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Abstract

The emergence of the severe acute respiratory syndrome (SARS) that resulted in a pandemic in 2003 spurred a flurry of interest in the
development of vaccines to prevent and treat the potentially deadly viral infection. Researchers around the world pooled their scientific resources
and shared early data in an unprecedented manner in light of the impending public health crisis. There are still large gaps in knowledge about
the pathogenesis of this virus. While significant advances have been made in the development of animal models, the practicality of their use
may be hampered by a lack of pathological similarity with human disease. Described here are issues related to progress in vaccine development
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and the obstacles that lie ahead for both researchers and regulatory agencies.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome (SARS) was first
reported as a disease of unknown etiology in Guangdong

∗ Tel.: +1 301 827 3660; fax: +1 301 480 7928.
E-mail address: taylord@cber.fda.gov.

province, China, in November of 2002. According to th
World Health Organization (WHO), the outbreak had spre
and eventually 29 countries were treating infected indivi
uals [1]. By the end of the outbreak in the summer o
2003, the number of SARS infected individuals exceed
8096 and resulted in 774 deaths, a fatality rate of 9.6
[1].
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SARS is characterized by fever, cough and flu-like symp-
toms. Severe cases resulted in alveolar damage, interstitial
mononuclear cells and heavy fibrin deposition in the lungs.
Respiratory distress resulted in atypical pneumonia, requiring
ventilation for approximately 20% of patients[2]. The aim
of this review is to describe the advances made in the devel-
opment of animal models for SARS and to identify gaps in
scientific understanding that need to be filled. By addressing
and possibly overcoming these challenges and making use
of the advances made, a safe and effective vaccine may be
attainable. The information here may provide the scientific
basis for facilitating future regulatory decisions related to the
licensing of a SARS vaccine.

1.1. Molecular biology of the SARS coronavirus

The causative agent for SARS is a novel member of the
coronavirus family, termed SARS-CoV[3]. Coronaviruses
are large enveloped RNA viruses, so named for the radiating
spike proteins found at the surface of the virion (Fig. 1; [4]).
There are three groups of related coronaviruses and SARS
may be a member of a new fourth group[4]. Classification of
the SARS coronavirus has been controversial, although phy-
logenetic similarities may place the virus in a subgroup of
the group 2 coronaviruses[5]. Human coronaviruses include
t tions
[ res-
p ttle,
p lti-
p HV)

and feline infectious peritonitis (FIP) virus are capable of
causing respiratory, enteric, neurologic and hepatic infections
[7].

Coronaviruses are positive-sense RNA viruses that repli-
cate by a unique mechanism whereby the structural genes are
expressed as a nested set of subgenomic mRNAs, character-
ized by shared common 3′ ends and a conserved, capped 5′
leader sequence[4]. The nonstructural genes are transcribed
from the 5′ end as a polyprotein that is processed by viral pro-
teases (Fig. 2; [4]). Proteins are translated from the 5′ open
reading frame of each mRNA[4].

SARS CoV has eight open reading frames of unknown
function, but has structural proteins found in all coronaviruses
that include the envelope (E), the matrix or membrane protein
(M), spike (S) and nucleocapsid (N)[4]. The S protein is
glycosylated and required for viral attachment and possibly
entry. The nucleocapsid protein coats the viral genomic RNA.
Viruses that belong to group 2, such as MHV, also contain a
hemagglutinin-esterase (HE) protein, which is not present in
other groups[4].

1.2. Immunological features associated with SARS-CoV

The flu-like symptoms and atypical pneumonia, charac-
teristic of SARS-CoV infection, was also frequently accom-
p re
p d
t situ
h lve-
o ted

F protei ctions. T
e er obt ucleocapsid
p

hree members that cause common respiratory infec
6]. Nonhuman coronaviruses include those that cause
iratory infections in birds, and enteric infections in ca
igs, dogs and cats[7]. Some of these viruses affect mu
le organs, for example, both mouse hepatitis virus (M

ig. 1. Diagram of the SARS coronavirus structure. The outer virion
nvelope and membrane glycoproteins are embedded in a lipid bilay

rotein[4].
anied by lymphopenia[8]. Alveolar macrophages we
revalent in patients with fatal SARS[8] and contribute

o the immune-mediated nature of the disease. In
ybridization showed that viral infection was present in a
lar epithelial cells and viral RNA could also be detec

ns are marked by the spike proteins that form the corona-like projehe
ained from host-cell membranes. The viral RNA is coated with the n
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Fig. 2. Genome organization of SARS-CoV. Coronaviruses are among the largest RNA viruses. The full-length positive sense SARS CoV is approximately
30 kb long. Nonstructural genes are encoded by ORFs 1a and 1b in the 5′ end of the virus. The structural genes (spike, envelope, membrane, and nucleocapsid)
are located in the 3′ end, which includes as many as eight genes of unknown function[4].

