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Abstract: The lipidome has a broad range of biological and signaling functions, including serving as
a structural scaffold for membranes and initiating and resolving inflammation. To investigate the
biological activity of phospholipids and their bioactive metabolites, precise analytical techniques are
necessary to identify specific lipids and quantify their levels. Simultaneous quantification of a set of
lipids can be achieved using high sensitivity mass spectrometry (MS) techniques, whose technological
advancements have significantly improved over the last decade. This has unlocked the power of
metabolomics/lipidomics allowing the dynamic characterization of metabolic systems. Lipidomics is
a subset of metabolomics for multianalyte identification and quantification of endogenous lipids and
their metabolites. Lipidomics-based technology has the potential to drive novel biomarker discovery
and therapeutic development programs; however, appropriate standards have not been established
for the field. Standardization would improve lipidomic analyses and accelerate the development of
innovative therapies. This review aims to summarize considerations for lipidomic study designs
including instrumentation, sample stabilization, data validation, and data analysis. In addition,
this review highlights how lipidomics can be applied to biomarker discovery and drug mechanism
dissection in various inflammatory diseases including cardiovascular disease, neurodegeneration,
lung disease, and autoimmune disease.

Keywords: lipidomics; inflammation; eicosanoids; mass spectrometry; cardiovascular disease; neu-
rodegeneration; autoimmune disease; respiratory disease; special pro-resolving lipid mediators;
lipid mediators

1. Introduction

Phenotypic lipid profiling techniques have dramatically improved in the last decade.
This technological advancement has ushered in a movement towards multianalyte identi-
fication and quantification of endogenous lipids and their metabolites which are potent
regulators of inflammation and pro-resolving processes. The ability to comprehensively
understand the metabolism of these important structural components and cellular signaling
molecules has deepened our insights into disease pathophysiology and helped identify
drug targets for potential therapeutic development. Additionally, lipidomic profiling has
identified imbalances in lipid homeostasis in several diseases of global health concern
including metabolic syndrome, cardiovascular disease (CVD), neurodegenerative disease,
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respiratory disease, and autoimmune disease [1,2]. Importantly, these changes in the
lipidome appear to occur at specific stages during disease progression, where lipidomics
can be applied to identify reliable biomarkers to monitor disease severity [3,4]. In this
regard, the ability to realign the lipidome may also serve as a good indicator of the efficacy
of therapeutic interventions.

Metabolomics is an analytical approach that utilizes mass detection systems to provide
a cross-sectional snapshot of the metabolites involved in a particular biological system in
order to dissect metabolic pathways as well as quantify analytes of interest. Lipidomics
represents a category of metabolomics centered on the metabolomic evaluation of lipids
and their metabolites. While lipids are known to be potent mediators of inflammation
and other cell signaling cascades, lipidomics continues to be underutilized in guiding our
understanding of disease pathophysiology and the impact of therapeutic interventions.

As clinical trials have become more reliant on biomarkers as disease modifying end-
points, lipidomic monitoring may be highly applicable in drug development. Currently,
there is a lack of guidance as to how lipidomics can be deployed to understand pharmaco-
logical interventions, and how it can be used to facilitate safety and efficacy assessments in
clinical trials. To address this lack of standardized workflows for lipidomics, the National
Institute of Standards and Technology (NIST) conducted surveys and studies of labora-
tories in pursuit of creating harmonization and improved standardization of lipidomic
methodologies and findings [5,6]. This review will highlight some of the strengths and
limitations associated with the current approaches of lipidomics. Key considerations for
lipidomics include data acquisition and analysis, as well as how lipidomics can guide the
dissection of the pharmacological effects of interventions.

2. Techniques and Approaches to Lipidomics

The ability to simultaneously detect multiple analytes has been denoted as “Omics”
approaches. This powerful technique combines layered information derived from genetics,
transcriptomics, and proteomics, where metabolic data can improve our understanding
of the molecular mechanisms driving disease progression. This approach can be globally
assessed to identify changes in biomatrices as well as tissues, where correlations can be
made between analyte concentrations and other measures of disease severity. Accurate cor-
relations with disease severity highlight the power of this approach that can be transformed
into diagnostic biomarkers [7].

Although proteins and nucleic acids have been thoroughly evaluated using proteomics
and genomics, respectively, broad spectrum determination of genes and proteins may be
limited due to a lack of contextualization. Metabolomics/lipidomics has the advantage
of relating phenotype to alterations in an entire metabolic pathway, such as increased or
decreased enzymatic activities. Metabolomic/lipidomic approaches, which can determine
either the relative levels or precise concentrations of targeted analytes within a specific
biomatrix, are most important where gene expression cannot determine the levels of active
metabolites. Examples of this would include structural lipids (e.g., phospholipids) found
in the cellular membranes which can be metabolized to form bioactive lipids capable of
regulating or promoting the resolution of inflammation. The ability to quantify levels
of precursor molecules and their metabolites provides a more complete picture of the
relationships between molecular changes and phenotypical outcomes.

Inflammatory responses are mediated by various chemical entities including his-
tamine, eicosanoid lipids, and cytokines [8,9]. Metabolomic and lipidomic approaches
require greater implementation to capture a more robust profile of active metabolites in-
volved in inflammatory cascade pathways. Lipidomic techniques have advanced with
instrumentation innovation allowing for accurate multianalyte analyses [10]. Analyses
can differ on several levels including sample biomatrices, sample preservation, sample
processing, types of internal standards, instrumentation, untargeted and targeted analysis,
and data analysis. The following sections will review lipidomic instrumentation, lipid
stabilization, data validation considerations, and data analysis approaches.
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2.1. Instrumentation

At the center of these metabolomics/lipidomics analyses is the use of mass spectrome-
try (MS) technology [11]. This powerful tool can identify and quantify a wide spectrum of
analytes simultaneously. Nuclear Magnetic Resonance (NMR) spectroscopy is yet another
tool that can be used for metabolomics/lipidomics analyses. While NMR is an alternative
approach with better resolution to elucidate molecular structures, large sample volumes
and micromolar concentrations are required for this approach [12]. In contrast, MS-based
techniques can identify and quantify lipid analytes at nanomolar or even picomolar con-
centrations [13]. Current uses of MS analyses have employed either untargeted or targeted
approaches [14,15]. Untargeted or “shotgun” approaches are usually employed to identify
unknown metabolites that may participate in a biological system. A limitation of this
approach is that it is incapable of precise analyte identification, and thus requires additional
tests to confirm analyte structures. In contrast, targeted analyses aim to quantify known
analytes with previously defined structures.

Currently there is a lack of uniformity in the types of MS technologies employed. The
diversity of MS methods used includes liquid chromatography (LC)-triple quadrupole
MS, LC-quadrupole time-of-flight MS (LC-QTOF/MS), LC-Orbitrap, nano-electrospray
ionization MS (nano-ESI–MS), gas chromatography MS (GC–MS), acoustic ejection MS,
and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). Each of these
techniques has their own specific advantages and limitations as to the types of data pro-
duced (Table 1). A critical advantage of MS is its sensitivity in analyte detection, where
analytes can be precisely quantified rather than qualitatively compared. Additionally, the
coupling of MS with separation techniques, such as GC or LC, offers considerable benefits
to lipidome profiling by improving peak resolution and confidence in lipid species identifi-
cation. While normal-phase LC (NPLC) or hydrophilic interaction LC (HILIC) methods
can be utilized to obtain adequate separation of polar lipids such as glycerophospholipids
or sphingolipids, reverse-phase LC (RPLC) capabilities enable enhanced separation of lipid
species with predominantly hydrophobic lipids via interaction with 18-carbon side chains
(C18) bound to silica beads.

Table 1. Comparison of Mass Spectrometry Technologies.

Method Advantages Limitations References

LC-QTOF/MS

• High mass accuracy and resolution allowing for
untargeted analyses and identification of unknown
compounds.

• Can be used for structural elucidation of new lipid
metabolites. High mass resolution.

• Lower sensitivity than MRM mode
scans, longer runs times, high cost.

[16]

LC-Orbitrap • Enhanced separation of isotopic peaks with similar
retention times. High mass resolution.

• Lower sensitivity than MRM mode
scans, longer run times, high cost.

[17]

LC-Triple
Quadrupole

• NPLC, HILIC and RPLC capabilities, along with
adjustable mobile phase gradient system enables
optimized degree of separation between various
lipid species.

• Enhanced sensitivity and selectivity of structurally
similar lipids via multiple-reaction-monitoring
(MRM) which utilizes precursor (Q1) and product
ion (Q3) scans to differentiate lipid fingerprints.

• Identification and quantification of a large number
of distinct lipid species.

• Reduced interference from biological matrices.

• Non-uniformity across sample
preparation, data acquisition, and
data processing methods.

• Less effective for detecting unstable
or reactive lipids (e.g., peroxides,
radicals). Lower resolution than
QTOF or Orbitrap.

[17–24]
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Table 1. Cont.

Method Advantages Limitations References

Nano-ESI-MS
• Small sample volume requirements.
• Steady ionization environment.
• High signal intensities due to low flow rates.

• Longer run times, narrow needle can
become clogged.

[25,26]

Acoustic Ejection
MS

• Used for liquid samples without need for sample
extraction.

• Sample processing not required.
• Pulses of acoustic energy applied to the liquid

surface to “lift up” a population of charged
droplets.

• Offers high-speed, high throughput, and
miniaturized experimentation.

• Ion suppression of some analytes.
• May not be suitable for direct

cell/tissue analysis.
[27,28]

GC-MS • Detection of volatile lipids such as free fatty acids
and steroids.

• Requires volatile analytes or
derivatization to increase volatility.

[21]

MALDI-TOF

• MALDI-TOF spectra can be used to generate
2-dimensional images depicting the localization of
particular lipid species within a tissue sample.

