break, were measured by a tensile strength
testing instrument (Model SH-20, Wenzhou Shandu Instrument Co., Wenzhou, China).

LEPw =
−2B × γL × cos θ

rmax
(1)
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where B is the dimensionless geometric parameter, which can be equal to 1 for the assumed
perfectly cylindrical pores, γL is the liquid surface tension, θ is the CA in degrees, and rmax
is the maximum pore size.

These measurements were conducted three times for each sample, the procedures of
which can be found in our previous study [16,17].

2.3.2. Phase Diagram

For the TIPS method, the phase diagram is a necessary approach to analyze the
phase separation behavior and forecast the possible membrane structure. The Hansen
Solubility Parameter Theory (HSP) is considered an effective method to describe the inter-
action between the polymer and diluent, presented by the HSP distance (R), Equation (2)
presents [42]:

R2 = 4
(

δd,p − δd,d

)2
+

(
δp,p − δp,d

)2
+

(
δh,p − δh,d

)2
(2)

where δd is the dispersion force, δp is the polar force, and δh is the hydrogen bond force,
respectively (Note: δA,B, A is the type of force, B is the polymer or diluent).

The phase diagram consists of two curves: the crystallization temperature curve and
the cloud point curve. The crystallization temperature is tested by a differential scanning
calorimetry (DSC, Q-20, Newcastle City, DE, USA), and the cloud point temperature is
tested by a polarizing microscope (XPV-800E, Shanghai, China). The detailed measurement
procedures have been displayed in our previous study [29].

2.3.3. Membrane Condenser

Figure 2 illustrates the homemade membrane condenser experimental device, and
Table 3 indicates the operation parameters of the membrane condenser tests. The mixed
water vapor and the air were used to simulate the high humidity exhaust gas. First, the
humidification and buffer tanks were placed inside a water bath and then heated and kept
at the operating temperature. Then, the dry gas flow from an air compressor went into the
humidification tank to increase the moisture content. The existence of the buffer tank was
for the complete mixing of air and vapor to achieve a saturation state. Temperature and
humidity meters were mounted at the outlet of the buffer tank to measure the temperature
and humidity values. When the heated saturated humid gas enters the membrane module,
the heat exchange happens on the membrane surface because of the temperature difference
between the gas and the membrane. Then, the vapor molecules started to condensate on the
membrane surface. Due to the hydrophobic nature of the membrane, the condensed water
droplets cannot penetrate through the membrane pores. Instead, the droplets rolled down
from the membrane surface. At the same time, the non-condensable gas was discharged
through the membrane pores. For the detailed mass balance calculation, it has been reported
in study [3]. In addition, it is necessary to check whether the used membrane module
is leaking before putting it into the constant temperature oven. Moreover, it should be
noted that all containers and flow tubes were wrapped with insulation cotton to avoid
unnecessary heat loss. In addition, the condensed water was collected every 30 min.

The membrane condenser operation is applied for the dehumidification of wet gas
streams. The condensate flow (J, kg·m−2·h−1) and water recovery (R, wt%) are used to
evaluate the dehumidification performance of the process, which are calculated by the
following equations:

R =
∆m
M

(3)

J =
∆m
A∆t

(4)

where ∆m (kg) is the weight of liquid water on the retentate side, M (kg) is the total weight
of water vapor contained in the stream during the same operating period, ∆t (h) is the
interval operation time, and A (m2) is the effective membrane area.
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Table 3. Experimental parameters of membrane condenser tests.

Parameters Value

The effective membrane area (cm2) 12.56
Feed gas temperature (◦C) 55

Feed gas relative humidity (%RH) 100
Feed gas flow rate (L·min−1) 1.5

Pressure difference (kPa) 10
Temperature difference between gas and membrane surface (◦C) 35

3. Results and Discussions
3.1. Phase Diagram

The choice of the diluent to prepare ECTFE membranes by TIPS is an extremely signif-
icant step. By the calculation of Equation (3), the obtained R-values of ECTFE and other
diluents are shown in Table 4. The smaller the R-value, the stronger the compatibility
between the ECTFE and diluent is. From Table 4, the R-value of the ECTFE/DnOP sys-
tem is 5.97, lower than most of the related published work [16,17,43], indicating that the
compatibility is good and hopeful.

Table 4. Solubility parameters of ECTFE and diluents [17].

