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Stimulatory versus suppressive effects of GM-CSF on
tumor progression in multiple cancer types

In-Sun Hong1,2

Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune

modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in

multiple types of human cancers, effectively marks cancer cells with a ‘danger flag’ for the immune system. In this context, most

studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and

monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor

progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have

suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that

GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the

currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of

GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical

applications.
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INTRODUCTION

The hematopoietic growth factor granulocyte-macrophage
colony-stimulating factor (GM-CSF) regulates hematopoietic
stem cell/progenitor cell differentiation into dendritic cells
(DCs), granulocytes, and macrophages in the bone marrow.1

In clinical oncology, immune responses against multiple
infectious agents or cancer cells are activated by GM-CSF
acting as an immune stimulant to increase various immune cell
activities.2 These encouraging results have led to numerous
clinical trials of GM-CSF to evaluate whether it can enhance
antitumor immune responses against a number of cancer types
by promoting the activation, maturation and migration of
various immune cells that may result in successful tumor
treatment. In addition, a growing body of evidence suggests
that GM-CSF is produced and secreted by a wide variety of
non-immune cell types, including fibroblasts, keratinocytes
and endothelial cells in response to appropriate stimuli.3,4

GM-CSF promotes the growth and migration of tumor cells
by enhancing the expression of MMPs,5 and it induces
keratinocyte growth, thereby accelerating wound healing.6,7

Because of these effects, GM-CSF has been used in adjuvant
tumor therapies. However, the value of GM-CSF is still highly

controversial because of its different effects on tumor
progression depending on the tumor type or cancer model.
A large body of experimental evidence indicates that
GM-CSF can act as a tumor-derived factor that may promote
tumor growth and progression. In multiple cancer models,
constitutive GM-CSF protein expression and secretion has been
observed, frequently together with its conjugate receptors.8–11

An increased level of GM-CSF in serum is considered a
potential diagnostic and prognostic marker indicating poor
prognosis in colorectal cancer patients.12 Enhanced GM-CSF
protein levels, together with platelet-derived growth factor
(PDGF) and vascular endothelial growth factor, were found
to be significantly associated with invasion and poor prognosis
in patients with head and neck cancers.13 Consistent with
this finding, previous studies have suggested that GM-CSF
promotes cancer cell proliferation and migration in a variety
of solid tumors and cancer cell lines.5,14–16 These results
suggest that in addition to its immune-stimulatory functions,
GM-CSF may have direct effects on tumor progression and
invasion. Therefore, in the current review, we provide an
overview of the existing empirical findings and summarize both
the advantages and disadvantages of the growing influence of
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GM-CSF on tumorigenesis to give directions for future
research.

DISCOVERY OF GM-CSF AND ITS BIOLOGICAL

FUNCTIONS

GM-CSF was first purified from the conditioned medium of
mouse lung tissue treated with endotoxin lipopolysaccharide as
a small glycoprotein (24–33 kDa), which was able to stimulate
the proliferation of bone marrow-derived macrophages and
granulocytes.17 GM-CSF isolated from mouse lung conditioned
medium stimulates the proliferation of multiple types of
hematopoietic cells, including macrophages, eosinophils,
erythroid cells, granulocytes and megakaryocytes, in a
concentration-dependent manner.18 GM-CSF is also able to
stimulate the development and maturation of leukemic hema-
topoietic cells into neutrophils, eosinophils and monocytes.18

In addition, GM-CSF is produced and secreted by a number of
different cell types, including activated T cells, B cells, macro-
phages, mast cells, vascular endothelial cells and fibroblasts,
generally in response to inflammatory cytokines and innate
immune activation.17,19,20 GM-CSF may also have an impor-
tant role in regulating the extracellular matrix by modulating
the metabolism of vascular collagens. Moreover, GM-CSF can
promote the proliferation and migration of vascular endothelial
cells, thus contributing to angiogenic processes,21 and induces
keratinocyte proliferation and migration, which, in turn,
stimulates wound healing.22,23

MOLECULAR MECHANISMS UNDERLYING GM-CSF

REGULATION

GM-CSF exerts all of its biological activities by binding and
activating its cognate heteromeric receptor (also known as
CD116), which is present on multiple cell types, including
endothelial cells, granulocytes, lymphocytes, macrophages and
monocytes.24 The GM-CSF receptor is composed of at least
two different subunits, the alpha chain and the beta chain,
which are also present in the common receptors for
interleukin-3 (IL-3) and IL-5.25 The alpha subunit contains
ligand-binding sites,26 whereas the beta subunit complexes with
the alpha protein and mediates receptor signal transduction.27