• Can be employed after supplementation with
isotope-labeled lipids (e.g., d2-AA or d2-DHA) to
trace metabolic events and localization of
metabolites. Reduced tissue preparation
requirements.

• No precursor ion selection or
fragmentation leads to low
confidence in identifying lipid
species (unless MALDI-TOF/TOF
is used).

• Lacks the resolution of QTOF and
Orbitrap instruments.

[17,19,20]

2.2. Lipidome Stabilization

One limitation of “omic” approaches is analyte stabilization. Prior to analyzing any
lipidomics sample, proper sample processing is imperative. There are several factors
that affect the sample during lipidomic studies, especially the preprocessing, storage,
selection conditions, and matrix specific sample processing [29]. Currently, there is a lack of
information as to (1) the variability within normal healthy controls, (2) standardization of
extraction procedures (e.g., recovery across concentration gradients), (3) evaluating the rate
of standard and sample deterioration, (4) variation in tissue sampling, (5) differentiating
between structural versus signaling lipids, (6) differences in data acquisition in relation to
the types of equipment used, and (7) standardizing the bioinformatics principles applied.

For effective controls, it is important to know the age and condition of biological
samples, as well as the extraction and preservation processes used. Since lipids are highly
sensitive to oxidation, which can be introduced during sample preparation, the stabilization
of susceptible analytes is of critical importance. Drying processed samples under nitrogen
gas, as opposed to other techniques, is one approach to minimize the extent of lipid
oxidation. Another important consideration is conducting stability studies which assess
rates of deterioration. This is rarely evaluated, where known analytes are stored over
time and the time-dependent degradation is evaluated after stabilization [30]. Using
Arrhenius degradation curves, the original concentration of the analytes in the samples can
be calculated. Most lipidomics techniques utilize biological tissues or extracts [31]. The most
utilized lipid extraction systems are performed using a combination of organic solvents
such as chloroform/methanol and water from a small biological sample or a combination of
acetonitrile/methanol and butanol for larger samples [32]. Most organic solvents inactivate
lipid metabolizing enzymes, which minimizes ex-vivo metabolism. Furthermore, sample
collection into vials containing enzyme inhibitors may ensure sample integrity and lead to
more reliable data. Some biological samples do not need to be processed or extracted such
as for MALDI imaging, where typically the tissue is flash frozen to halt enzymatic activity
and tissue sections are directly used. Sample processing and instrument variation are the
cause for several errors throughout an analytical assay if data normalization techniques are
not employed.
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2.3. Data Validation

Data validation protocols should follow guidelines recognized by the FDA to expedite
the drug development process. The Clinical and Laboratory Standards Institute (CLSI),
a not-for-profit organization which develops global standards, has produced an FDA
recognized guidance on evaluation of precise quantitative methods (EP05A3) [33]. To
monitor and evaluate the quality control between lipidomic samples, an internal standard
is added into all samples before processing. The internal standard is selected based on
how structurally related it is to the lipid class of interest and should not be present in the
blank matrix [34]. Recently, synthetic isotope-labelled lipid standards have been widely
employed in lipidomics studies to reduce random systematic errors in detection. Their
chemical similarities to endogenous lipids ensure adequate representation of extraction
recovery levels. Isotopic labelled standards also have distinct chromatographic retention
times and signals outside the natural mass distributions of endogenous analytes. Another
important consideration, which was described previously, is the solvent used to reconstitute
the internal standard to prevent unnecessary loss of sensitivity and prolong stability [35].
It is critical that the instrument and the analytical lipidomic assay are validated to ensure
data accuracy, precision, and sensitivity across the assay range. Acquired data is processed
for deisotoping, and normalization using the internal standard and can be quantified using
a calibration curve [32]. The calibration curves for endogenous lipids raise a challenge
due to the elevated background, however, multiple charcoal-stripped blank matrices are
useful to address this issue. When the method is validated, the calibration curve should be
reproducible, and validate that the matrix is free from potential interfering elements.

2.4. Data Analysis

The fundamental uniqueness of each biological system makes the analysis of metabolomic
data more complicated despite shared biochemical reactions and metabolites [36]. Lipidomics
can identify analytes against a large and complex background, where both experimental
or environmental factors, such as genetics, ethnicity, age, diet, growth phase, biomatrices,
nutrients, pH, sex, and temperature can play roles in metabolite concentrations [37,38].
The data output from lipidomics yields a complex matrix of variables that needs to be
deconvoluted into fewer dimensions to spatially distinguish samples. Principal component
analysis (PCA) reduces the dimensionality of the dataset into inferred variables, improving
identification of major trends and features.

Lipidomic data dimension reduction may employ unsupervised methods, such as
PCA, or supervised ones, like partial least squares regression (PLSR), PLS discriminant
analysis (PLS-DA), and orthogonal projections to latent structures discriminant analysis
(OPLS-DA). The primary goal of PCA and PLS is to identify group differences from a
multivariate dataset. A class can refer to any biologically relevant classification, such as
specific diet or drug interventions. PCA is the most widely used multivariate analysis
method for feature-dependent sample classification. However, it is important for variables
to be tested for the assumptions of predictive regression modeling before any meaningful
conclusion can be extrapolated. These approaches are highly applicable to personalized
medicine and therapeutic development.

More recently, machine learning algorithms have been employed to analyze data
generated by newer bioanalytical techniques. Since metabolites can interact in a non-
linear manner (e.g., enzymatic models), data structures from lipidomics data can become
complex, making machine learning algorithms a practical approach to dissect data in a time-
efficient manner [39]. These algorithms are commonly grouped as either (1) supervised,
(2) unsupervised, or (3) reinforcement learning. Algorithm selection is important to balance
data interpretation and accuracy. Choosing an algorithm is dependent on the outcome
of interest, number of features and parameters, and training time for larger datasets.
To expedite these types of modeling, two popular programming languages for machine
learning are Python and R.
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Following the development of predictive tools for neurological imaging, machine
learning using Python has become an integral means for data analysis. Advantages of
the Python language for lipidomics-based machine learning models include the wide
variety of libraries available for data processing. NumPy and Pandas are data manipulation
libraries built for mathematical computations, data cleansing, and data merging. The latter
library can be further used to visualize and plot data along with Matplotlib and Seaborn
libraries. Once data processing is complete, machine learning models can be built using
Python libraries based on model and algorithm type (i.e., supervised or unsupervised,
where supervised can be further broken down into classification vs. regression). Libraries
such as sci-kitlearn (built upon SciPy) are open-source tools for predictive analyses and
cover algorithms involved in both classification and regression such as support vector
machine (SVM), k-nearest neighbors (KNN), and random forest. Furthermore, k-means,
spectral clustering, feature selection, and cross validation algorithms are available for model
selection and the optimization of features and parameters. These tools can be utilized to
look at a fixed outcome of interest. Alternatively, deep learning using neural networks is a
common example of unsupervised machine learning in which the algorithm is not provided
with pre-defined labels or scores. Python libraries such as Keras (built upon Tensorflow)
offer a neural network application programming interface (API) for which users can build
layers and objectives into. These data analysis tools are useful in interpreting lipidomics
data and presenting them in a form that can be used to extrapolate disease pathophysiology
or for pharmacologic dissection.

3. Lipidomics in Disease Research and Pharmacology

Lipidomic analyses can be aimed at certain subgroups of lipid species such as steroids,
triglycerides, phospholipids, polyunsaturated fatty acids (PUFA) and their bioactive
metabolites (e.g., eicosanoids and docosanoids). Phospholipids are amphiphilic lipids
characterized by a polar phosphate head group attached to two hydrophobic tails. These
membrane-bound lipids are important structural components that support cellular mem-
brane integrity and fluidity, but also serve as precursor molecules for various lipid subtypes
by storing them in their esterified forms. Mammalian cells can contain thousands of distinct
phospholipid species; however, the most abundant and widely characterized subgroups
include the phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylser-
ines (PS), and sphingomyelins (SM) [40].

The hydrolysis of phospholipids and subsequent release of free PUFA into the cell
is mediated by phospholipase enzymes, of which there are two major types. Calcium-
dependent cytosolic phospholipase A2 (cPLA2) preferentially cleavesω-6 arachidonic acid
(AA) from phospholipids, whereas calcium-independent phospholipase A2 (iPLA2) more
efficiently releases eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docos-
apentaenoic acid (DPA)ω-3 PUFAs. AA, EPA and their metabolites are termed eicosanoids,
whereas DHA, DPA and their metabolites are termed docosanoids. Collectively, eicosanoids
and docosanoids serve as potent regulators of inflammation both in systemic circulation
and local microenvironments. These lipid metabolites exert their biological effects through
binding to G-protein-coupled receptors (GPCR) found on the surface of various immune
and glial cell types. Binding initiates signaling cascades to elicit cell-specific responses.
Based on the type of immunologic response elicited, eicosanoids and docosanoids are clas-
sified as either pro-inflammatory or pro-resolving. While pro-inflammatory lipid mediators
promote leukocyte recruitment, reactive oxygen species (ROS) generation and inflamma-
tory cytokine release, pro-resolving lipids attenuate the inflammatory response by inducing
leukocyte apoptosis and promoting the clearance of cellular debris by monocyte-mediated
efferocytosis [41].