in alveolar macrophages and bronchiolar epithelial cells
[9].

Several studies have suggested that the immune system
may be impaired by SARS CoV. T-cell lymphopenia was
observed in 94% of patients observed, with a decline in
CD4+ and CD8+ cell types[10]. Two weeks after dis-
ease onset, Th1 cell-mediated immunity and inflammatory
response was noted by the marked elevation of cytokines,
IFN gamma, the neutrophil chemokine IL-8, IL-1, -6 and
-12, but not TNF, IL-2, -4, or -10. Accumulation of mono-
cytes/macrophages and neutrophils was also observed[11].
Li et al. [12] noted that a rapid decline of T-cell subsets in
the periphery was observed in patients during the acute phase
of SARS infection, but they observed restoration of T cells
during recovery. The presence of proinflammatory cytokines
may result from activated alveolar macrophages, suggest-
ing that they may play a role in the pathogenesis of SARS
[8].

Antibodies to the SARS coronavirus were found retro-
spectively in 1.8% of samples collected in 2001, indicating
that the 2003 outbreak was not the first time that SARS had
entered the human population[13]. Most infected patients
developed a humoral response to SARS-CoV and antiviral
antibodies (IgG and IgM) were detected at 14 days post-onset
of symptoms[14]. IgM antibodies declined after 30 days and
IgG antibodies persisted up to day 210[14] and antiviral neu-
t ients
[ ile
c e dis-
e ta
m may
p

1.3. Animal models

An additional challenge related to the containment of
SARS-CoV is the lack in identification of its natural host.
Virus has been detected in wild and domestic animals[16].
In 2003, the first people to be infected were animal handlers
in a food market in Guangdong Province, China, suggest-
ing a role for zoonotic transmission[17]. The SARS strain
observed in animals varies only slightly from the human virus
and may represent a recent jump across species. The devel-
opment of good animal models will not only be useful for
identifying the natural host, but will be invaluable for deter-
mining correlates of immunity, for testing therapeutics and
vaccine development.

A remarkable advance in SARS research came with the
discovery that mice were susceptible to infection with SARS-
CoV [18]. Balb/c mice were infected with 103 or 105 50%
tissue culture infective doses (TCID50) and by day 2 after
infection, yielded 106 and 107 TCID50per gram, respectively,
from lung tissue. Although no clinical disease was observed,
mild and focal peribronchiolar mononuclear inflammatory
infiltrates were observed upon microscopic examination of
the respiratory tract on day 2[18] after infection. The pres-
ence of these infiltrates may suggest some mimicry with
human clinical features, although much milder. The respira-
tory tracts of the mice were cleared of the virus by day 7 after
i m-
a tory
t ted
m S-
C ce,
s

ralizing antibodies were obtained from convalescent pat
14]. Morbidity rates were greater for older individuals, wh
hildren under 12 years of age did not develop the sever
ase that was seen in adults[15]. Taken together these da
ay suggest that the quality of the immune response
lay a role in the outcome of virus infection.
nfection. Wentworth et al. found SARS-CoV in the sto
ch, intestine, and duodenum, in addition to the respira

racts of infected mice[19]. Subbarao et al. also protec
ice from infection by passive administration of SAR
oV neutralizing antibody from previously infected mi
uggesting that neutralization in vivo is possible[18]. Mice
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clear the virus by day 7 post-infection, while humans begin
to clear the infection by days 9–14[8]. A small animal model
will allow researchers to test therapeutics and vaccines, and
because the mice recover from virus infection so efficiently,
also identify host factors that contribute to virus resolution.
Hamsters have also been shown to be a good model for SARS-
CoV infection, reaching similar titers to those seen in mice
[20].