Onetto-Pothier et al.28 demonstrated the presence of two
classes of GM-CSF receptors on acute myeloid leukemic cells:
a high-binding affinity receptor for the ligand with a dissocia-
tion constant (kd) of 3–73 pmol l− 1; and a second class of
receptor with a low-binding affinity (a kd of 1–10 nmol l− 1)
for the ligand. Interestingly, both subunits lack intrinsic
catalytic domains such as tyrosine kinase domains.18 The
cytoplasmic domains of the GM-CSF receptor beta chain are
constitutively associated with the kinase Janus kinase 2
(JAK2).29 These GM-CSF receptor beta-chain-bound JAK2
molecules may cross-phosphorylate both each other and the
receptor beta chain itself.29 This phosphorylation is sufficient to
trigger multiple intracellular signaling pathways, including
STAT5 and MAPK.1,30 Subsequently, multiple GM-CSF target
genes are constitutively activated, including the transcription

factor PU.1, which regulates the appropriate differentiation and
maturation of macrophages.31

REGULATION OF GM-CSF PRODUCTION

GM-CSF is produced and secreted by a number of different cell
types, including activated T cells, B cells, macrophages, mast
cells, vascular endothelial cells, fibroblasts and a wide variety of
cancer cell types.18 GM-CSF expression is rapidly stimulated in
response to lipopolysaccharide and pro-inflammatory cyto-
kines, including IL-1,32 IL-633 and tumor necrosis factor-α,34
whereas its expression can be successfully inhibited by IL-4,35

IL-1036 and IFN-γ.37 In addition, immunosuppressive
agents, including cyclosporine A, potently reduced GM-CSF
production.38 Similarly, a synthetic glucocorticoid, dexametha-
sone, markedly inhibited GM-CSF secretion in human retinal
pericytes, monocytes and retinal endothelial cells.39 Normally,
the serum GM-CSF concentrations are extremely low or even
undetectable, whereas the immunoreactive circulating levels are
significantly elevated in response to inflammatory stimuli,
including bacterial endotoxins and local infections. Consistent
with these results, elevated GM-CSF levels are seen in the skin
of lesions from atopic dermatitis patients. Correspondingly,
enhanced GM-CSF secretion from keratinocytes may contri-
bute to the chronicity of inflammatory lesions by enhancing
the antigen-presenting functions of DCs.40 In synovial fluid
from patients with rheumatoid arthritis, measurable levels of
GM-CSF support the differentiation of an inflammatory DC
population,41 which may, in turn, influence bone loss and joint
destruction. Noster et al.42 showed that synovial GM-CSF
production by human CD4+ T cells is stimulated in response to
the Th1-polarising cytokine IL-12 and the T-cell survival factor
IL-15. However, it is not fully understood how the GM-CSF
secretion from helper T cells is regulated.

IMMUNE-DEPENDENT ANTITUMOR ACTIVITY OF

GM-CSF

GM-CSF as an adjuvant in immunotherapy
The human immune system, which maintains healthy
barrier homeostasis against diverse insults and minimizes
inflammation and cellular dysregulation, is divided into two
extremely broad categories: innate and adaptive immunity. The
innate immune system evolved numerous defense mechanisms
to quickly recognize and respond to a wide variety of
preprogrammed inflammatory responses involving various
soluble factors, including complement and antimicrobial
peptides, as well as multiple cellular components, including
DCs, macrophages, mast cells and natural killer cells. The
adaptive immune response is a slower-acting, longer-lasting
and more specific response than the innate response.43 The
concept that the immune system can recognize and eliminate
antigen-bearing cancer cells is known as cancer immuno-
surveillance, which has a critical role in the host defense against
the initiation and progression of cancer.44,45 The ability of the
immune system to eliminate abnormal or cancerous cells has
been a major focus of cancer immunotherapy based on
enhancing host protective antitumor immunity.46 Constitutive
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GM-CSF-producing cancer cells stimulate potent, long-lasting
and specific anti-tumor immunity by priming CD4+ and CD8+

T cells to recognize circulating tumor-associated antigens,
which in turn induce a systemic antitumor-specific immune
response.47 The mechanism underlying this GM-CSF-mediated
antitumor immunity is believed to rely in part on the enhanced
local recruitment and activation of DCs,48 which may result in
the enhancement of tumor antigen-associated presentation to
T cells in tumor-draining lymph nodes49 and in the activation
of other cellular elements of the immune response, including
granulocytes, macrophages and NK cells.48,50 Therefore,
GM-CSF is critical to the regulation of anti-tumor immune
responses, mainly by the activation of both innate and adaptive
immunity.51–53

