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Intracerebral hemorrhage (ICH) is a severe cerebrovascular disease with a high incidence,
mortality and disability rate. Danhong injection (DHI) is beneficial for ischemic stroke, but is
prohibited for ICH due to risk of bleeding. The present study aims to explore the potential
therapeutic time window and molecular mechanism of DHI in a collagenase-induced ICH
model in aged rats. DHI administration after ICH could significantly improve body weight
and neurological deficits, and reduce the hematoma volume and brain water content
when compared to the vehicle control. Furthermore, the protective effect of DHI
administration on days 1–3 after ICH was superior to those on days 3–5 or 7–9 after
ICH. DHI remarkably increased the Peroxiredoxin 1 (Prx1) expression in astrocytes and
reduced the expression of inflammatory factors tumor necrosis factor-a (TNF-a) and
interleukin-b (IL-1b) after ICH. The immediate treatment of Prx1 inhibiter chelerythrine
(Che) after ICH abolished the protective effect of DHI. Furthermore, the Che treatment
reduced the expression of Prx1 in astrocytes, but increased the expression of TNF-a and
IL-1b after ICH. DHI treatment could not reverse these changes. Therefore, the earlier DHI
is administered, the better the neuroprotective effect. DHI exerts antioxidative and anti-
inflammatory function by increasing Prx1 in astrocytes. These present results may change
the established understanding of DHI, and reveal a novel treatment approach for ICH.
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HIGHLIGHTS

• DHI may be used to treat intracerebral hemorrhage.
• The earlier DHI is administered, the better the neuroprotective effect.
• DHI exerts antioxidative and anti-inflammatory function by increasing Prx1 in astrocytes.
Abbreviations: ICH, intracerebral hemorrhage; DHI, Danhong injection; Prx1, Peroxiredoxin 1; Che, chelerythrine; mNSS,
modified neurologic severity score; PBS, phosphate-buffered saline; MRI, magnetic resonance imaging; H2O2, hydrogen
peroxide; Mst, mammalian sterile twenty; GFAP, glial fibrillary acidic protein.
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INTRODUCTION

Intracerebral hemorrhage (ICH) is a catastrophic disease that
causes severe disability and high mortality in adults. The 1-
month mortality rate of ICH patients can reach up to 40%,
although significant progress has been made in clinical treatment
(Cordonnier et al., 2018; Hemphill et al., 2018). The cascading
events induced by ICH are the main cause of secondary damage
(Ironside et al., 2019). Oxidative stress and inflammation have
been recognized as the major disruptive factors after ICH (Wang,
2010; Hu et al., 2016). Furthermore, these two are closely
correlated. Oxidative stress can mediate the expression of
proinflammatory cytokines such as tumor necrosis factor-a
(TNF-a) and interleukin-b (IL-b), while proinflammatory
cytokines can upregulate the production of reactive oxygen
species (ROS). Therefore, approaches that could inhibit
oxidative stress and/or inflammation can reduce hematoma
volume and promote neurological recovery after ICH (Wang
et al., 2018).

Danhong injection (DHI) is a traditional Chinese medicine
extracted from two herbs Salviae miltiorrhiza Bunge (Danshen,
China) and Carthamus tinctorius L (Honghua, China). The high-
performance liquid chromatography (HPLC) analysis revealed
that the main components of DHI are flavonoids and phenolic
compounds, such as tanshinone, tanshinol acid, salvianolic acid
B, protocatechuic aldehyde, rosmarinic acid, and hydroxysafflor
yellow A (Liu et al., 2013; Li et al., 2017). The quality control of
DHI is strictly according to the standard of the China Food and
Drug Administration (CFDA), and fingerprint technology has
been adopted in the process of production to ensure its quality
(SFDA, 2002). DHI has been considered to accelerate blood
circulation and remove blood stasis (Zhang et al., 2016). Hence,
this has been widely used in Chinese clinical practice for treating
cardiovascular and cerebral occlusive diseases (Chen et al., 2011),
such as myocardial and cerebral ischemia injury, but is
prohibited for ICH treatment according to its instruction for
use (Guan et al., 2013; Guo et al., 2015). Its remarkable
neuroprotective effects are mainly attributed to the
antioxidative and anti-inflammatory function of DHI (Sun
et al., 2009; Wang et al., 2016; Lyu et al., 2017). Therefore, the
investigators explored whether DHI could be used to treat ICH
due to its strong antioxidative and anti-inflammatory effects.