Surprisingly, immunodeficient mice can clear a SARS-
CoV infection. Mice (C57BL/6 background) that lack NK-T
cells (CD1−/−), NK cells (beige) or those that lack T and
B cells (Ragl−/−) cleared the virus by day 9 after infection
[21]. The mice displayed high induction of proinflamma-
tory cytokines, suggesting that the adaptive immune response
and NK cells were not required for viral clearance in mice.
Furthermore, it indicates that the involvement of the innate
immune response is important in controlling the virus. It
is interesting to speculate that interferon pathways may be
important in viral clearance.

More evidence for the importance of innate immunity
was provided through the infection of Stat1-deficient mice
with SARS-CoV[22]. Stat1 is important to the regulation
of interferons and Stat1-deficient mice produced a two log
increase in viral titer over control mice. Additionally, the
mutant mice developed interstitial pneumonia, not seen in
the control mice[22] but not alveolar damage as seen in
t e if
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w en.
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w dis-

ease resembling SARS after the monkeys were infected with
SARS-CoV[26,27]. From day 3 post-infection, macaques
became lethargic, had a temporary skin rash, and one
animal showed signs of respiratory distress[26]. Two of the
macaques had interstitial pneumonia with lesions present,
similar to autopsy tissue obtained from SARS patients[26].
Other groups have reported that cynomolgous macaques
show limited pathology, mild disease and upper respiratory
symptoms[28,29]. There is no apparent explanation for
the discrepancy between these groups, possibly virus
strain differences or monkey subspecies differences may
account for the differences in outcome, but to conclude that
non-human primates most similarly mimic human disease is
still controversial.

1.4. Considerations in vaccine development

Vaccine efficacy is measured by the ability of the anti-
gen to raise a protective immunologic response from B and
T cells after exposure to the viral agent. Ideally, by creat-
ing memory within the immune system, individuals will be
protected from infection for decades. Several veterinary coro-
navirus vaccines are currently available, but their efficacy is
variable. The vaccine for prevention of infectious bronchi-
tis virus (IBV), which infects chickens, is effective[30], but
the canine and porcine vaccines are only partially effective
[ tu-
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v revert
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he lungs of human patients. It is unclear at this tim
he observed pathological differences between human
tat1-deficient mouse lungs were due to time of samplin
ifferences in host responses[22].

Domestic cats and ferrets have also been teste
se as a SARS-CoV animal model. Cats and ferrets

noculated with 106 TCID50 SARS-CoV. Cats showe
o clinical symptoms[23], while three out of six ferre
ecame lethargic and one died. Virus was recovered

he lungs of infected cats (103 TCID50/1 gram of tissue) an
errets (106 TCID50/1 gram of tissue)[23]. Experiments als
howed that horizontal transmission of the virus may h
ccurred between cats that were housed together or f

hat were housed together, although the kinetics and mo
ransmission are still unknown. The non-inoculated infe
errets became lethargic, developed conjunctivitis and
t 16 and 21 days post-infection. While the ferrets
ot show evidence of pneumonia, they did exhibit hep

ipidosis and emaciation[23]. ter Meulen et al. showed th
errets that were infected with SARS-CoV showed s
f multifocal pulmonary lesions affecting about 5–10%

he lung[24]. Alveolar damage and lymphocyte infiltrati
as also observed upon histological examination of infe

erret lung tissue.
Three species of monkeys have been tested for infec

ith SARS-CoV: cynomolgus, rhesus and African gre
frican green monkeys supported the highest leve
iral replication, yielding a viral titer of approximate
04 TCID50/ml from nasal swabs[25]. Some researche
orking with cynomolgus macaques reported signs of
31]. The feline infectious peritonitis (FIP) vaccine is ac
lly deleterious to the health of the animal and is discu

n further detail below[32].
Vaccines can be produced by inactivation of the vi

y using an attenuated or weak form of the virus, or
sing recombinant forms of viral components. Inactiva
irus vaccines are relatively safe because they cannot
ack to the live form. They are also relatively stable and
ot even require refrigeration. This is important in deve

ng countries and for ease in mobilization during outbrea
mergency situations. However, there are limitations to
se. Inactivated vaccines usually require several dose
ome are weakly effective at stimulating an immune respo
he vaccine to prevent hepatitis A is an example of an i