δd (MPa1/2) δp (MPa1/2) δh (MPa1/2) R (MPa1/2)

ECTFE 19.5 7.3 1.7 -
DBP 17.8 8.6 4.1 4.36
DEP 17.6 9.6 4.5 5.25
GTA 16.5 4.5 9.1 9.93

ATBC 16.02 9.1 8.55 10.86
TOTM 16.66 8.55 6.03 8.54
DnOP 16.6 6.03 3.1 5.97

Figure 3 is the thermodynamic phase diagram of the ECTFE/DnOP binary system,
from which the compatibility of the polymer/diluent can be proven and possible phase
separation behavior can be analyzed. Certainly, the membrane structure can also be
forecasted from it. It should be noted that the viscosity of the dope solution is too high
when the ECTFE content exceeds 40 wt%. Therefore, the range of the polymer content
varies from 15 to 35 wt%, as shown in Figure 3.
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Figure 3. Phase diagram of ECTFE/DnOP system.

From Figure 3, it can be seen that the crystallization temperature seems to be propor-
tional to the polymer concentration. However, there is a small difference for cloud point;
with the increasing of the ECTFE content, the cloud point temperature firstly increased and
then decreased. Figure 3 shows that the cloud point temperature and the crystallization
temperature curves would have one intersection point. It is generally called the monotectic
point [42]; the corresponding ECTFE content and temperature is around 40 wt% and 185 ◦C,
respectively. Moreover, within the tested polymer content, the cloud point curve is always
higher than the crystallization temperature curve, which means a liquid–liquid (L–L) phase
separation zone exists in the ECTFE/DnOP system. When the stable doping solution cools
down along Path 1 until it reaches the cloud point curve, the L–L phase separation happens
first. The two phases, polymer-rich and polymer-poor phases appear in the system. The
former becomes the membrane matrix, and the latter is the membrane pores. Usually, when
the polymer/diluent experience the same routine as Path 1, the bi-continuous structure
would eventually form [44]. Then for a higher polymer content, over 40 wt%, the liquid–
solid (L–S) phase separation would happen firstly during the cooling rate for Path 2. Since
the crystallization temperature is higher than the corresponding cloud point temperature,
there would only be L–S phase separation happening. The rich polymer phase solidifies
and crystallizes directly, and the poor phase exists in the polymer lamellae. Finally, the
porous and spherulitic structure can be obtained [45].

In the end, in this work, there is always an L–L phase separation zone for all of the
tested polymer contents. Therefore, it can be inferred that the prepared ECTFE membranes
would present a bi-continuous structure.

3.2. Membrane Characterization
3.2.1. Morphology and Topography of ECTFE Membrane

Table 5 shows the SEM and AFM images of the prepared membranes, from which
the surface and cross-section structure can be seen clearly. According to the SEM images,
all of the prepared membranes presented a porous structure. The whole structure gets
denser when the polymer content increases. It can be inferred that the prepared membranes
have bi-continuous structures from the cross-section images. This is consistent with the
assumption and analysis in Section 3.1. It should be noted that the SEM images of the
membrane surface structure show many raised ridges on the membrane surface after the
preparation process. These ridges are not observed in other published work [18,31,37,38,40].
The ridges increase the membrane surface roughness, reducing the adhesion and promoting
heterogeneous condensation of water vapor on the membrane surface during the membrane
condenser operating period. Certainly, these 3D AFM images can also reflect the rough ups
and downs of the topography.
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Table 5. SEM and AFM images of ECTFE membrane.

ECTFE Content
in Membranes SEM-Surface SEM-Cross-Section 3D AFM Image

Size: 5µm × 5µm

15 wt%
(thickness:

0.253 ± 0.011 mm)
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In this work, the hydrophobic membrane acts as the core part of the membrane
condenser operation. The vapor condenses and forms droplets on the membrane surface
and is rejected due to the hydrophobic nature of the membrane. There is a lower possibility
of membrane wetting when the membrane has a high hydrophobicity. High hydrophobicity
is required for a longer service membrane life and a more stable membrane condenser
process. In addition, the liquid entry pressure (LEP) value indicates the maximum pressure
to maintain the process free of wetting, which can also be used to prove the anti-wetting and
hydrophobic properties. In Figure 4a,b, the contact angle (CA) and liquid entry pressure of
water (LEPw) of the prepared membranes are shown, respectively.