Peroxiredoxins (Prxs) is a ubiquitous family of antioxidant
enzymes, which plays a dominant role in regulating the level of
peroxides within cells and in protecting neurons from oxidative
insult (Perkins et al., 2015). Recent studies have revealed the
additional functions of Prxs in stress-induced gene expression
and inflammation-related biological reactions, such as tissue
repair and parasite infection. Notably, Prx1 is the most
abundant subtype in mammals. This belongs to the 2-Cys Prxs
subfamily, which is a homodimer in cytosol and utilizes
thioredoxin1 as an electron donor to directly convert hydrogen
peroxide (H2O2) into H2O (Rhee et al., 2005; Ledgerwood et al.,
2017). Mammalian sterile twenty (Mst)1, which is a serine/
threonine protein kinase, can be activated by cellular stressors
including H2O2, and Mst1 inactivates Prx1 by phosphorylating it
at Thr-90 and Thr-183 (Rawat et al., 2013). Chelerythrine (Che)
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is a special agonist for Mst1 (Yamamoto et al., 2003). Increasing
the level of Mst1 can specifically induce the phosphorylation of
Prx1 leading to the inactivation of its biological function. The
phosphorylation of Prx1 could not be detected though the anti-
Prx1 antibody.

The present study attempted to explore the potential
therapeutic time window and underlying mechanism of DHI
for treating ICH. These results would provide a theoretical
foundation and a novel strategy for ICH clinical treatment
with DHI.
MATERIALS AND METHODS

Animals
The present study was carried out according to the
recommendations of the Institutional Animal Care and Use
Committee, and approved by the Ethics Committee of
Zhengzhou University. Adult male Sprague-Dawley (SD) rats,
weighing 600–700 g (18 months old) (Masoro, 1980), were
purchased from the Animal Center of Henan province, and
subjected to ICH. Animals were individually fed and kept in
cages at 22°C ± 2°C,with a relative humidity of 50% ± 10% and a
12-h light/dark cycle. A maximum of six rats were kept in a cage
(470 × 300 × 150 mm3). These animals had free access to food
and water.

ICH Rat Model
The ICH model was carried out based on a previous approach
(Rosenberg et al., 1990). Rats were fixed in a stereotactic frame
(RWD Life Science, Shen Zhen, China) after being anesthetized
with 10% chloral hydrate (intraperitoneal injection). Then, 1-
mm craniectomy was performed and a stereo-tactical guided
needle was inserted into the right striatum at the following
coordinates relative to the bregma: 0.2 mm anterior, 3.0 mm
lateral, and 6.0 mm deep. Then, 2 µl of collagenase VIIs (0.25 U/
µl, Sigma-Aldrich) was injected at a stable speed of 0.2 µl/min. In
order to prevent backflow, the needle was left in place for 10 min.
Rats in the sham group received needle insertion, but without
collagenase injection. After the injection, the needle was
removed, the burr hole was filled with bone wax, and the
wound was sutured.

Magnetic Resonance Imaging
Based on a previous study (Del Bigio et al., 1996; Yang et al.,
2017), the hematoma volumes were assessed after ICH (n = 12)
by magnetic resonance imaging (MRI), which was conducted on
a 3.0-T horizontal bore magnet MRI system (General Electric,
USA). A birdcage volume resonator was used to attain the
radiofrequency transmission, and the signal was received via a
four-element surface coil located over the head of the rat. In
order to accurately position the rat inside the magnet bore,
gradient-echo pilot scans were conducted at the initiation of each
imaging session. The T2-weighted images were acquired using 15
consecutive slices of 2-mm thickness. Then, the hematoma
volumes were manually traced from the T2 maps, and the
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mean signal intensity was measured by two imaging analysts,
who blinded to the experimental conditions. During the
scanning process, each rat was covered with a quilt to maintain
body temperature.