ivated viral vaccine[33].
Live attenuated viral vaccines may require special l

atory development and cannot always be obtained. To
ffective levels, the virus must be capable of robust rep

ion, but must have lost the ability to cause disease. Se
roblems are associated with the use of a live attenuated
ine. These vaccines must be kept refrigerated or frozen
ave safety issues related to the possibility of reversion t
ild-type form. Additionally, they are almost never given

mmunocompromised individuals for fears that the atte
ted form may cause disease in the absence of an eff

mmune response[34].
Recombinant DNA or viral vectors have been constru

n the lab for use as potential vaccines or to study the t
ropism of the SARS virus[25,35]. The vectors can be us
o deliver foreign antigens using attenuated or nonpatho
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organisms. The safety of these types of vaccines[36] centers
around persistence of expression in vivo, possible genomic
integration of the foreign DNA and possible evolutionary
changes that may cause instability of the viral vector. The
potential transmission of the viral vector, including its intro-
duction into the environment should also be evaluated. An
ideal recombinant vaccine might be engineered to include the
inherent ability of the foreign substance to be cleared by drug
treatments that are proven safe, such as an antibiotic. Antibi-
otic sensitivity introduced into a recombinant vector may
allay fears of future adverse events although these designs
may raise additional safety concerns. Recombinant proteins
can also be used to stimulate the immune response. These pro-
teins are purified from yeast or bacteria and currently used in
the manufacture of a licensed hepatitis B vaccine[36].

The cell substrate used to manufacture all of these vaccines
is also a concern so vaccine production must be performed in
a well-characterized cell substrate. Vero E6 cells have been
used to produce the licensed poliovirus vaccine[37] and may
be appropriate for use in the development of a SARS vac-
cine as SARS grows well in Vero cells. The FDA Center for
Biologics Evaluation and Research (CBER) issued a letter
to sponsors using Vero cells as a cell substrate for investi-
gational vaccines which can be found on the CBER website
[38]. Another consideration is the use of fetal bovine serum
and bovine derivatives in the growth of cells. Bovine tissues
m ent.
G ar on
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o y
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i hole
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p rase
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r uta-
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t asis-
p ght
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ends of the mRNAs. Evidence suggests that the SARS-CoV
originated by recombination between coronaviruses[43,44]
and that there was an additional host-species drift[43].

1.6. Challenges in the development of a SARS-CoV
vaccine

Both large and small animals can be infected with SARS-
CoV, a giant advance for vaccine research. Examining
infected animal models will provide information that will lead
to an understanding of the correlates of immunity. Mice have
been used to further the understanding of virus neutraliza-
tion, cytokine upregulation and the minimum requirements
for viral clearance, but have yet to show disease that mim-
ics the atypical pneumonia seen in adult humans. While there
have been some reports of disease in cynomolgous macaques
[26,27], many groups have not reproduced these findings
[28]. A promising animal model may be the domestic ferret.
Ferrets show elevated liver enzymes, lymphocytic infiltra-
tion and alveolar damage, which has also been observed in
humans[8].

Despite the usefulness of these animal models, many
challenges lie ahead. First, animal models of SARS-CoV
infection do not mimic human disease. In mice, the virus is
cleared in less than 1 week and minor pathology in the lung is
observed[18]. Histopathology performed on necropsy sam-
p ough
t
i sing
a ease
[ ula-
t emic.
F n-
u the
a ase,
a er to
b eral
r bsite
[

ed
i bject
t om-
m are
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ay contain the bovine spongiform encephalitis (BSE) ag
uidelines on the use of BSE-free blood products appe

he FDA website[39] as do guidelines on the use of BSE-f
ovine derivatives in the production of vaccines[40].

For viruses that have variable strains, a combination
ine may be effective. A combination vaccine is one
onsists of two or more live organisms, inactivated organ
r purified antigens combined[41]. This type of vaccine ma
e useful to prevent multiple organisms or strains of 1 or

sm. Each component must make a contribution to the w
nd compatibility of the components is necessary.