DC-mediated anti-tumor immunity of GM-CSF
Antigen presenting cells have an important role in the
generation of protective immune responses to tumor-specific
antigens. Due to their high constitutive levels of MHC and
co-stimulatory molecules, DCs are the most potent antigen
presenting cells and have a critical role in the host immune
system.54 Marked numerical increases in DCs were detected in
the thymus and spleen of mice injected with recombinant
GM-CSF or transgenic mice that overexpress GM-CSF,55,56

suggesting that GM-CSF can stimulate the in vivo expansion
of DCs. In this context, GM-CSF efficiently stimulates higher
levels of protective anti-tumor immunity via DC activation and
accumulation.48 The increased anti-tumor immunity of GM-
CSF-producing cells may be related to the ability to mature and
recruit DCs,57 which are able to phagocytose apoptotic/necrotic
tumor cells and display several co-stimulatory factors..58 In
addition to their antigen-specific responses, several studies have
identified specific DC functions for the induction of antitumor
immunity of tumor vaccines.59 For example, Mach et al
showed that GM-CSF-secreting tumor cells stimulated potent
antitumor immunities by enhancing the expression levels of
B7-1 and CD1d on DCs.48

Phase I clinical trial of GM-CSF-secreting tumor vaccines
The use of recombinant GM-CSF as an immune adjuvant to
stimulate humoral or cellular immune responses to tumor
antigens improves the survival of patients with various types of
cancer. The activation of GM-CSF receptors promotes the
survival, growth and differentiation of many different immune
cell types, including neutrophils, macrophages and various
T cells, in addition to the direct stimulatory effect on multiple
immune functions. Obviously, these immunological properties
make GM-CSF a potent immune adjuvant in cancer
immunotherapy. Indeed, the subcutaneous injection of
GM-CSF-producing cancer cells activated an intense local
inflammatory response that stimulated DCs, macrophages and
granulocytes.60,61 The stimulation of these immune cells
indicates that GM-CSF may enhance tumor-specific antigen
presentation, thereby leading to improved anti-tumor activities
by activating the immune system. To explore the effectiveness
of the paracrine activity of the GM-CSF protein as a potent

antitumor immune effector, Soiffer et al.62 conducted a phase I
clinical trial investigating the biologic activity of engineered
GM-CSF-producing autologous cancer cells in patients with
metastatic melanoma. These autologous GM-CSF-secreting
cells stimulated potent antitumor immunity and subsequently
induced extensive tumor destruction (at least 80%) in 11 of the
16 patients with metastatic melanoma by recruiting CD4+ and
CD8+ T cells into metastatic lesions.62 Consistent with these
findings, Salgia et al.63 also conducted a phase I clinical trial,
which revealed that metastatic lesions resected after vaccination
with irradiated GM-CSF-secreting cells showed T lymphocyte
and plasma cell infiltrates with tumor necrosis in three of the
six patients with metastatic non-small-cell lung cancer. At a
minimum of 36 months follow-up analysis, 10 of the
35 patients (29%) with metastatic melanoma were alive after
vaccination, with a minimum follow-up of 36 months; further,
4 of these patients had no evidence of disease.64 In addition,
Simons et al.65 demonstrated in their phase I clinical trial that
included patients with immunocompetent prostate cancer that
these GM-CSF-secreting tumor cells activated new T-cell and
B-cell immune responses against prostate cancer antigens and
the infiltration of effector cells consisting of CD45RO+ T cells.
These results suggest that GM-CSF-secreting cells can create an
advantageous environment for tumor antigen presentation.

IMMUNE-INDEPENDENT EFFECT OF GM-CSF ON

MULTIPLE CANCER TYPES

Stimulatory effects on tumor progression
Interestingly, GM-CSF has also been described as a tumor-
stimulating factor that acts in various cancer models in an
autocrine or paracrine manner. Constitutive GM-CSF secretion
has been found, frequently together with the GM-CSF receptor,
in a variety of tumor models, including small-cell lung
carcinomas,66 meningiomas,67 skin carcinoma,68–70 gliomas71

and head and neck squamous cell carcinomas (HNSCC).72

In various experiments, GM-CSF stimulated cancer cell
proliferation and/or migration in vitro or in vivo in an
immune-independent manner in multiple cancer types,
including skin carcinoma,68,70 gliomas,71 HNSCC14 and lung
cancer cells.73 In summary, many previous studies have shown
a tumor-promoting effect of GM-CSF in different cancer types
and have raised exciting questions about the mechanisms of
GM-CSF-driven cancer progression and metastasis.