Drug Administration
The DHI (drug approval number: Z20026866; product batch
number: 13062020) was provided by BuChang Pharmaceutical
Co. Ltd. (HeZe, Shandong, China), and prepared according to
the statement of the CFDA. Briefly, Radix et Rhizoma Salviae
Miltiorrhizae (750 g) was powdered and infused into 30%
ethanol (7.5 L) for 1 h at 50°C for two times. Then, the extract
was filtrated and 250 g of Flos Carthami was added into the
residue. Afterwards, the mixture was immersed into 2.5 L of
water for 1 h at 35°C for two times. The water extract was mixed
with the alcoholic extract, and vacuum evaporated to a relative
density of 1.10–1.20 (65°C). Then, in order to obtain the isotonic
solution with a pH value of 6–7, the appropriate sodium chloride
and sodium hydroxide for injection were added. The solution
was filtered and stored at 4°C for 24 h. Afterwards, water was
added for injection up to 1.0 L, and the liquid was filtered again,
sterilized, and encapsulated into ampoules. Thus, the DHI was
obtained (SFDA, 2002). The HPLC analysis revealed that the
main components of the DHI were tanshinone, tanshinol acid,
salvianolic acid B, protocatechuic aldehyde, rosmarinic acid, and
hydroxysafflor yellow A (Jiang et al., 2015). The quality control
standard for the DHI according to the National Drugs
Surveillance Administrative Bureau is that the total amount of
danshensu (molecular formula: C9H10O5) and protocatechuic
aldehyde (molecular formula: C7H6O3) should not be lower
than 0.5 mg in 1 ml of injection, as analyzed by HPLC (He
et al., 2012).

A commonly used dosage of DHI in ischemic stroke of a
previous study was converted (Guo et al., 2015), and the clinical
practice dose (1.0 ml/kg. d) was chosen for the present study.
These animals were randomly divided into three groups (Han
et al., 2019), as shown in Figure 1: (1) sham-operated (sham)
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group (n = 36), (2) ICH + vehicle group (n = 36), and (3) ICH +
DHI group (n = 36). Animals in the ICH + DHI group were
intraperitoneally administered with DHI on days 1, 3, and 7 after
ICH (n = 12). For animals in the sham and ICH + vehicle group,
equal volumes of sal ine were administered in the
abdominal cavity.

In order to explore the underlying mechanism of DHI
treatment in ICH, the MST1 agonist, Che was dissolved in
dimethyl sulfoxide (DMSO, 10 µl, 1 mmol/L) (Sacchetti and
Bielavska, 1998). Then, rats were further randomly divided into
three groups: (4) ICH + Che group (n = 12), (5) ICH + DMSO +
DHI group (n = 12), and (6) ICH + Che + DHI group (n = 12).
Che was administered to the lesion core immediately after ICH,
and DMSO was administered as the vehicle control. The DHI
was continuously given at 1–3 days after ICH for rats in the
ICH + DMSO + DHI and ICH + Che + DHI groups.
ASSESSMENT OF ICH OUTCOME

Mortality, Body Weight, and Behavior
Experiments After ICH
The body weight and neurologic deficits (through the 14-point
modified neurological severity score (mNSS), corner turn test,
and tape removal task) (Schaar et al., 2010; Lekic et al., 2012; Zhu
et al., 2018) of rats were evaluated on days 1, 3, 7, and 14 after
ICH. All behavior tests were performed in a blinded manner.

Cresyl Violet Staining
At 14 days after ICH induction, each group of rats were given an
MRI scan. Afterwards, rats (six rats in each group) were
anesthetized and intracardially perfused with phosphate-
buffered saline (pH 7.4), followed by 4% paraformaldehyde.
Then, the brains were removed and immersed in 4%
paraformaldehyde for 24 h, and were dehydrated with 30%
sucrose solution for 3–5 days and at 4°C. Subsequently, the
FIGURE 1 | A sketch map of the experiment schedule for the study.
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brain samples were frozen and cut into coronal frozen slices
(thickness: 20 mm) using a cryostat microtome (Leica CM3050S-
3-1-1, Bannockburn, IL). Then, the cryosections with cresyl
violet to quantify the hematoma volume (Lan et al., 2017). The
damaged areas were evaluated at a 10× objective using the
Image-J software. The total injury volume in cubic millimeters
was calculated as the sum of the damaged area multiplied by the
distance between sections of 120 mm (Wu et al., 2017).

Brain Water Content
At 14 days after the MRI scans in each group, rats were sacrificed to
obtain fresh brain samples. The wet weight was obtained using a
precision scale, and the samples were dried in an oven at a 100°C for
48 h. The brain water content was measured as a surrogate for brain
edema (Han et al., 2016). This was calculated, as follows: [(wet
weight − dry weight)/wet weight] ×100%.
IMMUNOFLUORESCENCE STAINING