Most pro-inflammatory eicosanoids are products of AA metabolism (Figure 1). These
include the prostaglandins (PGs) and thromboxanes (TXs), which are both converted from
AA first by cyclooxygenase (COX) enzymes and subsequently by synthases. Alternatively,
AA can be oxidized by 5-lipoxygenase (5-LOX) to form a pro-inflammatory intermediate,
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5-hydroxyeicosatetraenoic acid (5-HETE), which can be further metabolized by 5-LOX
to yield leukotrienes (LTs) [42]. In a similar manner, EPA can be oxidized by 5-LOX to
generate 5-hydroxyeicosapentaenoic acid (5-HEPE) and LTs with inflammatory activities;
however, EPA does not serve as a precursor for PGs or TXs [43]. Although 5-LOX mediated
metabolism of AA and EPA lead to pro-inflammatory eicosanoids, oxidation of these PUFA
by 15-LOX forms 15-HET(P)E and subsequently lipoxins (LXs) which are pro-resolving
mediators capable of counteract the effects of LTs [44]. Moreover, 12-LOX activity facilitates
the conversion of LTs to LXs. In addition to COX and LOX enzymes, AA can also be metab-
olized by cytochrome p450 (CYP) enzymes to generate epoxyeicosatrienoic acids (EETs),
which are also pro-resolving lipid mediators, and in some cases, neuroprotective [45,46].
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Unlike eicosanoids, the docosanoids are predominantly pro-resolving mediators
(Figure 1). The 15-LOX mediated metabolism of DHA and DPA forms oxidized inter-
mediates (HDHA and HDPA, respectively), which can undergo subsequent metabolism
to generate D-series resolvins (RvDs) via 5-LOX or maresins (MaRs) and neuroprotectins
(NPDs) via soluble epoxide hydrolase (sEH) [47]. These three classes of lipid mediators
exert potent pro-resolving activities similar to LXs, while NPDs exhibit additional neu-
roprotective capabilities. In addition to the RvDs, there exists an EPA-derived group of
resolvins termed the E-series resolvins (RvEs) [48]. These lipids have similar biological
activities to their docosanoid counterparts; however, they have not been characterized as
extensively.

Although hundreds of structurally diverse lipid mediators have been identified, their
distinct physiological roles have only recently begun to be understood as technological
advancements have enabled more comprehensive lipid profiling [44,47]. Since PUFAs and
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their metabolites have been shown to be important mediators of inflammation and pro-
resolving activities, it is important to establish their roles in the initiation and progression of
chronic inflammatory diseases. More importantly, understanding how lipidomic changes
within a biological system mediate the transition back towards inflammatory homeostasis
will open the door to effective therapeutic development. The ability to quantify these
lipid mediators, accurately and precisely, will be critical for improving drug development
strategies and monitoring the changes in inflammatory and pro-resolving lipids in response
to therapy. However, pro-resolving lipids are biologically active at picogram concentrations
and thus monitoring their changes at this level requires advanced instrumentation coupled
with appropriate workflow, analysis, and controls [48]. The following sections will review
how lipidomics has been utilized to understand various inflammation associated patholo-
gies and their treatments including cardiovascular disease and stroke, neurodegenerative
diseases, lung diseases, and autoimmune diseases.

3.1. Cardiovascular Disease and Stroke

CVD is the leading cause of death regardless of gender or ethnic background [49]. It
accounts for an estimated one third of worldwide deaths [50], encompassing coronary artery
disease, myocardial infarction (MI), heart failure and stroke. Early diagnosis and prevention
have been the focus of population-based health efforts to prevent CVD complications that
result in mortality and long-term morbidity.

Aberrant levels of lipids and lipoproteins play an important role in the pathogenesis
of CVD. Their association with atherosclerosis is well studied; however, lipids and lipopro-
teins also have central functions in cell signaling and the regulation of pro-inflammatory
pathways [51]. In particular, oxidized cholesterols and low-density lipoproteins (LDL) are
key biomarkers of diseases and are used to monitor responses to therapeutic interventions
such as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitors (e.g.,
simvastatin, atorvastatin). Elevation of these two key lipid-based biomarkers is central in
the clinical risk assessment for CVD.

Cholesterols are both synthesized endogenously as well as gained from diet. Steroids
like cholesterol are cellular membrane components that maintain the integrity and fluidity
of cell membranes. Additionally, cholesterol is also a key precursor that forms bile acids
and steroidal hormones. Both classes of steroidal structures are activators of nuclear factors
(e.g., steroid xenobiotic receptor [SXR], liver X receptor [LXR], and constitutive androstane
receptor [CAR]) and thus regulate metabolic enzymes such as the CYP system. In the
blood, cholesterol, fatty acids (FAs), and triglycerides (TGs) are transported in hydrophilic
lipoprotein complexes.

The contributions of cholesterols and lipoproteins to the development of atherosclero-
sis are well established. Although the development of atherosclerotic plaques is complex,
dysregulation of lipid pathways plays a central role. Given the strong associations between
atherosclerotic burden, ischemic cardiac disease, and stroke outcomes [52–55], a large focus
of CVD management has been the use of lipidomic profiling of cholesterols and lipopro-
teins to predict ischemic CVD. Plasma biomarkers of CVD include high-density lipoprotein
(HDL), LDLs, and TGs. Genetic, epidemiologic, and clinical lines of research have demon-
strated that apolipoprotein B (ApoB)-containing lipoproteins, including LDL and very
low-density lipoproteins (VLDL), are biologically associated with the development of
atherosclerotic cardiovascular disease (ASCVD) through enhanced oxidation of LDL that
promotes inflammatory signaling and cholesterol deposition in the vessel wall [56]. LDL
profiling has been shown to be accurate and robust, where it is able to predict ASCVD in
low and high-risk populations [57,58]. A comprehensive study of the bioactivity of lipids
would improve the overall understanding of inflammatory mechanisms that underly CVD
pathogenesis. In clinical practice, establishing novel biomarkers could aid in improving
early diagnosis and identifying predictors of CVD outcomes. Lipidomics will aid in the
characterization of CVD and therapeutic interventions.
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3.1.1. Lipoprotein Profiling of CVD

Plasma lipids are measured in several ways; however, LC-MS remains a popular
research methodology because of its accuracy and high sensitivity [59]. While LC-MS tech-
niques continue to evolve, density-gradient ultracentrifugation represents the gold standard
for identification and quantification of LDL, HDL, and other sources of cholesterol esters
(CEs) [60]. LC-MS cholesterol and lipoprotein analysis has been key to our understanding
of lipid dysregulation underlying atherogenesis. In circulating blood, deficient conversion
of free cholesterol to CEs, normally catalyzed by Lecithin-Cholesterol-Acyl-Transferase,
is an early pathogenic step. In a lipidomic analysis of plasma donors with recent acute
coronary syndrome or ischemic stroke, the ratio of CE to free cholesterol was lowest in CVD
cohorts [61]. LC-MS can isolate specific metabolites or lipid compositions that are most
atherogenic. LDL particles containing a CE-rich core of linoleic acid were less associated
with carotid artery plaque formation [62]. Similarly, Stegemann et al. demonstrated that
large polyunsaturated CEs showed the greatest relative enrichment within carotid plaques
compared to plasma, and that a lipid signature of unstable plaques could be identified [63].

Future lipidomic applications will more accurately identify the cholesterol and lipopro-
tein metabolites that mediate ASCVD. If plasma LC-MS profiling can correlate unstable
plaque lipid composition, this would establish a precise “liquid biopsy” of disease. A
greater understanding of the biologic interactions between cholesterols and lipoproteins,
and this how this transition leads to atherogenesis would provide insights as how to
develop novel therapeutic interventions. The combination of LC-MS lipidomics in par-
allel with other approaches would allow a comprehensive “multi-omic” approach that
potentially will yield significant scientific and clinical findings in CVD.

3.1.2. Sphingolipids in CVD

Sphingolipids are a class of lipids that contain an aliphatic amino alcohol on the
sphingoid backbone. Sphingolipids are either diet derived or produced through de novo
biosynthesis. The complexity and variety of sphingolipids is representative of its diverse
roles in the body. Like other lipid types, sphingolipids are structural lipids important in
maintaining membrane integrity and function. In circulation, they help preserve lipoprotein
structure and function. As signaling molecules, sphingolipids have been implicated in
various essential physiological functions, such as growth inhibition, apoptosis, proliferation,
differentiation, and inflammation [64].

The precise mechanistic role of sphingolipids in CVDs has not been fully elucidated,
there is a growing body of evidence that supports the prognostic value of sphingolipids as
predictive biomarkers for CVD outcomes including cardiovascular mortality, risk of heart
failure, and recovery from MI [65–67]. Ceramide, a sphingolipid metabolite, is a secondary
messenger regulating signals after tissue injuries. In chronic inflammatory conditions,
ceramides exacerbate progression of atherosclerosis, where their presence has been noted
in atherosclerotic plaques [68]. Ceramide accumulation in arterial plaques can activate
transcription factors (e.g., nuclear factor kappa B [NF-κB], ets1 and PU.1) which further
facilitate disease progression through uncoupling vascular nitric oxide signaling pathways,
blocking insulin receptors signaling cascades, and inducing thrombus formation by platelet
activation [69–72].

Aside from risk factor detection, circulatory sphingolipid profiles can change dynam-
ically and are indicative of immunological response post-MI. The increases of different
ceramide species have corresponded to upregulation of acute phase proteins and pro-
inflammatory activation. Alterations in sphingolipid metabolism occurred during the
reparative phase, 7 days after induced MI. In particular, ceramide-1-phosphate (Cer1p) to
ceramide ratio in myocardial tissue corresponded with increased ceramide kinase (Cerk)
expression [73]. As lipidomic profile studies investigate further into understanding its
impact inflammation and tissue reparative process, lipid based diagnostic assays may
become important in monitoring CVD outcomes.
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The important role ceramides play in CVD progression also makes it an attractive
target for treatment. Circulatory sphingolipid profiles and sphingolipid concentrations
in plasma and in extracellular vesicles (EV) are known to fluctuate post-MI. Through the
administration of the neutral sphingomyelinase inhibitor, GW4869, hydrolysis of sphin-
gomyelins into ceramides is inhibited, which in turn impairs EV biogenesis. As a result,
the suppression of circulating inflammatory EV post-MI in rats was able to preserve left
ventricular ejection fraction [74]. This finding supports the hypothesis of inhibiting ce-
ramide synthesis to prevent heart failure development post-MI. Ceramide inhibition was
able to decrease ventricular remodeling, fibrosis, and inflammatory infiltrate [67,75–77].
There is significant prognostic and therapeutic value of ceramides and EV with regards to
inflammation-driven CVD. Further elucidation as to the metabolism of sphingolipids may
hold the key to managing chronic inflammation in CVD.