.5. RNA viruses and challenges for vaccine
evelopment

RNA viruses replicate through RNA-dependent R
olymerase encoded by the virus. This type of polyme
as no proof-reading mechanism associated with it, w
esults in a high rate of uncorrected mutations. These m
ions may or may not be lethal to virus replication and m
ven persist, resulting in rapid evolution of the virus. For
eason, many RNA viruses have multiple genomic strain
uasispecies, present at one time in an individual. Qu
ecies may arise in response to selective immune pre

hus allowing for escape mutants. The existence of qu
ecies during SARS-CoV infection is just coming to li

42] and their importance in escape from immune sur
ance is still unknown.

Most coronaviruses are thought to have the abilit
ecombine due to homologous sequences in the 5′ and 3′
,

les suggests that lung epithelial cells are involved, alth
he absence of pneumonia and infiltrating macrophages[18]
s disappointing. Stat1-deficient mice may prove promi
s an animal model that most similarly mimics human dis

22]. Second, in order to test efficacy, large human pop
ions must be tested in areas where the virus is end
inally, if SARS fails to return, how will vaccine ma
facturers test candidate vaccines for efficacy? While
nimal rule has been provided for just this type of c
n animal model should mimic human disease in ord
e applicable. The final rule was published in the fed
egister and can be found on the federal register we
45].

Additionally, coronaviruses may induce a short-liv
mmunity. This may be the reason that humans are su
o multiple infections with coronaviruses that cause the c
on cold. Long-term immunity studies for SARS-CoV

urrently underway.
Antibody-dependent enhancement (ADE) has b

bserved in vaccinated and wild-type infections of FIP. A
s thought to potentiate viral infection through the inf
ion of macrophages. Viral entry into macrophages oc
hen antibodies bind the virus and attach to macroph
ia the Fc region of the antibody and its interaction with
urface expressed Fc receptors[46]. Neutralizing antibodie
an also be enhancing antibodies if antibody titer is low
s of the IgG class[47,48]. Because macrophages incre
ith viral disease, this cell type may provide an abun

eservoir for the virus and thus expansion of the virus in
ost. Some similarities between FIP and SARS exist. F
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in both cases macrophages can be infected with the virus
[9,49], and in the case of SARS, the etiology of disease is
contributed by infiltrating alveolar macrophages leading to
pneumonitis[8]. Second, the treatment with corticosteroids
and/or interferon alpha ameliorates SARS disease[50], sug-
gesting an inflammatory, immune-mediated disease. While
there has been no observation of ADE during SARS infec-
tion, it is worth noting that one coronavirus, FIPV, is capable
of eliciting ADE and in the evaluation of vaccines, we may
want to consider this possible outcome. However, the dif-
ficulty in testing animal models for ADE bears the caveat
that if ADE is not observed; it has not proved that vaccines
are safe with regard to ADE in humans. In contrast, if an
animal model for ADE is developed, we may learn more
about the mechanism of SARS-induced ADE, which may
help form the basis for developing guidelines for safe vaccine
development.

1.7. Potential vaccine candidates and prototypes

1.7.1. Therapeutic vaccines and neutralizing antibodies
A potential SARS vaccine might target the virus specif-

ically through humoral or cell-mediated immune responses.
Alternatively, therapeutic vaccines may be useful in the
treatment of viral infection. Spike-specific monoclonal
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1.7.3. Recombinant viruses and virus-like particles
Recombinant viruses may be used to elicit responses to

introduced SARS-CoV genes. The first type of recombinant
virus is a defective or non-pathogenic vector that expresses
SARS-CoV proteins. The second type is one that is stimulated
to assemble virus-like particles (VLP) in vitro. VLPs con-
taining the structural envelope proteins including spike (S),
envelope (E) and membrane protein (M) have been assembled
by coinfecting insect cells with three baculoviruses express-
ing one of the three structural proteins[58].

Structural proteins expressed by the live attenuated bovine
parainfluenza virus type 3 (BHPIV3) were evaluated for effi-
cacy in hamsters[20] and African green monkeys[25]. High
titer neutralizing antibodies were obtained after only one
intranasal immunization with this vector. Single immuniza-
tion with BHPIV3 expressing S alone provided complete
protection upon challenge with SARS-CoV[20,25].