DHI was given at 24 h post-ICH as the following research target.
Based on the established protocol (Lan et al., 2017), these
sections were incubated overnight at 4°C with primary
antibodies, including anti-Prx1 (Abcam, ab59538 1:300), anti-
NeuN (Abcam, ab177487 1:500), glial fibrillary acidic protein
(GFAP) (Santa Cruz, sc33673 1:500), and anti-Iba-1 (Abcam,
ab5076 1:500), followed by the appropriate fluorescence-
conjugated secondary antibodies (Santa Cruz Biotechnology,
CA, USA 1:300). Then, the sections were visualized using a
fluorescence microscope (ZEISS Scope A1, ZEISS, Germany).
Afterwards, the number of double-labeled cells in the striatum
around the hematoma were counted (Chang et al., 2014). Brain
sections with similar lesion areas were selected. Cell counts and
the co-localization of Prx1 with NeuN/GFAP/Iba-1 were
analyzed using the Image-J software (1.4, NIH). Positive cells
at 40 × 10 magnification from five optical fields in three sections
per animal were averaged. The cell densities per square
millimeter were calculated.

Enzyme-Linked Immunosorbent Assay for
Detection of Inflammatory Factors Levels
The concentrations of TNF-a and IL-6 in the brain homogenate
solution of ICH rats was measured by enzyme-linked
immunosorbent assay (ELISA) kits (USCN, Life Science Inc.),
according to the manufacturer’s protocol.

Statistical Analysis
All data were presented as mean ± standard deviation (SD), and
SPSS 21.0 was used for all statistical analyses. First, all data were
tested for normality of distribution with the Shapiro–Wilk test or
Kolmogorov–Smirnov test. Then, the three groups comparison
of different time points with normal distribution were compared
using two-way analysis of variance (ANOVA), and the Mann–
Whitney U test was used for nonparametric data. P < 0.05 was
considered statistically significant.
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RESULTS

DHI Promotes Body Weight and
Neurological Functional Recovery
After ICH
Among the 211 rats, 11 rats died during the experiment. No
death occurred in the sham group. The mortality rate in the
vehicle and DHI treated group was 12.20% (5/41) and 14.29% (6/
42), respectively. However, there was no difference in mortality
between the vehicle-treated and DHI-treated groups. The body
weight and neurological function of vehicle-treated rats
significantly decreased during the first three days after ICH,
when compared to sham operated rats (P < 0.001), and these
gradually increased within 7–14 days after ICH (P < 0.005). Rats
treated with DHI on days 1–3, 3–5, or 7–9 after ICH exhibited a
significantly less body weight loss (Figures 2A–C), when
compared to vehicle-treated rats (P < 0.05). The administration
of DHI on days 1–3, 3–5, or 7–9 after ICH also significantly
reduced the mNSS, (Figures 2E–G) the percentage of left turns
in the corner turn test (Figures 3A–C), and the adhesive-
removal time (Figures 3E–G), when compared to vehicle-
treated rats. Furthermore, the protective effect of DHI
treatment on days 1–3 after ICH on neurological function and
body weight was superior, when compared to the treatment on
days 3–5 or 7–9 (Figures 2D, H and 3D, H; P < 0.05). In
conclusion, the earlier the treatment of DHI, the better the ability
to promote neurological function and body weight recovery.

DHI Reduces Hematoma Volume and
Brain Edema After ICH
The therapeutic effect of DHI on day 14 after ICH was verified.
First, MRI scanning (Figure 4A) and cresyl violet (Figure 4B)
staining were performed to assess the hematoma volume. The
hematoma volume in the DHI group (1.0 mg/kg. d) significantly
decreased, when compared to the vehicle group (Figures 4C, D;
P < 0.01). However, rats treated with DHI on days 1–3 after ICH
had the smaller cerebral hematoma size, when compared to rats
treated with DHI, on days 3–5 or 7–9 (P < 0.05). Furthermore,
the hematoma volume of rats treated with DHI on days 3–5 after
ICH was smaller, when compared to rats treated with DHI on
days 7–9 (Figures 4C, D). In addition, the DHI treatment
simultaneously reduced the brain water content on day 14 at
post-ICH (Figure 4E, n = 6; DHI at days 1–3, 72.64% ± 1.82%;
DHI at days 3–5, 74.44% ± 1.65%; DHI at days 7–9, 75.02% ±
1.06%; vehicle, 78.31% ± 1.63%; P < 0.05). However, the time of
treatment of DHI did not affect the reduction in encephaledema
(Figure 4E, P > 0.05).