3.1.3. Atherosclerotic Plaques

While there is an abundance of existing lipidomic studies that employ a comparative
and systemic approach to elucidating the disease state of CVD at the serum and tissue
level, there is limited research with the analytical resolution capable of quantitating CVD
metabolites in single cells [78]. Atherosclerotic plaques are heterogenous deposits con-
sisting of smooth muscle cells, mast cells, T-cells, B cells, myeloid cells, lipids, connective
tissue, and other fibrous elements. Using single-cell transcriptomics and single-cell assays
for transposase-accessible chromatin using sequencing (ATAC-Seq), Depuydt et al. [79]
was able to identify distinct phenotypic subclasses within each immune cell population,
highlighting the cellular plasticity and complex intercellular interactions at the disease site.
In recent clinic trials for novel anti-inflammatory treatments against CVD, such as CANTOS,
LoDoCo2, and CIRT [80–83] there is growing recognition that a standardized therapeutic
approach is ineffective due to variation in patient responses. Optimization of therapies can
be achieved by tailoring treatments targeting specific groups of CVD patients. This is predi-
cated on their clinical and molecular biomarker status, including age, gender and genetic
predispositions. Considering the heterogeneity of CVD plaques, a single-cell lipidomic
analysis would expand our current understanding of the dynamic alterations and interac-
tions between heterogenous cell subsets found in a plaque [84]. Ideally with this expanded
understanding, we will be able to effectively personalize anti-inflammatory therapies.

3.1.4. Stroke Research

Ischemic stroke is the most common form of stroke and a leading cause of death and
disability worldwide [85]. Despite the burden of disease, beyond 24 h from the onset
of acute ischemic stroke (AIS), no pharmacologic therapies exist beyond the secondary
prevention of CVD and stroke [86,87]. Using lipidomics, a better understanding of mech-
anisms of secondary brain injury after stroke will lead to novel therapeutic approaches
promoting neurologic recovery. Stroke pathology shares several genetic, behavioral, and
epidemiologic risk factors with CVD. As previously described, the common pathologic
pathway is atherogenesis mediated by inflammation and lipid dysregulation leading to
ASCVD. Atherosclerosis in either intracranial or extracranial vessels is associated with
stroke occurrence and post-stroke outcomes and is a target for early diagnosis and clinical
risk stratification [54,55].

Lipidomic analysis of unstable carotid atheromatous plaques might provide a lipid sig-
nature to identify high-risk patients. Several lipid families associated with cell-signaling and
inflammation have been studied. CEs are differentially associated with unstable plaques,
with large polyunsaturated CEs showing the greatest vessel wall accumulation [62,63].
Profiling of PUFAs and their metabolites, including eicosanoids, offers additional differ-
entiation. Levels of HETEs were significantly elevated relative to EETs in symptomatic
patients compared to controls, with 9-HETE being the most abundant lipid measured [62].
Specialized pro-resolving lipid mediators (SPMs), particularlyω-3 PUFA-derived RvD1,
have been shown to be significantly decreased in vulnerable plaque regions [88]. If unstable
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plaques could be identified by a “liquid biopsy”, early diagnosis and treatment would
be possible.

Post-stroke lipidomics produces a unique metabolomic profile that might also differ-
entiate stroke etiologies. LC-MS of serum samples after stroke demonstrated significant
differences in FA metabolism of oleic acid, linoleic acid, and AA compared to healthy
controls, while changes in phosphoglyceride metabolism was shown to differentiate small
artery versus large artery occlusion [89]. Rodent models have been used to further elucidate
dysregulation of lipid content following stroke. In a mouse middle cerebral artery occlusion
(MCAO) model of AIS, Wang et al. demonstrated that changes in the post-stroke lipidome
is most dynamic in the first 7 days and is characterized by an imbalance in phospholipid
metabolism with reduced PC and increased lysophosphatidylcholine (LPC) levels [90]. In
additional in vitro studies, the authors demonstrated that LPC reduced neuronal viability,
while PC significantly suppressed microglial secretion of inflammatory cytokines IL-1β and
(tumor necrosis factor alpha) TNF-α. Sphingolipid content is also altered after stroke. In a
mouse AIS model, large increases in plasma ceramide and sphingomyelin were observed
24 h after stroke, with levels correlating with volume of ischemic brain tissue [91].

3.1.5. Therapeutic Applications

Lipidomic studies in both human AIS and animal models of disease have identified
potential therapeutic targets for stroke prevention and treatment. Growing interest has
been in the administration of PUFAs and their anti-inflammatory metabolites. In a mouse
model of ASCVD, oral supplementation of RvD1 restored RvD1: LTB4 ratios and reduced
markers of oxidative stress and necrosis [88]. In a Sprague-Dawley MCAO model, intra-
venous administration of aspirin-triggered neuroprotectin D1 (AT-NPD1) 3 h post-stroke
improved neurologic scores up to 7 days after stroke, reduced radiographic measures of
cerebral edema, and decreased histopathologic infarct volume [92]. As recently reviewed
by Miao et al. [93], several other SPMs, including LXs and maresins (MRs), have been stud-
ied as potential therapeutics after stroke. As a bioactive lipid family, emerging evidence
suggests the important role SPMs play in attenuating inflammation after brain injury.

Antithrombotic drugs have been the main pharmacotherapy for CVD prevention.
Among drugs that inhibit platelet activity, aspirin is the most well studied and most
widely used therapeutic. In CVD, aspirins primary mechanism of action is the irreversible
inhibition of platelet COX-1, which has been attributed to reducing TXA2 formation. Under
normal conditions, TXA2 activates platelets and causes vasoconstriction through calcium-
dependent pathways and promoting clot formation. Lipidomics has further elucidated the
anti-inflammatory pharmacodynamics of aspirin. In addition to blocking endothelial cell
PG synthesis by COX-1 and COX-2 inhibition, aspirin reduces pro-inflammatory oxylipins
generated from PUFA oxygenation. In a study of healthy volunteers, low-dose aspirin was
associated with a broad decrease in serum FA levels and reductions in linoleic acid and AA
pro-inflammatory metabolites [94].

Aspirin can also promote resolution of inflammation by triggering the biosynthesis
of SPMs by acetylation of COX-2. In AA metabolism, aspirin-treated COX-2 results in a
15-lipoxygenase (15-LOX)-like reaction that promotes the synthesis of aspirin-triggered
lipoxins (ATLs) [95]. In experimental models, ATLs retain greater bioactivity as compared
to endogenous LXs and inhibits neutrophil adhesion and transmigration across vascu-
lar endothelial cells [95,96]. The ω-3 FAs DHA and EPA are similarly metabolized by
aspirin-acetylated COX-2. An increase in the formation of AT-E and D series Rvs has been
demonstrated in several models of inflammation [95,97,98]. Although these findings have
not been replicated in animal models of CVD, the clinical efficacy of aspirin may be partially
explained by its promotion of anti-inflammatory pathways.

In CVD populations at the highest risk of cardioembolic disease, anticoagulant ther-
apy is associated with reduced stroke risk. Among novel oral anticoagulants (NOACs),
the direct thrombin inhibitor, dabigatran, has gained special interest for potential anti-
inflammatory properties resulting from reduced thrombin activation of the PAR-1 receptor.
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Protease-activated receptors (PARs) are increasingly recognized for their role in mediating
both acute and chronic inflammation. G protein-coupled signaling induced by PAR-1
activation promotes the expression of vascular cell adhesion molecule-1 (VCAM-1), inter-
cellular adhesion molecule-1 (ICAM-1), and E-selectin, mediating vascular permeability
to immune cells [99,100]. PAR-1 activation has been shown to mediate brain edema and
neuronal cell death in a mouse model of global ischemia [101], identifying it as a potential
therapeutic target in CVD. In a rodent sepsis model, dabigatran elicited soluble fibrinogen-
like protein 2 triggered Rv-D5 production from DPA metabolism [102]. Dabigatran has also
been shown to reduce lesion size, collagen content, and oxidative stress in hypercholes-
terolemic atherosclerosis [103]. Shotgun lipidomics may offer further insight into the action
of dabigatran and other anticoagulants in mediating the inflammatory response after CVD.

Statins, or HMGCR inhibitors, are indicated to treat hypercholesterolemia and improve
lipoprotein profiles in patients with CVD. Their anti-inflammatory and antioxidant effects
have been well studied, including reduced levels of C-reactive protein, atherogenic LDL,
TNF-α, interferon gamma (IFNγ), inhibition of T-helper cell inflammatory signaling, and
by regulation of leukocyte-endothelial cell interactions [104–107]. Statins additionally
promote the biosynthesis of pro-resolving SPMs. In a cardiac disease model, atorvastatin
increased myocardial expression of 15-epi-lipoxin-A4 (ATLA) via S-nitrosylation of COX-2.
Similar to aspirin-triggered acetylation of COX-2, S-nitrosylated COX-2 produces 15R-
HETE, generating ATLA from 5-LOX activity [108].