In Figure 4a, the CA values of all of the prepared ECTFE membranes exceed 120◦; the
value first increases and then decreases along with the polymer content. When the ECTFE
content becomes 30 wt%, the CA value reaches the maximum, 139.5◦. The numerous C–F
bonds that exist in ECTFE chains contribute to this good result. In addition to the polymer
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properties, the surface CA is also related to the membrane surface roughness, as shown
in Table 6. The maximum (Rmax) and average surface (Ra) roughness are tested. It can be
seen clearly that the surface roughness variation is consistent with the tested CA value.
Moreover, from the SEM images of the surfaces in Table 4, the ECTFE copolymer forms
numerous ridges on the membrane surface during the crystallization of the polymer and
phase separation period. For such a rough surface structure and hydrophobic surface,
the condensed droplets can easily detach from the membrane surface. While ensuring a
sufficiently high hydrophobic membrane surface, the surface ridges can also provide the
largest possible contact area between the high-humidity gas stream feed and the membrane
surface, conduct a good heat exchange process, and finally separate the condensed water.
More significantly, Figure 4b indicates that LEPw values are all over 0.3 MPa, which
is perfect since the pressure difference required for membrane condenser operation is
around 0.1 MPa. It also provides strong proof that the prepared ECTFE membranes have
enough potential to prevent membrane wetting from happening even during a long-term
experiment. Furthermore, the LEPw values consistently increased with the increasing
ECTFE contents but not with the same variation of CA values. This is mainly because of
the higher viscosity of dope solution resulting in a stronger squeeze among the polymer
crystals during the phase-separation process. Finally, the whole structure gets denser, and
the pores become smaller. From Equation (5), the LEP value is inversely proportional to
membrane pore size [46,47].

LEPw =
−2B × γL × cos θ

rmax
(5)

where B is the dimensionless geometric parameter that can be equal to 1 for assumed
perfectly cylindrical pores, γL is the liquid surface tension, θ is the CA in degrees, and rmax
(µm) is the maximum pore size.
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Figure 4. Effect of ECTFE concentrations on water contact angle (a) and liquid entry pressure (b) of
the ECTFE membranes.

Table 6. Surface roughness parameters of ECTFE porous membranes prepared with different poly-
mer concentrations.

ECTFE Content in Membranes Rmax (nm) Rq (nm) Ra (nm)

15 wt% 836 67.7 48.37
20 wt% 621 79.9 61.6
25 wt% 765 87.7 67.5
30 wt% 1193 121 92.4
35 wt% 812 95.5 77

3.2.3. Mean Pore Size and Porosity of ECTFE Membrane

Table 7 shows the average pore size and porosity of the ECTFE porous membranes
prepared with different polymer concentrations. As the polymer concentration increases,
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the average pore size gradually decreases, but with insignificant differences in the overall
porosity. An inevitable result is that a denser structure forms when the polymer content is
increased. The relatively denser membrane structure makes the pore space limited, the mass
transferring resistance would increase in the later membrane condenser process, and finally,
affect the heat transfer and condensation efficiency. Certainly, just as stated in Section 3.2.1
and shown in Equation (5), the smaller pore size can obtain a higher LEPw value. The
LEPw value indicates the maximum operating pressure to prevent the penetration of water.
Therefore, the risk of membrane wetting for the membranes with a smaller pore size would
be effectively reduced.

Table 7. Pore size and porosity of prepared ECTFE membranes.

ECTFE Content in Membranes Mean Pore Size (µm) Porosity (%)

15 wt% 0.105 ± 0.004 60.8 ± 1.2
20 wt% 0.105 ± 0.011 59.8 ± 1.0
25 wt% 0.099 ± 0.007 61.1 ± 0.5
30 wt% 0.097 ± 0.005 60.2 ± 1.5
35 wt% 0.082 ± 0.008 56.8 ± 0.5

3.2.4. Mechanical Properties of ECTFE Membrane

The membrane condenser operation requires maintaining a certain level of pressure
difference between the two sides of the membrane. Hence, the membrane is necessary to
own a specific membrane strength. As shown in Figure 5, the overall variation of the tensile
strength is proportional to the polymer concentration. According to the above analysis, the
prepared polymer/diluent systems undergo L–L liquid phase separation, resulting in a bi-
continuous structure. The SEM cross-section images indicate that the membrane structure
becomes denser, and the enhanced polymer bonds with the increasing polymer content.
Therefore, the tensile strength is improved. However, when the concentration increases,
the space for the growth of the polymer-poor phase is limited, eventually weakening
the internal connectivity and integrity between the membrane pores. The tenacity of the
membrane becomes bad; as a result, elongation at break tends to decrease.
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Figure 5. Mechanical strength of the ECTFE porous membrane prepared with different polymer
concentrations.