DHI Treatment Upregulates Prx1
Expression After ICH
Few studies have investigated the expression of Prx1 after ICH.
Therefore, the expression pattern of Prx1 after ICH was
identified. The immunofluorescence staining results revealed
that the expression of Prx1 was upregulated and peaked on day
7, and began to gradually decrease on day 14 after ICH (Figures
5A–L, S). In order to verify the source of Prx1 after ICH, the
March 2020 | Volume 11 | Article 346
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expression of Prx1 in astrocytes (GFAP+ cells), microglias (Iba-
1+ cells), and neurons (NeuN+ cells) were assessed. The
immunofluorescence staining results revealed that Prx1 was
mainly expressed in the cytoplasm of neuron within 24 h after
ICH, and this gradually disappeared on day 3 (Figures 5A–F,
S). The expression of Prx1 in astrocytes was less than that in
neuron within 24 h. This dramatically increased on day 3 and
peaked on day 7 after ICH (Figures 5G–L, S). However, no
Prx1 was observed to express in Iba-1+ cells (Figures 5M–O).
Since the neurological protective effect of the injection of DHI
Frontiers in Pharmacology | www.frontiersin.org 5
on days 1–3 after ICH was superior to that on days 3–5 and 7–9,
the influence of DHI treatment on days 1–3 after ICH on the
expression of Prx1 was tested. The immunofluorescence
staining results demonstrated that Prx1 was mainly expressed
in astrocytes on day 3 after the DHI treatment. The DHI
treatment remarkably increased the expression of Prx1 in
astrocytes on days 3–14 after ICH, when compared to the
vehicle treatment (Figures 5P–R, T; P < 0.05). These results
indicate that DHI mainly affects Prx1 expression in astrocytes
rather than neurons.
A B C D

E F G H

FIGURE 3 | DHI treatment improves the turn bias and somatosensory deficits. DHI treatment significantly reduces the percentage of left turns in the corner turn test
(A–C) and adhesive-removal time (E–G) after ICH. (D) The DHI administration on days 1–3 after ICH has a better effect on decreasing the percentage of left turns,
when compared to the administration of DHI on days 3–5 or 7–9 (n = 6, P < 0.05). (H) The effect of DHI treatment on days 1–3 after ICH in reducing the adhesive-
removal time was superior to the treatment performed on days 3–5 and 7–9 (n = 6, P < 0.05). (*P < 0.05 vs. sham; #P < 0.05 vs. vehicle; **P < 0.05 vs. DHI 3–5 or
7–9 days).
A B C D

E F G H

FIGURE 2 | Danhong injection (DHI) treatment promotes the recovery of body weight and neurologic function. DHI treatment significantly promotes body weight
recovery (A–C) and reduces modified neurologic severity score (mNSS, E–G) after intracerebral hemorrhage (ICH). (D) The administration of DHI on days 1–3 after
ICH exhibits greater advantage in decreasing weight loss, when compared to the administration on days 3–5 or 7–9 (n = 12, P < 0.05). (H) DHI treatment on days
1–3 after ICH has a better effect on reducing neurological deficits, when compared to the treatment of DHI on days 3–5 or 7–9 (n = 12, P < 0.05). (*P < 0.05 vs.
sham; #P < 0.05 vs. vehicle, **P < 0.05 vs. DHI 3–5 and 7–9 days).
March 2020 | Volume 11 | Article 346
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Che Inhibits the Effects of DHI on ICH by
Inactivating Prx1
Based on the above findings, it was hypothesized that DHI exerts
its neurological protective effect by upregulating the expression
of Prx1. Che (a Prx1 inhibitor) could specifically mediate the
phosphorylation of Prx1, which leads to the inactivation of its
biological function. It was found that the expression of Prx1 in
the ICH + Che + DHI and ICH + Che groups significantly
decreased, when compared to the ICH group and ICH + DHI
group (Figures 6A–M, P < 0.01). Furthermore, there was no
difference in the expression of Prx1 between the ICH + Che +
DHI and ICH + Che groups on days 3, 7, and 14 after ICH
(Figures 6A–M, P > 0.05). In addition, the inhibition of the
biological function of Prx1 using Che before the DHI injection
prevented the recovery of body weight and neurological function,
and the reduction of brain water content and hematoma volume,
when compared to the DHI + DMSO treatment (Figures 7A–E,
P < 0.05).
DHI Inhibits the Expression of
Inflammatory Factors After ICH
It has been reported that DHI could attenuate inflammatory
reactions after ICH. Hence, the changes in TNF-a and IL-6 were
detected. The ELISA results revealed that DHI treatment
significantly inhibited the expression of TNF-a and IL-6 in
ICH aged rats, when compared to the vehicle treatment
(Figures 8A, B, P < 0.05). However, with the treatment of Che
after ICH, the administration of DHI could no longer decrease
the expression of TNF-a and IL-6 (Figures 8A, B, P < 0.05).
Frontiers in Pharmacology | www.frontiersin.org 6
DISCUSSION