Current research has additionally used a lipidomic approach to describe the differential
effects of various HMGCR inhibitors and variabilities in patient response. In LC-MS plasma
profiling of patients receiving statin therapy, rosuvastatin was associated with increased
PC levels and lower sphingomyelin:(sphingomyelin + PCs) ratios when compared to
atorvastatin [109], which may have clinical importance in the long-term management
of CVD. Using samples from the Cholesterol and Pharmacogenetics study, lipidomic
analysis was able to differentiate “good” from “poor” responders in subjects receiving
simvastatin [110]. Together, these results highlight the power of lipidomics in the discovery
of novel mechanisms of actions and patient-tailored therapies.

3.2. Neurodegenerative Diseases

Neuroinflammation is a common feature among many neurodegenerative diseases,
such as AD, Parkinson’s disease (PD), and multiple sclerosis (MS). Considering that the
brain is a lipid-rich environment where lipid uptake and metabolism is tightly regulated,
lipidomics-based approaches are becoming more widely recognized as effective strategies
to investigate neurodegenerative disease pathophysiology and identify clinical biomarkers.
This section describes the interplay between lipid mediators of inflammation and hallmarks
of neurodegenerative disease pathologies, how these interactions may influence disease
progression, and how lipidomic profiling has been utilized to evaluate the efficacy of
pharmacological interventions against neuroinflammation and neurodegeneration.

3.2.1. Alzheimer’s Disease

AD progression has been closely linked to the accumulation of beta amyloid (Aβ)
peptides and neurofibrillary tangles for several decades, yet therapeutics developed to
target these aggregates have not corresponded to effective therapeutics. More recently,
chronic neuroinflammation has become recognized as a central hallmark of AD pathology,
where glial cell activation (e.g., microglia and astrocytes) results in the release of pro-
inflammatory cytokines and eicosanoids to promote neurodegeneration [111].

Of the eicosanoids generated from glial cell activation, LTs and PGs have been the
most widely studied in AD pathogenesis. They have been detected at higher levels in
the AD brain and implicated as mediators of AD-related neuroinflammation [112]. LTB4
has been linked to increase Aβ production and chronic gliosis [112–114], while PGE2 is
largely produced by activated microglia and is known to induce AD-like phenotypes in
astrocytes [115–117]. 5-LOX, which facilitates the biosynthesis of LTs and several other
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eicosanoids, has gained interest as a potential drug target against neuroinflammation
because it is widely expressed in the central nervous system (CNS) and co-localizes with
Aβ and neurofibrillary tangles in the hippocampal region of AD patients [118]. These
findings suggest that 5-LOX activation and its downstream metabolites such as LTs may
contribute to plaque deposition in AD, although further clinical studies are warranted to
clearly define the relationship.

Neurotoxic aldehydes generated from PUFA peroxidation such as 4-hydroxy-2-nonenal
(4-HNE) and malondialdehyde (MDA) have been linked to AD pathogenesis [119]. These
reactive lipid species are readily formed in environments plagued by chronic oxidative
stress, such as hippocampal and cortical regions of the AD brain. In clinical cohorts, 4-HNE
levels have been positively correlated with cognitive decline and AD severity [120,121].
While these lipid peroxidation products are highly unstable and therefore difficult to de-
tect using traditional MS methods, many procedures have been developed to accurately
quantify their levels by converting 4-HNE and MDA to readily detectable products using
derivatizing agents [122,123].

The ω-3 PUFAs (i.e., EPA, DPA, DHA) and their metabolites are recognized as protec-
tive in the context of AD. These metabolites include the Rvs, MaRs, and NPDs, the majority
of which are derived from DHA, which constitutes up to 60% of all esterified fatty acids in
neuronal plasma membranes [124]. In clinical cohorts, DHA and NPD1 deficiencies have
been associated with cognitive decline [125]. NPD1 not only possesses anti-inflammatory
capabilities, but also exerts neuroprotective effects by promoting neurotrophic cell survival
and suppressing amyloidogenesis via inhibition of Aβ peptides [124]. As such, lipidomic
studies comparing hippocampal regions between AD patients and age-matched controls
found DHA and NPD1 to be significantly less abundant in brain tissue from AD patients.
Interestingly, this trend has only been documented in brain regions which are affected
by AD pathology (e.g., cortex, hippocampus) and has not been demonstrated in other
compartments of the brain such as the thalamus [125–127].

In clinical AD studies, the ratio of ω-3:ω-6 PUFA is often measured to assess the
degree of inflammation, where a lower ratio is indicative of a more proinflammatory
state [128,129]. This is attributed to the fact that AA (ω-6) is the precursor to the majority
of pro-inflammatory PUFA derivatives such as LTs, PGs, and TXs, whereas ω-3 PUFAs
are largely metabolized into pro-resolving and neuroprotective lipid mediators. cPLA2,
which exhibits a specificity toward AA-containing phospholipids, has been linked to glial
cell mediated neuroinflammation by promoting the release of free AA and inducing ROS
formation via the LOX pathway [130]. Postmortem analysis of human cortical samples re-
vealed higher cPLA2 activation in AD brains with the apolipoprotein E ε4 allele (APOE ε4),
which is associated with more severe patient outcomes and neuroinflammation [131,132].
These findings suggest that in addition to lipid transport, APOE genotype may also play a
significant role in regulating lipid metabolism through cPLA2. Lipidomic profiling of brain
tissues from AD patients could help clarify the mechanisms driving these relationships,
although large sample sizes would be necessary to overcome the high degree of variability
between AD cases.

3.2.2. Parkinson’s Disease

Similar to AD, PD is a neurodegenerative disorder characterized by neuroinflamma-
tion and oxidative stress in the brain, which is driven by chronic glial cell activation [133].
This is evidenced by increased TNF-α and NF-κB activation in brains with PD, along with
increased production of pro-inflammatory cytokines and ROS [134–136]. Additionally,
dysregulation of PUFA metabolism has been implicated in PD pathophysiology, and sev-
eral pro-inflammatory lipid mediators have been identified as potential biomarkers for
the disease.

For example, increased levels of PGD2 and PDE2 in brains with PD have been detected,
which has coincided with increased COX-2, prostaglandin E synthase and prostaglandin D
synthase activities [137–139]. In a neurotoxin-induced mouse model for PD, prostaglandin
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E synthase activity and PGE2 production were shown to coincide with brain lesions and
dopaminergic neuronal death [139]. In addition to prostaglandins, markers of lipid oxi-
dation such as 4-HNE and HETEs have been shown to be elevated in PD patients when
compared to controls, which contributes to neurodegeneration by promoting inflammation
and oxidative stress [133,140,141]. The role of SPMs in PD has not yet been widely investi-
gated; however, a recent clinical study comparing PD patients with healthy age-matched
controls found significantly lower levels of RvD1 in both the CSF and plasma of individuals
with PD [142,143]. Further lipidomic studies of this type are necessary to construct a more
complete understanding of the PD lipidome, which could delineate relationships between
lipid metabolism and disease progression, thus guiding drug development strategies.

Lewy bodies, which are protein aggregates comprised of α-synuclein, represent an
important neuropathological hallmark of PD. Structurally, α-synuclein is very similar to
A2 lipoproteins such as cPLA2, and it has been shown to be involved in phospholipid
metabolism [144,145]. Both cPLA2 and α-synuclein have been shown to have increased
activity in the PD brain [133]. Recently, α-synuclein accumulation and propagation has
been shown to be highly dependent on the types of lipids which α-synuclein binds to. DHA
for example, which makes up >50% of esterified PUFA in plasma membranes, has been
shown to increase α-synuclein expression and aggregation [144].

3.2.3. Therapeutic Applications

Lipidomic profiling can support the development of therapeutics for neurodegenera-
tive diseases by identifying enzymatic drug targets responsible for glial cell class switching
toward pathological phenotypes. Additionally, precise and accurate lipidomics can be used
to monitor efficacy of potential drug candidates. As our understanding of lipid mediators
and their involvement in neurodegenerative diseases continues to unfold, many have inves-
tigated different approaches to regulate neuroinflammation by PUFA supplementation or
targeting proteins within the PUFA metabolism pathways such as PLAs, COXs, and LOXs.

Due to clinical evidence showing lower levels of DHA and its metabolites in AD
patient brains compared to age-matched controls, supplementation with DHA and other
ω-3 PUFAs has been widely explored as a possible treatment or preventative action against
AD-associated cognitive decline. Although dietary DHA supplementation in transgenic
mouse models has been shown to mitigate Aβ pathology and restore cerebral blood
volume, DHA supplementation in humans has yielded inconclusive results. Meta-analyses
of several observational studies and clinical trials did not find conclusive evidence of
improved cognitive function or protection against AD pathologies after short, medium, or
long term (>6 months) daily DHA supplementation [146–148]. Some have hypothesized
that these clinical failures stem from larger doses of DHA being required for adequate brain
bioavailability, however, a recent study by Arellanes et al. showed that after long-term
daily supplementation of 2,152 mg DHA, changes in brain volume and cognitive function
were no different from the placebo group despite a 28% increase of cerebrospinal fluid (CSF)
DHA [149]. Employing lipidomic strategies such as targeted LC-MS/MS and MALDI-TOF
imaging may provide insights as to how DHA supplementation has failed in humans; these
approaches can establish the relationship between DHA levels in the plasma, CSF, and
brain, as well as determine DHA metabolites localization in the brain.

The overactivation of cPLA2 in brains of patients with AD and PD, and its selective
induction of the pro-inflammatory AA pathway, has led many to hypothesize that cPLA2 in-
hibition may ameliorate neurodegenerative disease outcomes by shifting lipid metabolism
toward the production of pro-resolving mediators derived from ω-3 PUFAs. Inhibition
of cPLA2 by Annexin A1 has been shown to elicit neuroprotective effects by mitigating
neuroinflammation and neuronal damage in the CNS following spinal cord injury to rats,
and cPLA2 knockout in AD mouse models was shown to ameliorate cognitive deficits
despite Aβ accumulation [150,151]. In a GH3 dopaminergic neuron cell line for PD, cPLA2
inhibition by arachidonyl trifluoromethyl ketone was shown to reduce MPTP(1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine)-induced cytotoxicity; however, cPLA2 inhibitors have
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not been thoroughly investigated in PD animal models [152]. As cPLA2 inhibitors have yet
to be widely assessed in humans or animal models for other neurodegenerative diseases,
lipidomic profiling can serve as a comprehensive analytical tool to evaluate the efficacy of
cPLA2 inhibitors and support developmental efforts.