Bladder cancer
When they are initially diagnosed, 70% of all bladder cancers
are superficial (noninvasive), but most of them (60–70%) have
a propensity to transform into invasive tumors following initial
transurethral resection of bladder cancer. In ~ 15–25% of
patients, bladder cancers recur and progress to invasive,
high-risk tumors.74 Unexplained leukocytosis associated with
bladder carcinoma has been described and is linked to
poor prognosis.75 In some cases, this leukocytosis has been
attributed to the inappropriate production and secretion of
GM-CSF from bladder cancer cells.10 Some patients with
urothelial carcinomas have been found to express GM-CSF
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receptors concomitantly, thus resulting in an autocrine and/or
paracrine stimulation of growth, which may explain why some
of these carcinomas behave aggressively.76 Recent microarray
analysis revealed significant increases in the levels of GM-CSF
and in the alpha-subunits of the GM-CSF receptor in bladder
cancer patient samples compared with normal tissues.77

Brain cancer
Glioblastoma is a type of aggressive brain tumor that grows
rapidly from glial cells and results in a very low 5-year survival
rate for patients.78 Elevated expression levels of GM-CSF and
its receptor have been reported in surgical specimens of
malignant glioblastoma;79,80 high tumoral levels of GM-CSF
and its receptor are significantly correlated with a poor
prognosis.9,81,82 In glioblastoma, the GM-CSF and its receptor
promote tumor progression, possibly by upregulating anti-
apoptotic and pro-angiogenic signals via the activation of the
STAT3 signaling pathway or by increasing the expression of
vascular endothelial growth factor and its receptor.83,84 In the
tumor environment, tumor cells and tumor-associated micro-
glial cells, but not mesenchymal stem cells, are now known to
secrete GM-CSF.38,85,86 Decreased GM-CSF levels significantly
suppressed cancer cell growth and metastasis, suggesting a
stimulatory effect of GM-CSF on glioblastoma progression.85

Colorectal cancer
Chronic inflammation is known to have an important
regulatory role in the development of colorectal cancer in a
variety of current experimental models.87,88 Indeed, chronic
inflammation, as has been commonly observed in various types
of inflammatory bowel disorders, is known to be associated
with an elevated incidence of colorectal cancer.87,88 GM-CSF is
known to be involved in regulating macrophage polarization.89

Interestingly, elevated levels of the soluble inflammatory
cytokine GM-CSF in serum have been recognized in some
patients with colorectal cancers, which suggest that GM-CSF

may be an independent prognostic factor.15,90 Consistently,
gene expression arrays show that ~ 70% of human and murine
colorectal cancers exhibit a consistent production and secretion
of GM-CSF.11

Head and neck cancer
The increased expression of GM-CSF, together with platelet-
derived growth factor and vascular endothelial growth factor, is
significantly correlated with invasion and poor prognosis in
patients with HNSCC.72 Tomita et al.91 reported that GM-CSF
stimulates HNSCC cell invasion and metastasis by upregulating
MMP-2 and MMP-14 expression. These findings have led to a
careful re-evaluation to determine whether adjuvant GM-CSF
therapy can prevent or stimulate tumor progression in patients
with different types of cancer; however, there is a need for
further investigations of the potential adverse effects of
recombinant human GM-CSF in these patients.

Lung cancer
A remarkable tumor-related leukocytosis sometimes accom-
panies malignant lung cancer in the absence of apparent
infection.92 The aggressive tumor growth and poor prognosis
in some cases may be closely linked to the leukemoid reaction
in lung cancer patients.93 Frequently, this leukocytosis can be
caused by an unregulated production of hematological growth
factors, including CSFs, IL-1, IL-6 and tumor necrosis factor-
α.94,95 Interestingly, increased serum levels of GM-CSF are
considered markers for adverse clinical outcomes, especially in
patients with non-small-cell lung carcinomas.96 Consistently,
GM-CSF expression positively correlates with the tumor-
igenicity and spontaneous metastatic capability of human97

carcinomas, and the enhanced invasive ability of human lung
cancer cells can be accompanied by an increased expression of
extracellular matrix-degrading enzymes.73 Therefore, because
GM-CSF may profoundly influence tumor progression and
metastasis, caution is warranted when using recombinant