3.3. Dehydration by Membrane Condenser

In the membrane condenser process, the high-humidity feed stream comes into direct
contact with the membrane after entering the membrane module. Due to the temperature
difference between the feed stream and the membrane surface, the vapor contained in the
stream condenses and forms droplets, the size of which increases gradually and finally
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detaches from the membrane surface. The condensation process is concurrent with mass
and heat transfer simultaneously. While the dehumidified gas penetrates through the
membrane to the downstream side, the condensed water on the membrane surface is
withheld and collected due to the hydrophobic nature of the membrane. Moreover, a
higher hydrophobic membrane surface is characterized by a higher surface roughness,
which promotes the heterogeneous condensation of water molecules. Under this condition,
when the droplets grow to a certain stage, they can slip off the membrane surface without
affecting the subsequent contact between the membrane and the moisture. Certainly, the
better hydrophobicity the membrane is, the less water left on the membrane surface; this is
more beneficial for the dehumidification efficiency. Additionally, the proper pore size and
porosity are also important parameters for the membrane condenser process.

The effects of different ECTFE contents on the membrane condenser efficiency were
studied. First, the N2 flux is measured to determine the permeability, expressed in terms
of gas permeance unit, GPU, of prepared ECTFE membranes (Figure 6). When the gas
permeability of the tested membrane is not low, the pressure of the feed side was gradually
increased during the operation period but below the LEP to avoid membrane wetting.
However, a large gas permeate flux decreases the contact time between the humid gas and
the membrane; thus, decreasing the final water recovery. Figure 6 indicates that the N2 flux
decreases with increasing polymer contents. This is the expected result since the pore size
and porosity decrease as the membrane structure becomes denser. As a result, the flow
resistance increases, and gas flux decreases.
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In this work, water and air are used to simulate a humid feed gas stream. The detailed
operation parameters are shown in Table 2. The water recovery and condensate yield are
shown in Figure 7a,b, respectively. The two figures show that the water recovery and
condensate yield both first increase and then decrease with the rise in ECTFE content. The
maximum water recovery and condensate yield values are 17.6% and 1.86 kg m−2 h−1,
respectively, achieved at 30 wt% ECTFE concentration. The trend of variation of water
recovery and condensate yield, as shown in Figure 7a,b, is consistent with the trend of the
variation of pore size (Table 7) and contact angle (Figure 4a). The results indicated that the
30 wt% ECTFE membrane has the proper pore size and good hydrophobicity for membrane
condenser application and achieved the highest water recovery and membrane condenser
performance. In addition, the results indicate that the condensate yield and water recovery
is proportional to the feed gas’ humidity. The ECTFE 30 wt% membrane has potential value
for the water recovery process from humid flue gas in practical industrial applications.
In comparison to others’ work, the overall water recovery is 20%, 35–55%, and 25% in
Wang et al.’s [48]., Drioli et al.’s [34], and Macedonio et al.’s [49] research, respectively.
Though the performance in this work is not the best, this is mainly related to the operating
parameters and the properties of the used membrane. For example, in Drioli et al.’s work,
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the flow rate of the feed stream (0.076–0.38 L·min−1) is much lower than ours (1.5 L·min−1),
the increasing of slow feed rate will lead to lower water recovery. Moreover, the reason
why we used a high flow rate is to simulate the actual processing system and perform some
preparation for our further research.
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4. Conclusions

(1) ECTFE membranes are successfully prepared by thermally induced phase separation
methods using DnOP as the diluent. The theoretical calculation of the solubility
parameters indicates that the ECTFE and DnOP have good compatibility. The phase
diagram of the ECTFE/DnOP binary system proves the existence of one liquid–liquid
phase separation zone within the prepared polymer concentration range where a final
bi-continuous structure can be obtained. Moreover, this can be clearly observed from
the SEM images.

(2) The surface SEM images of the ECTFE membranes present a plexiform structure with
high roughness. A rough hydrophobic interface is desired as it is relatively easier
for the condensed droplets to slip off the membrane surface during the membrane
condenser process. The cross-section SEM images for almost all of the prepared
ECTFE membranes present a bi-continuous structure. However, when the ECTFE
concentration increases to over 35 wt%, the overall membrane structure become dense.
As a result, the average pore size and porosity of the prepared membranes decrease.

(3) The maximum contact angle of nearly 140◦ is obtained for membranes with an ECTFE
content of 30 wt%. The LEPw value of this membrane is 0.71 MPa, which is higher
than the required operating pressure of the membrane condenser.

(4) The membrane with the ECTFE content of 30 wt% showed the best performance in
the membrane condenser process, with a water recovery of 17.6% and a condensate
yield of 1.86 kg m−2 h−1.
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