Aspirin, a COX inhibitor, has been widely explored as a potential treatment for pro-
tection against neurodegenerative diseases such as AD because of its ability to block PG
biosynthesis and promote the formation of ATLAs. A meta-analysis of 12 cohort studies
and three clinical trials reported that although low doses of aspirin coincided with reduced
incidence of dementia in cohort studies, these findings were not confirmed in clinical
trials [153]. Similarly, the COX inhibitors ibuprofen and indomethacin yielded inconclusive
results in AD clinical trials, suggesting that COX inhibition alone may be insufficient for
preventing cognitive decline [154,155]. In a lipidomic study of healthy individuals receiving
low daily doses of aspirin, notable inter-subject variability in systemic eicosanoid levels
were reported, and unexpected reductions in non-COX mediated eicosanoids were also
observed [94]. These findings could partially explain why COX inhibitors have failed in
clinical trials. To better understand the effects of aspirin in neurodegenerative diseases,
similar large-scale lipidomic profiling studies should be conducted in elderly populations
where CSF eicosanoid levels can be quantified. The utility of specific COX-2 inhibitors in
PD has also been investigated in preclinical studies, where COX-2 inhibition in PD rodent
models correlated with less brain lesions and increased protection of dopaminergic neu-
rons [156]. Still, these studies have not been tested in humans because the mechanism by
which COX-2 activity promotes neurodegeneration in PD rodent models remains unclear.

In addition to COX enzymes, the inhibition of LOXs have been proposed for the
treatment or prevention of neurodegenerative diseases such as AD. The inhibition of
5-LOX prevents LT formation from AA, and in an AD mouse model, 5-LOX inhibition
has been shown to reduce cognitive impairment, Aβ deposition, and neuronal loss [157].
Furthermore, 5-LOX inhibitors have been shown to reduce microglia-mediated toxicity
towards neuronal cells in human cell lines [157,158], and similar effects were observed with
the selective inhibition of leukotriene receptors [159]. Although COX inhibitors alone have
been ineffective against AD in clinical trials, the combination of COX and 5-LOX inhibitors
has proven to be more effective in mitigating microglia-associated toxicity compared to
single inhibitors [160], and thus may require additional analysis to affirm these findings.

In the quest to identify anti-inflammatory drugs for AD and PD, minocycline has
been tested in clinical trials because of its ability to suppress oxygen radical formation
and microglial activation [161]. The drug, however, failed in clinical trials for AD due to
lack of efficacy and the occurrence of adverse effects which could be attributed to several
reasons. For one, minocycline targets and anti-inflammatory mechanism of action are not
clearly defined. Second, the adequate dose of minocycline required for suppression of
reactive lipid species has not been determined [162,163]. To address these questions or
prevent similar failures in future drug development, lipidomic profiling in relations to drug
concentrations is required to better understand the pharmacologic parameters required for
optimal pharmacodynamic activities.

3.3. Inflammatory Lung Diseases

Inflammation is a common pathological feature for several lung diseases. There is
growing evidence supporting the role of lipids in mediating inflammation of bacterial and
viral infections, chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis,
and cancer [164–175]. Lipidomics can provide insights into pathophysiology, drug toxicol-
ogy, drug mechanisms, and clinical biomarkers in lung disease. This section will review
lipidomic findings from various lung diseases and address how lipidomics is being utilized
to drive drug development for treatment of lung inflammation.
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3.3.1. Biomarker Identification

COPD is one of the leading causes of mortality in the US and worldwide and lacks
effective treatments [176]. Additionally, there is a lack of predictive biomarkers for COPD
outcomes which further complicates the drug development process. Using immunoassays,
it was shown that 8-isoprostane, LTB4, and PGE2 were significantly increased in the sputum
of COPD patients [177]. Lipidomics can provide the robustness required to establish these
lipid mediators as clinical biomarkers. Lipidomics combines excellent sensitivity with
improved sample workflow to provide high quality data on a higher number of analytes.
In addition, LC-MS lipidomics require smaller sample volumes with a faster processing
time. Lipidomics has revealed alterations in the blood lipid profiles of COPD patients
and identified species of phospholipids, glycerolipids, sphingolipids, and sterol lipids as
potential biomarkers of disease [178]. However, data validation will require a larger study
and a targeted lipidomic approach. A large portion of lipidomic studies have focused on
sphingolipids and phospholipids, however targeted lipidomics focusing on PUFA and their
metabolites may reveal novel therapeutic targets.

Lipidomic studies have identified critical changes of the lipidome in Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in relation to disease severity [179].
Globally, there are over 400 million cases with 5 million deaths associated with this infec-
tion [180]. Progression of SARS-CoV-2 infection can lead to respiratory failure, and acute
respiratory distress syndrome (ARDS) characterized by acute lung injury. Risk factors of
severe infection associated with pathological lipidome changes include age, hypertension,
diabetes, and obesity [181–184].

In particular, dysregulation of eicosanoids and docosanoids in the serum and lungs
from SARS-CoV2 patients showed changes in sphingomyelins, phospholipids, glycerolipids,
and CEs which have been associated with other lung injuries and cardiovascular diseases as
described previously [179]. Of specific interest, moderate disease patients had significantly
increased levels of pro-resolving RvE3 and trending increased levels of PGs. Moderate
disease was associated with higher levels of COX activity and EPA metabolites of 12-LOX.
In contrast, severe SARS-CoV2 was associated with increased 5-LOX and CYP activities.
As expected, SARS-CoV2 patients had increased AA and its metabolites. SPMs including
RvDs were also increased in bronchoalveolar lavage (BAL) of SARS-CoV2 patients. In
agreement with these findings, Zaid et al. found high concentrations of multiple cytokines,
chemokines, and lipid mediators in BAL from severe SARS-CoV2 patients [185]. In a
targeted analysis, PGs, TXs, and LTs were found in higher concentrations and contributed
to inflammation and neutrophil influx [186]. Archamabult et al. showed SARS-CoV-2
infected patients requiring intubation have dysregulated pulmonary levels of eicosanoids
and docosanoids [174]. Unfortunately, blood marker analyses did not correlate with BAL
findings, indicating regional lipid dynamics in lung injury and inflammation. Larger stud-
ies are required to establish lipidome profiles of healthy and patient populations and to
enable lipidomic investigations of drug mechanisms and efficacy.

3.3.2. Lung Toxicology

Lipidomics can also be used to monitor toxicological responses of therapeutic interven-
tions. For example, it has been used to evaluate bleomycin, an anticancer agent, induced
lung toxicity in a mouse model [187]. In the acute inflammatory phase following treatment,
AA metabolites (e.g., PGD2 and PGE2) were increased while DHA metabolites increased
on day 7 during the inflammatory-to-fibrosis phase. Interestingly, no plasma lipidome
changes were observed with bleomycin treatment, indicating the need for appropriate
sample collection to properly study drug-induced lipidome alterations. LOX inhibition
using nordihydroguaiaretic acid has been shown to attenuate bleomycin induced lung
fibrosis, which suggests that bleomycin may exert its pulmonary toxic activity through
dysregulating lipid metabolism [188]. Utilizing lipidomics could provide insight as to
which LOX metabolites are critical for preventing drug induced lung fibrosis.
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Lung injury is also a common adverse effect of radiation therapy where no approved
treatment or medical countermeasures for radiation-induced lung injury (RILI) exist. De-
creased pulmonary surfactant lipids (i.e., PC series) and heme b were evident following
RILI in rhesus macaques regardless of pathological presentation [167]. Additionally, RILI
was associated with decreased sphingomyelins and increased PUFAs which can be linked
to pro-inflammatory and pro-resolution mechanisms as described previously.

3.3.3. Therapeutic Applications

It is well established that lipid profiles are altered in respiratory infections due to an
increase in COX-2 expression. COX inhibitors such as non-steroidal anti-inflammatory
drugs (NSAIDs) are routinely used to treat inflammation and pain associated with a
myriad of conditions [175]. Several classes of drugs have been used to treat SARS-CoV-2
including steroids, COX inhibitors, and antivirals. Aspirin treatment was able to reduce
the need for mechanical ventilation and ICU admission rates [189]. In animal studies, COX,
neuraminidase, and 5-LOX inhibitors have been shown to decrease levels of inflammatory
cytokines [190,191]. Remdesivir (GS-5734), an antiviral inhibitor of viral RNA polymerase,
was first approved in 2020 for the treatment of SARS-CoV2 [192]. Du et al. found that
rat plasma lipidomic profiles showed DHA, RvD2, 5-HEPE, and 5-HETE levels decreased
following remdesivir treatment while TXB2 increased [193]. This study showed reduction
in the lipoxygenase pathway metabolites may delay inflammation resolution. However,
due to a lack of assessment in a disease model, more research is required to understand the
impact of remdesivir on lipidome profiles of COVID-19 patients.

Pharmacologic intervention such as Ramatroban (Baynas®, Bayer, Tokyo, Japan), a
dual receptor antagonist of D-prostanoid receptor 2 (DPr2) and TX receptors (TDRs) has
been used in Japan to boost interferon lambda (IFN-λ), thereby suppressing SARS-CoV-2
replication. In a small cohort of patients, 75 mg twice daily of Ramatroban administration
was found to rapidly improve both respiratory distress and hypoxemia. Reduction in
disease severity was able to prevent hospitalization and promote recovery from acute
disease [194,195]. Although the proposed pathways are thought to inhibit DPr2 and
TDR mediated activities, it is still not clear if Ramatroban will have effects on additional
lipid metabolism.