The collagenase-induced ICH model of aging rats in the present
study simulated the clinical phenomenon of spontaneous ICH,
which mainly occurs in aging adults. The present study is the first
to demonstrate that DHI can be used to treat ICH, and that this
has an outstanding neuroprotective effect on ICH. Furthermore,
the earlier administration of DHI led to its better ability to
promote neurological function and hematoma recovery. The
molecular mechanism of the neuroprotective effect of DHI
involved the upregulation of Prx1 and enhanced its
antioxidative and anti-inflammatory functions in astrocyte.
These novel findings also suggested that Prx1 is a potential
target to ameliorate secondary brain injury and improve long-
term neurologic recovery after ICH.

A previous study revealed that aging exacerbates the astroglial
reaction in response to excitotoxic damage (Castillo-Ruiz
et al., 2007), increases oxidative stress, and deteriorates
neurological function due to loss of neurotransmission (Monti
et al., 2004). Activated glia presents with different changes in
different regions in aged brain including age-related hypertrophy
in the frontal cortex and a numeric increase in the hippocampus
(Amenta et al., 1998). Astrocytes in aged rats also exhibit a region-
specific regulation function, which can attenuate the injury-induced
cytokine response after excitotoxic damage (Campuzano et al.,
2009). Given these afore-mentioned findings, it can be concluded
that aged rats are different from young and adult rats when these are
exposed to insults. These differences are reflected not only in its self-
defense function, but also in the process of damage (Zhao et al.,
2015). Thus, aged rats were chosen as the present experimental
A

B

C D E

FIGURE 4 | DHI treatment reduces hematoma volume and brain water content after ICH. The (A, C) Magnetic resonance imaging (MRI) scanning and (B, D) cresyl
violet staining results revealed that DHI treatment significantly reduced hematoma volume, when compared with the control (n = 12, P < 0.01), and the hematoma
volume in rats treated with DHI on days 1–3 after ICH was significantly lesser, when compared to that in the other two time point groups (n = 12, P < 0.01). (E) The
brain water content test revealed that the DHI treatment reduced the brain water content, when compared to the vehicle treatment (n = 6, P < 0.05). However, the
time of treatment did not affect the effect of DHI in reducing encephaledema (n = 6, P > 0.05). (#P < 0.05 vs. vehicle).
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Wang et al. Danhong Injection Protects Hemorrhagic Brain
objects, in order to explore the role of DHI and its potential
molecular mechanism in ICH.