Recombinant live attenuated modified vaccinia virus
Ankara (MVA) was used to deliver the SARS spike pro-
tein (rMVA-S) into Balb/c mice[59]. Neutralizing antibod-
ies were obtained and a reduction in the viral titer was
observed after challenge with live SARS-CoV[59]. Only fer-
rets that were challenged with SARS-CoV after vaccination
with rMVA-S showed enhanced liver disease as demonstrated
by increases in ALT values and the presence of mononu-
clear hepatitis upon histological examination[60]. These data
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ARS-CoV[18]. This suggests that neutralizing antibo
lone can prevent viral infection. Neutralization may
equire host recognition of the Fc region of the antibo
ut the need to develop humanized forms of these typ
ntibodies may be critical if they are to be considered
se as a treatment. A human monoclonal antibody, de

rom a phage display library, was administered to ferrets
rotected the ferrets from lung disease and the sheddi
irus in pharyngeal secretions[24].

Neutralizing antibodies from convalescent patients h
een identified and characterized. Usually neutralizing

opes are located in the spike protein of the virus[20,52].
ecent evidence has determined that virus neutralizat
ensitive to deglycosylation of the spike protein, sugge
hat conformational epitopes are important in antibody re
ition [53].

.7.2. Inactivated SARS-Co V
SARS-CoV can be efficiently inactivated by ultravio

UV) irradiation[54]. Mice immunized with UV-inactivate
ARS-CoV develop humoral and cell-mediated imm

esponses[55]. Both T cell proliferation and cytokine upre
lation was observed after boosting with the inactiv
irus. Beta-propiolactone-inactivated virus also elicited n
ralizing antibodies when administered to Balb/c mice[56]
ormalin-inactivated SARS-CoV yielded potent humo
esponses in Balb/c mice as well[57].
uggest enhanced disease due to vaccination with a S
rotein.

Adenoviruses expressing the S, M or N proteins w
sed in combination to vaccinate rhesus macaques[61]. The

mmunized animals all had antibody responses to the S
ein and T-cell responses to the N protein[61].

Highly infectious HIV particles expressing the S prot
ave been made, primarily to study the host-cell distr

ion of the putative SARS-CoV receptor[35]. Additionally,
nvestigating the requirements for viral receptor binding
ntry will also enhance our understanding of the requirem

or viral control. Recombinant HIV particles that express
ARS spike protein may provide insight into cell tropism

eceptor expression profiles[35]. Another retrovirus, murin
eukemia virus, was used to generate infectious particles
aining most of the S protein. Convalescent serum was
o neutralize infection of the recombinant virus in Vero c
62].

.7.4. DNA vaccines
High cytotoxic T-lymphocyte (CTL) and antibod

esponses were observed after mice were injected three
ith a recombinant plasmid vector expressing the N pro

63]. Mice immunized with a plasmid containing the S pro
roduced anti-SARS-CoV IgG[64] and developed neutra

zing antibodies and a T-cell mediated response resulti
six-fold reduction in viral titer in the lungs[65]. Plasmids
ncoding either the S1 or S2 regions of the spike pro
licited antibody production in mice[66]. Neither the S1 or S
ntibodies alone were capable of neutralizing the virus; h
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ever, cooperatively they enabled neutralization of the virus,
suggesting that both regions of the spike protein are impor-
tant for host-cell viral entry[66]. The nucleocapsid protein
may also stimulate an effective immune response. DNA vac-
cination with calreticulin fused to the N protein generated
SARS-specific humoral and cellular immunity in C57BL/6
mice [67]. Calreticulin was used because it was found to
enhance major histocompatibility complex class I presenta-
tion of fusion proteins to CD8 (+) T cells[67].

Recombinant viruses may be generated from the full-
length infectious cDNA clone of SARS-CoV[68]. This clone
may provide a source for genetic manipulation of the genome
[68]. Once the viral virulence factors are understood, atten-
uated strains may be obtained by engineered mutation of the
virus.

Vaccine development may proceed through the undertak-
ing of a systematic approach to understanding the correlates
of immunity raised by SARS-CoV. Much of the focus has cen-
tered towards the humoral response and neutralizing epitopes,
but cell-mediated immunity may also be important. CTL
epitopes within SARS-CoV that may be presented by 99%
of the human leukocyte antigen supertypes were identified
by advanced bioinformatics[69]. Further characterization
of these epitopes, including their recognition by convales-
cent serum, should advance the understanding of important
immunological features in the control of SARS-CoV.
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ward direction will enable the public health community to
be ready.
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