Glucocorticoid receptor agonist, dexamethasone, was shown to reduce mortality in
SARS-CoV2 patients [196]. Priyillou et al. has shown that dexamethasone induces the
D-series pro-resolving lipid mediator pathway, which may explain the ability of dexam-
ethasone to induce eicosanoid class switching to pro-resolution [197]. It is hypothesized
that AA-derived EETS could attenuate SARS-CoV2-induced hyperinflammation. It has
been proposed that sEH inhibitors could be utilized in SARS-CoV2 (e.g., GSK-2256294) and
other respiratory infections [198,199]. Eicosanoid signaling is tied to immune function, and
therefore further research is critical to understand the basis of various drug classes effects
on healthy and pathological lipidome profiles.

3.4. Autoimmune Diseases

Autoimmune diseases are characterized by chronic inflammation and loss of immune
tolerance. If not treated early and effectively, disease progression towards chronic systemic
inflammation is likely. Production of self-reactive autoantibodies and tissue injury results
in lipid release into circulation, altering the plasma lipidome and indicating active chronic
inflammation. Systemic Lupus Erythematosus (SLE) and irritable bowel disease (IBD) are
some of the most persistent autoimmune diseases that have no highly specific diagnostic
tests available, impairing treatment and recovery times. To overcome this, lipidomics was
identified as a novel approach to provide more insights into autoimmune disorders and to
identify potential lipid biomarkers which would further help characterize and understand
the underlying disease pathophysiology.
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3.4.1. Systemic Lupus Erythematosus

SLE is a chronic autoimmune disorder found predominantly in women which can
affect several organs in the body including skin, kidney, liver, and brain. The underlying
molecular mechanisms of this disease are largely unknown; however, SLE pathogenesis
is attributed to oxidative stress and dysfunction of the immune system. ROS contributes
to dyslipidemia and dyslipoproteinemia which are characterized by high levels of VLDL
and TG but lower levels of HDL. Dyslipidemia occurs because of declining renal function,
which is one of the most common comorbidities for SLE. Therefore, SLE patients also have
a higher susceptibility towards developing CVD. HDL promotes oxidation of LDL and is a
cell efflux promoter, which can promote NETosis and compromise lipid metabolism when
dysregulated [200]. SLE patients have periods of disease flares and remission which greatly
affect the plasma lipid profile. Determining lipidomic profiles at molecular levels could
lead to new detection strategies and biomarker discovery. GC-MS and multi-dimensional
shotgun MS of lipid profiles evaluated FAs, free FAs (FFA), sphingolipids, TG, and PL
levels in SLE patients. The analysis revealed that TGs were increased, and levels of
lysophosphatidylethanolamine (LPE) and PC significantly decreased in patients diagnosed
with SLE. These conclusions were attributed to three major pathways that included decrease
of cPLA2 activation along with peroxisomal dysfunction and degradation. Additionally,
it was found that under oxidative stress, plasmenyl-PE species have an antioxidant role
which supports normal cellular functions. Therefore, determining plasmenyl-PE levels
could be used as a potential biomarker to determine SLE prognosis and ROS [200]. FA
composition in circulation can change with diet and medication use and have thus been
associated with improving SLE symptoms in most patients.

Oleic acid, EPA, and AA have also been measured at lower levels in SLE patients,
where reductions of these lipids were associated with higher disease severity. Early stages
of autoimmune diseases showed PGs and LTs induce influx of neutrophils and increase
biosynthesis of PGE2 and LTB4 [201]. Selectively inhibiting cPLA2 resulted in reduction
of PGE2 and LTB4. However, chronic use of corticosteroids (e.g., dexamethasone) could
potentially lead to a flare-up and failure to treat the inflammatory disease state [202]. This
effect may be attributed to inhibition of cPLA2 which is upstream of both inflammatory
and pro-resolving lipid mediators (Figure 1). Increased dietary fish oil containing DHA
and EPA can shift SLE patient lipid profiles by providing the precursors to make SPMs. In
a study conducted in two toll-like receptor (TLR)-7 agonist induced lupus mouse models,
EPA treatment suppressed autoantibody production and opsonization complex depositions
in the glomerulus. In addition, EPA suppressed B-cell differentiation which would in-
turn prevent autoantibody production [203]. The practical use of lipidomics analysis
is the identification of overlapping lipids that were identified via shotgun MS among
multiple autoimmune diseases. Overlapping lipid profiles between multiple pathologies
suggests the existence of global biomarkers for autoimmune diseases. This area of research
is in the beginning phases and shows potential for developing the next generation of
autoimmune therapies.

3.4.2. GI Autoimmune Diseases

Crohn’s disease (CD) and ulcerative colitis (UC) are IBD subtypes [204]. While both
cause chronic inflammation of the gastrointestinal tract, their etiology and pathological
mechanisms are not clearly known. Currently, diagnostic approaches rely on clinical
manifestations, such as endoscopic, histological, and radiological findings [205]. However,
there is no standard diagnostic tool for IBD involving specific biochemical biomarkers. An
untargeted exploration of plasma samples of UC patients showed the precursors of Rvs,
EPA and DHA, significantly increased in UC patients with disease stage [206]. In biopsy
samples of UC patients, inflamed mucosa showed higher AA, lower EPA, and a higher
AA:EPA ratio. Inflamed mucosa revealed higher levels of DPA and DHA, and lower linoleic
acid and α-linolenic acid levels compared to non-inflamed and healthy controls [207]. The



Metabolites 2022, 12, 333 19 of 33

inflamed mucosa also showed significantly higher levels of PGE2, PGD2, TXB2, 5-HETE,
11-HETE, 12-HETE, and 15-HETE which correlated with severity of inflammation.

SPMs effects on intestinal inflammation include reduction of NF-kB activation, de-
creased neutrophil infiltration, and the phenotypic switch of macrophages from pro-
inflammatory to pro-resolving [208–212]. Consistently, 15-LOX inhibitor (e.g., PD146176)
administration inhibited SPM production leading to worsening of colitis in mice. Inversely,
aspirin administration increased LXA4 and 17-hydroxy DHA and decreased colon inflam-
mation [212–214]. Impaired LX biosynthesis was found in colonic mucosa from UC patients
while lipoxin A4 (LXA4) levels were increased in the mucosa of those in disease remission,
along with increased macrophage infiltration and increased mRNA of LXA4 receptor formyl
peptide receptor 2 (FPR2/ALX) [213,215]. LXA4 levels were also found to be negatively
correlated with histopathologic alterations in experimental colitis, suggesting a beneficial
role for this SPM in IBD [216]. NPD1 levels were increased in the colon of mice with
dextran sulfate sodium (DSS)-induced colitis and decreased in colonic tissue of eosinophil-
deficient mice that develop more severe acute colitis compared to control mice [209,212].
Accordingly, administration of an exogenous NPD1-isomer ((10S,17S)-DiHDoHE) reduced
neutrophil infiltration and inflammatory markers, thus reducing DSS-induced colitis sever-
ity in eosinophil-deficient mice [209]. The EPA-derived RvE1, aspirin-triggered resolvin D1
(AT-RvD1), its precursor (17R)-hydroxydocosahexaenoic acid, RvD2, and Maresin1 have
shown beneficial effects in acute and chronic experimental colitis [208,211,217–219].

Abnormal FA metabolism has been shown in IBD patients with both active and quies-
cent states. In particular, PUFA dysregulation is found in the bowel inflammation process
through eicosanoids derived from AA corresponding to increased colonic inflammatory
cytokines and increased serum FA [220–222]. In this study, fatty acyls were shown to be the
most significantly disturbed lipid species in IBD patients. As a representative of PUFAs,
the metabolism of AA exerts a pivotal function in the inflammatory response including
formation of inflammatory factors and ROS generation. The AA metabolite 20-HETE is
catalyzed from CYP enzymes and regulates inflammatory vascular response through its
interaction with nitric oxide [223]. Similarly, epoxy-eicosatrienoic acid (EpETrE) is a deriva-
tive of AA and plays a role in mediating the effects of inflammation on blood vessels [224].
AA metabolic pathway in IBD has dysregulated PGE2 corresponding with reduction of
EPA and its metabolites [225]. Decreased EPA, DHA, AA, 20-HETE, (+/−)5,6-EpETrE, and
increased (+/−)8,9-EpETrE were found in IBD patients. Similarly, UC patients exhibit
alterations in the AA/EPA ratio, and the amounts of AA, DPA, DHA, LA, α-LNA, and EPA
are associated with the severity of inflammation [207]. These findings suggest lipidomics
approaches can detect and monitor IBD. However, more robust studies of intervention
associated alterations in lipidome profiles need to be conducted to confirm the hypothesis
of targeting pro-inflammatory lipid mediators in the treatment of GI pathologies.

4. Limitations

This review is meant to give readers an understanding of lipidomic methodologies
and considerations with examples of how lipidomics can drive pathophysiology and
pharmacologic dissections. However, due to the vast amount of literature, the review
aims to be concise to capture the multitude of factors involved in lipidomic studies but
is not exhaustive. Additionally, this review is limited to focus on selected inflammatory
diseases, while there are several other inflammatory diseases showing dysregulation of
the eicosanoid pathways that were not addressed. Another limitation concerns methods
both for data production and treatment. Sample preparation, experimental conditions,
and analytical methods were highly variable between studies, which made it difficult
to draw comparisons between them. For example, different lipid stabilization methods,
storage times, and extraction techniques were utilized. Additionally, this review does not
address isobaric or isomeric lipids which may coelute together. The studies reviewed were
conducted with different MS technologies and across different biomatrices, which made it
difficult to form uniform assessments. None of the studies evaluated address the issues
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of comprehensive medication history for study participants, and thus drug utilization
impact on lipid concentrations cannot be delineated. Lastly, the review does not address
other metabolomic or proteomic mediators that facilitate the lipidomic signaling process.
Metabolites involved in the generation of ROS work closely with the inflammatory lipids
but have been excluded from the scope of this review. A summary of the lipidomic studies
discussed in this review can be found in Table 2.