ICH is a devastating disease that brings serious burden to
humans. Most patients with ICH would retain varying degrees
of disability. However, drugs for treating ICH are very limited
and have poor efficacy (Wang et al., 2018). DHI is a
Frontiers in Pharmacology | www.frontiersin.org 7
neuroprotective agent (Qian et al., 2018), and is widely used
to treat cerebral (Wang et al., 2016) and myocardial ischemic
diseases (Guan et al., 2013). Traditional theory deems that
DHI can accelerate blood circulation and remove blood stasis.
To date, it is still prohibited to use this to treat ICH due to the
high risk of hemorrhage. After careful analysis of the literature
FIGURE 5 | DHI upregulates the Peroxiredoxin 1 (Prx1) expression in astrocytes after ICH. (A–L) The immunofluorescence staining results revealed that Prx1 was
mainly expressed in the cytoplasm of neurons within 24 h after ICH, peaked at 12 h, and gradually decreased (A–F). The expression of Prx1 in astrocytes was
dramatically increased and peaked on day 7 after ICH (G–L). (M–O) However, no Prx1 was observed in Iba-1+ cells. (P–R) The DHI treatment on days 1–3 after ICH
remarkably increased the expression of Prx1 in astrocytes. Majority of Prx1 positive cells were astrocytes. (S) The quantitation of Prx1 expression in neurons and
astrocytes after ICH. (T) The quantitation the effect of DHI treatment on days 1–3 after ICH on the Prx1 expression in astrocytes (n = 6, P < 0.05). (Images are
shown at 400× magnification, *P < 0.05 vs. vehicle).
FIGURE 6 | Che inhibits the expression of Prx1 in astrocytes after ICH. (A–F) The effect of Che injection on Prx1 expression on days 3 (A, D), 7 (B, E), and 14
(C, F) after ICH. (G–L) The effect of Che + DHI treatment on Prx1 expression on days 3 (G, J), 7 (H, K), and 14 (I, L) after ICH. (M) The quantitative analysis results
revealed that the immediate treatment of Che after collagenase injection significantly inhibited the expression of Prx1 in astrocytes. DHI administration could not
reverse the phenomenon. (Images are shown at 400× magnification; Che, chelerythrine; *P < 0.05 vs. vehicle, #P < 0.05 vs. DHI).
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regarding DHI, it was found that the most important
mechanism of DHI treatment for ischemic diseases are the
antioxidative stress and anti-inflammatory function. The
main causes that lead to the progression of ICH are also
oxidative stress and inflammation (Li et al., 2017; Feng et al.,
2019). Furthermore, a previous clinical study revealed the
protective effect of DHI for treating traumatic intracranial
hematoma (Sun et al., 2009). Therefore, an attempt was made
to explore the efficacy of DHI in treating ICH in different time
windows. These above results illustrate that DHI has a
neuroprotective effect for ICH. First, this did not increase
motility. Second, DHI promoted the recovery of body weight
and neurological function. Third, this reduced brain
hemorrhagic volume and brain water content, when
compared to the vehicle. Next, the dissimilitude of the
protective effect of DHI treatment at different time points
Frontiers in Pharmacology | www.frontiersin.org 8
was assessed. It was found that there were remarkably
different efficiencies among the three groups. The
neuroprotective effect of DHI treatment at days 1–3 was
better, when compared to the treatment on days 3–5 or 7–9,
regardless of the recovery of weight, neurological function, or
reduction of hematoma and brain edema. In conclusion, DHI
can be used to treat ICH, even in the acute phase.

A study proposed that DHI can enhance the antioxidant
capacity of micro-vascular endothelial cells in the context of
cerebral hypoxia (Lyu et al., 2017). In addition, DHI exerts its
biological effects by changing the Nrf2 levels and upregulating
the level of SOD, GSH, and MDA after ischemic stroke (Guo
et al., 2014). Furthermore, the fractions of 5–7 and 17–19 in a
ternary network have been demonstrated to be the main active
components of DHI (Wang et al., 2016). Prx1 is an
antioxidative stress protein. However, its biological activity
A B

FIGURE 8 | DHI reduces the expression of inflammatory factors tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6) after ICH. The levels of TNF-a and IL-6 significantly
decreased in the ICH + DHI and ICH + DMSO + DHI groups, when compared to the vehicle group (A, B, n = 6). (*P < 0.05 vs. ICH). The expression of TNF-a and IL-6 was
no longer inhibited by DHI after the injection of Che in the rat model of ICH (A, B, n = 6). (#P < 0.05 vs. ICH + DMSO + DHI; &P < 0.05 vs. ICH + DHI).
A B C

D
E F

FIGURE 7 | The inactivity of Prx1 with Che after ICH abolishes the neuroprotective function of DHI. Che treatment impeded the recovery of body weight (A, n = 12)
and neurological function (B, n = 12), and prevented the reduction in brain water content (C, n = 6) and hematoma volume (D/E/F, n = 6). [*P < 0.05 vs. dimethyl
sulfoxide (DMSO) + DHI].
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is inhibited by heme after ICH. Furthermore, the antioxidative
function of Prx1 relays on the co-expression of HO-1 (Nakaso
et al., 2000; Zhang et al., 2017). However, these studies do not
depict the dynamic changes of Prx1 after ICH. It was
considered that scavenging H2O2 may be the most effective
approach of DHI in exerting neuroprotection after ICH. Prxs
have been shown to be the most effective protein to scavenge
H2O2, especially Prx1 (Mizusawa et al., 2000). Recent evidence
has indicated that Prx1/2 protects the brain against H2O2-
induced apoptosis after subarachnoid hemorrhage (Lu et al.,
2019). Another study depicted that antioxidant Prx1 is more
highly expressed than other antioxidant enzymes in
monocytes and macrophages, and that Prx1 deficiency leads
to excessive oxidative stress and impairs the maintenance of
autophagic flux in macrophages (Jeong et al., 2018). Thus,
Prx1 was chosen to further determine the effect of DHI. The
dynamic changes of Prx1 after ICH were first presented in the
present study. It was found that Prx1 was upregulated and
peaked at 12 h in neuron, and on day 7 in astrocytes after ICH.
A study that conducted a proteomic analysis revealed that
Prx1 was downregulated in peroxide, while the catalase
expression was upregulated at 3 h after ICH (Ren et al.,
2014). Another study concluded that the expression level of
Prx1 in the hematoma region was higher than that in other
areas at 1 day after blood injection (Nakaso et al., 2000). This
discrepancy may be due to the difference of the experimental
objects and methods of study. Immunofluorescence staining
was performed to determine the expression level and cellular
location. Published literatures have focused on the integrated
level of Prx1 in a whole hemorrhagic brain using the
proteomic analysis method. The present results demonstrate
that the expression of Prx1 was further elevated by DHI
especially on days 3 and 7. The revelation of the dynamic
changes of Prx1 after ICH lays the foundation for
further study.