Figure 1 Schematic diagram summarizing the potential roles of GM-CSF in tumor progression. GM-CSF exerts its function mainly by
stimulating dendritic cell (DC) maturation and monocyte/macrophage activity as an immunomodulator. In addition, GM-CSF promotes
immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. GM-CSF
also has inhibitory effects on tumor growth and metastasis.
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GM-CSF as an adjuvant therapy for patients with lung
cancer.98

Inhibitory effects on tumor progression
The ectopic secretion of GM-CSF has been observed in many
different cancer cell lines derived from solid tumors,99 but the
immune-independent effects of tumor cell-derived GM-CSF
and the potential mechanisms underlying its direct effects on
tumor progression remain unknown or poorly defined.
Although some studies have suggested that GM-CSF inhibits
tumor growth and metastasis, a greater number of studies have
demonstrated that GM-CSF exerts stimulatory effects on tumor
progression. The contradictory results obtained by a number of
authors have revealed that GM-CSF can exert either significant
anti-proliferative effects100,101 or anti-apoptotic effects,102–104

depending on the tumor type and stage of development.

Anti-proliferative effect of GM-CSF
By performing clonogenic assay and suspension culture,
Yamashita et al.101 demonstrated that GM-CSF treatment
suppressed the proliferation of human small-cell lung cancer
cells by blocking cell cycle progression from G0/G1 to the
S phase. These anti-tumor effects of GM-CSF were attenuated
by the addition of GM-CSF-neutralizing antibody. Ruff et al.100

also revealed that GM-CSF exerts antitumor effects by
inhibiting the proliferation of SCLCs, as determined by
3H-thymidine incorporation assay and soft agar colony-
formation assay. Interestingly, Urdinguio et al.11 demonstrated
that this immune-independent antitumor effect seems to
depend on the ectopic expression of GM-CSF receptor
subunits in human colorectal cancer. Tumor cells expressing
GM-CSF and its receptor failed to grow in vivo when they were
transplanted into immunocompetent mice.11 Consistently, high
levels of expression of GM-CSF and its receptor are associated
with improved 5-year survival rates in patients with colorectal
cancers.11 These findings strongly support the anti-proliferative
functions of GM-CSF as potential immune-independent tumor
suppressors.

GM-CSF as a differentiation inducer
Unlike bulk tumor cells, a tumor subpopulation with stem
cell-like properties contributes to tumor initiation, metastasis
and therapeutic resistance in various types of cancer.105

Therefore, accelerating the terminal differentiation process
can be considered as an alternative therapeutic option to
eradicate this stem cell-like subpopulation by modulating the
expression of various terminal differentiation regulators. In this
context, Yamashita et al.101 demonstrated that recombinant
GM-CSF treatment increased the percentage of cells with
surface marker Mo1, which exerts a rapid cell differentiation
of immature cells, thus suggesting that GM-CSF inhibits tumor
progression by inducing differentiation of SCLCs. Consistent
with these findings, Ruff et al.100 revealed that GM-CSF exerts
remarkable antitumor activity against SCLCs by enhancing the
expression levels of differentiation antigenic phenotypes such as
Leu-M3, Leu-7 and HLA-DR.

CONCLUSION

GM-CSF is secreted by many immune cell types, including
macrophages, mast cells and T cells, mainly in response to
immune activation and inflammatory cytokines, which in turn
mediate immune responses. However, an increasing amount
of evidence shows that in addition to the traditional
immune modulating potential, GM-CSF is secreted by a
number of non-immune cell types, including endothelial cells,
keratinocytes and fibroblasts, following the appropriate stimuli.
Interestingly, GM-CSF was recently described as an immune-
independent tumor-promoting factor. GM-CSF stimulates
tumor cell growth and/or migration in vitro and in vivo in
multiple cancer types, including skin carcinoma, gliomas,
HNSCCs and lung cancer cells. In contrast, some studies have
suggested that GM-CSF has inhibitory effects on tumor
progression. Therefore, the study of GM-CSF is one of
the most interesting areas of cancer research, but further
investigation is required for clinical applications. Although
increased attention is now focused on the anti-tumor,
immunostimulatory effects and immune-independent tumor-
promoting effects of GM-CSF on tumor progression, the
current knowledge about the immune-independent inhibitory
effects of GM-CSF on tumor progression and the underlying
mechanisms is still rudimentary. Therefore, more detailed
knowledge about the mutual interactions between GM-CSF
and tumor cells will undoubtedly lead to more efficient and
successful clinical outcomes in the future. The schematic
diagram summarizes the potential roles of GM-CSF in tumor
progression (Figure 1).
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