Table 2. Summary of lipidomics studies in inflammatory disease research.

Disease/Injury Pharmacologic
Agent Mass Detection Lipid Source Findings References

CVD

None Orbitrap Human Plasma The ratio of CE to free cholesterol is lowered
in CVD patients [61]

None LC-triple quadrupole,
Shotgun MS

Patient tissue sec-
tions/extracts, plasma

Polyunsaturated CE are largely enriched in
carotid plaques [63]

None LC- triple
quadrupole

Mouse heart tissue,
plasma

Upregulated drastically in tissue after
myocardial injury to activate cellular
regeneration and inhibit
pro-inflammatory cytokines

[73,74]

RvD1 LC- triple
quadrupole

Mouse heart tissue,
plasma

RvD1 supplementation restored RvD1: LTB4
ratios and reduced markers of oxidative
stress and necrosis.

[88]

AT-NPD1 LC-triple quadrupole Mouse Brain Tissue

AT-NPD1 administration 3 h post-stroke
improved neurologic scores up to 7 days
after stroke, reduced radiographic measures
of cerebral edema, and decreased
histopathologic infarct volume

[93]

Statins LC- triple
quadrupole Human Serum Promotes synthesis of pro-resolving SPMs [105]

Stroke

None LC- triple
quadrupole

Human
endarterectomy
plaques, mouse
artery lesions

SPMs, such as RvD1 is significantly
decreased in vulnerable plaque regions [88]

None LC-quadrupole
Orbitrap Human Serum

FA levels vary greatly post-stroke compared
to healthy controls. Phosphoglyceride
profiles are distinctly different between
small artery and large artery occlusions.

[89]

None LC-Shotgun MS Mouse cerebral
cortex

PC levels are reduced within first 7 days
post-stroke, suppresses microglial secretion
of pro-inflammatory cytokines. LPC levels
are increased within first 7 days post-stroke,
which suppresses neuronal viability.

[90]

None LC-Orbitrap
Human serum, Rat
and Mouse cerebral
cortex

plasma ceramide and sphingomyelin are
increased 24 h post-stroke [91]

Healthy Low-dose
Aspirin LC-triple quadrupole Human Serum Global decrease in linoleic acid and oxylipid

metabolites produced by cytochrome P450. [94]

Alzheimer’s

DHA LC-triple quadrupole
Human Neural Cell
Line and Human
Brain Tissues

DHA and NPD1 were reduced in
Alzheimer’s. DHA stimulated NPD1
biosynthesis and attenuates amyloid-β
secretion in cells.

[125]

DHA GC-MS Human
Cerebrospinal fluid

DHA increased 28%, EPA increased 43%,
and EPA was 3-fold higher in
non-APOE4 patients.

[149]

None LC-triple quadrupole Mouse Brain Tissue
Increased AA and metabolites indicating
activation of group IV isoform of
phospholipase A2.

[151]

None LC-triple quadrupole Human Brain Tissue
Increased 4HNE-GSH conjugates in patient
temporal cortex, frontal cortex, and
substantia innominata.

[129]
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Table 2. Cont.

Disease/Injury Pharmacologic
Agent Mass Detection Lipid Source Findings References

Parkinson’s Levodopa GC-MS Human Plasma
and Urine

Plasma F2-isoprostanes, HETEs,
hydroxycholesterols, 7-ketocholesterol, and
neuroprostanes were elevated in patients.
Total HETEs was negatively correlated with
levodopa intake.

[140]

COPD None LC-triple quadrupole Human Serum

Identified potential biomarkers and
achieved high sensitivity and specificity
using a combination of 4 individual lipids
and 10 lipid ratios. Increased C16:1 CE and
TAG (54:6) 22:6/16:0/16:0. Decreased PI
(36:6) and PI (44:6)

[178]

SARS-CoV-2

None LC- triple
quadrupole Human Serum

Moderate and severe infections can be
separated by changes in PUFAs. Changes
corresponded with decreased ALOX12 and
COX2, specifically loss of RvE3 and
prostaglandins, and increased ALOX5 and
cytochrome p450 activity in severe patients.

[179]

None LC-triple quadrupole
Human
Bronchoalveolar
Lavage

Found increased PGE2, TXB2, 12-HHTrE,
and LTB4 which correlated with cytokines [185]

None LC-triple quadrupole
Human
Bronchoalveolar
Lavage

Severe patients requiring intubation had
elevated eicosanoids including
thromboxane, prostaglandins, and
leukotrienes (LTB4 and LTE4). SPMs
increased including lipoxin A4 and
D-series resolvins.

[174]

Remdesivir LC- triple
quadrupole Rat Plasma

DHA, RvD2, 5-HEPE, and 5-HETE levels
decreased following remdesivir while TXB2
increased and PGE2 positively correlated
with remdesivir metabolite concentrations
in plasma.

[193]

Lung Injury

Bleomycin LC-Orbitrap
Mouse Plasma and
Bronchoalveolar
Lavage

Lung samples but not plasma samples
revealed changed lipid profiles.
Prostaglandins increased by day 2 and
ALOX5/15 DHA metabolites increased by
day 7 post-injury.

[187]

Radiation MALDI-TOF/TOF,
Orbitrap, FT-ICR MS

Rhesus Macaques
Lung Tissue

Regardless of pathological findings,
lipidomics identified decreased pulmonary
surfactant lipids, particularly PC (14:0/16:0),
PC (16:0/16:0), PC (16:0/16:1). Tissues with
high histological inflammation showed high
concentrations of PUFA containing PCs.

[167]

Allergic
Airway Dexamethasone LC- triple

quadrupole
Mouse Serum and
Lung Tissue

Ovalbumin sensitization model induced
upregulation of PGD2, PGE2, and
DHA-derived protectins and 17-HDHA in
lung samples but not serum.
Dexamethasone activated the 17-HDHA
pathway and increased protectins within
6 h.

[197]

SLE

None GC-MS, LC-triple
quadrupole Human Plasma

TG increased, PE and PC decreased.
Plasmenyl-PE has an antioxidant role which
supports normal cellular functions and
hence could be used as a
potential biomarker.

[200]

None GC-MS, LC-TOF/MS Human Plasma
Lower levels of oleic acid and EPA were
associated with higher disease severity in
SLE patients.

[203]
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Table 2. Cont.

Disease/Injury Pharmacologic
Agent Mass Detection Lipid Source Findings References

IBD

None
LC- triple
quadrupole and
LC-QTOF/MS

Human Plasma Lowered EPA levels [206]

None GC-MS Mucosal membrane AA, DPA and DHA increased [207]

None LC equipped with
diode array detector Colonic Mucosa Inhibited SPM production leading to

worsening of colitis in mice. [210]

Dextran
Sulfate Sodium LC-triple quadrupole Mouse Colon Tissue

Better outcome predicted with higher levels
of NPD1, NPD1-isomer
((10S,17S)-DiHDoHE) reduced neutrophil
infiltration and inflammatory markers

[214]

None GC-MS and LC-MS Human Plasma

PUFA and eicosanoids derived from AA
corresponded to increased colonic
inflammatory cytokines found in the bowel
inflammation process

[220–222]

5. Conclusions

Lipidomic profiling has advanced our understanding of several diseases. Although
specific analytes and their changes in concentration have been important to identify po-
tential dysregulation, the ratio of the precursors in relation to bioactive metabolites may
be more informative. This highlights the delicate balance between inflammatory and pro-
resolving mediators, but also the importance of enzymes involved in lipid metabolism
pathways. In the lipidomic profiling of the various diseases discussed in this review,
active inflammation is associated with lower EPA:AA and DPA:AA ratios in the early
onset of acute inflammation, where a counterbalance with pro-resolving lipid mediators
can promote disease resolution. In chronic inflammation, however, persistent lowering
of EPA:AA and DPA:AA ratios and the inability to realign this metabolic imbalance is
apparent. There are efforts utilizing this data to develop therapeutic strategies; where dys-
regulation in the lipidome may also present an opportunity to develop precise biomarkers
for disease monitoring. These opportunities can only be realized when the affected tissues
have lipidome changes that can be detected in the circulation or affected tissues can be
readily sampled as in BAL lung samples. In order to do these types of correlations, machine
learning and deeper learning tools are required to improve their predictive values. It is key
that advancement of analytical techniques is integrated with machine learning analysis
correlating clinical outcomes with these biochemical markers. Standardization of lipidomic
analyses will be critical in the drug development process to ensure accurate and repro-
ducible findings from various academic and industry laboratories. Researchers interested
in utilizing lipidomics should refer to agency recognized guidelines on assay development.

This review highlighted several considerations for lipidomic analyses including ad-
vantages of various MS instruments, sample stabilization, and data analysis and validation.
Furthermore, this article reviewed how lipidomics has revealed novel biomarkers of in-
flammatory diseases and driven drug development by elucidating molecular mechanisms
of various pharmaceutical agents. Lipidomic findings have shown strong overlap among
these inflammatory diseases and allow researchers to utilize analyses in other systems to
drive their own research and development. More comprehensive studies in the future
can result in larger data-banking and, with the use of advanced computing, accelerate
development of novel therapeutic interventions in inflammatory diseases on a global scale.
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