Next, efforts were made to observe the cellular position of
Prx1. A study revealed that Prx1 was mainly expressed in
astrocytes, and elevated after subarachnoid hemorrhage (Lu
et al., 2019). Nakaso et al. elaborated that HO-1 and Prx1 were
induced in reactive astrocytes (mainly at days 14 and 28)
around the hemorrhagic region. However, both proteins were
not induced in neurons (Nakaso et al., 2000). Another
research revealed that Prx1 was a major hemorrhagic stress-
inducible isoform of Prxs in ICH. The insult stimulated the
Prx1 expression and mediated extracellular release, leading to
the activation of TLR-4/NF-kB signaling and the production
of inflammatory cytokines (TNF-a, IL-6, and IL-17) (Liu
et al., 2016). The present study revealed that Prx1 was
mainly expressed in neuronal cells (which peaked at 12 h) in
the peri-hematoma region in the first 3 days after ICH.
Simultaneously, Prx1 increased in astrocytes at the
beginning of the ICH, peaked on day 7, and subsequently
decreased on day 14. No obvious Prx1 was detected outside
the astrocyte. In contrast, the expression of Prx1 was further
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elevated in astrocytes, and the expression of inflammatory
factors TNF-a and IL-6 decreased after treatment with DHI.
From these results, it could be concluded that DHI
intracellularly promotes the expression of Prx1 after ICH
and exerts its neuroprotection though its anti-inflammatory
effect. Furthermore, in order to further explore the
neuroprotective effect of DHI, Che, an indirect inhibitor of
Prx1, was chosen to further verify the role of Prx1 in ICH. Che
promotes the phosphorylation of Prx1, which results in the
loss of its antioxidant and anti-inflammation effects. These
changes lead to the expansion of the hematoma volume, and
deterioration in neurological function. DHI treatment cannot
reverse the detriments caused by the inactivation of Prx1.
Taken together, the present results demonstrate the vital role
of Prx1, and that DHI exerts its neuroprotective effect through
the upregulation of Prx1.

A previous study indicated that Prx1 appeared to act as a
sensitive biomarker to ROS (e.g., H2O2) and represented an
initial response to stress to maintain redox homeostasis,
preventing oxidative damage to lipids and proteins (Scotton
et al., 2020). In addition, Prx1 negatively regulated TLR4
signaling for NF-kB activation by inhibiting TRAF6
ubiquitin-ligase activity (Min et al., 2018). Furthermore,
ROS can activate inflammatory pathways that involve NF-
kB signaling, and immune system activation. The production
of ROS was orchestrated by inflammatory transcription
factors, including nuclear factors derived from erythroid 2
(Nrf2) and NF-kB (Bakunina et al., 2015). These involved
evidences showed that inflammation and oxidative stress are
closely correlated. Oxidative stress can mediate inflammation,
while inflammation causes damage through oxidative stress.
Therefore, it can be concluded that DHI exerts its
neuroprotective effect though antioxidative and anti-
inflammatory functions.

In summary, the present study verified the efficacy of DHI
in the treatment of ICH in the acute phase. DHI exhibited its
antioxidative and anti- inflammatory mechanism by
upregulating the Prx1 expression in neurons and astrocytes
in a collagenase-induced ICH aged rat model. However, the
present study has limitations. One limitation is that merely
aged male rats were involved, and the collagenase-induced
ICH aged male rat model could not fully simulate the clinical
ICH. Another limitation is that DHI is a traditional Chinese
medicine, and its ingredients are not fully elucidated. Further
studies are needed to differentiate the effective component.
Overall, with multiple cellular and molecular targets, DHI
exerts its impact on preclinical investigation, and holds
therapeutic promise for patients with ICH.
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