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Abstract

Significant population declines in Acropora cervicornis and A. palmata began in the 1970s

and now exceed over 90%. The losses were caused by a combination of coral disease and

bleaching, with possible contributions from other stressors, including pollution and preda-

tion. Reproduction in the wild by fragment regeneration and sexual recruitment is inade-

quate to offset population declines. Starting in 2007, the Coral Restoration Foundation™
evaluated the feasibility of outplanting A. cervicornis colonies to reefs in the Florida Keys to

restore populations at sites where the species was previously abundant. Reported here are

the results of 20 coral outplanting projects with each project defined as a cohort of colonies

outplanted at the same time and location. Photogrammetric analysis and in situ monitoring

(2007 to 2015) measured survivorship, growth, and condition of 2419 colonies. Survivorship

was initially high but generally decreased after two years. Survivorship among projects

based on colony counts ranged from 4% to 89% for seven cohorts monitored at least five

years. Weibull survival models were used to estimate survivorship beyond the duration of

the projects and ranged from approximately 0% to over 35% after five years and 0% to 10%

after seven years. Growth rate averaged 10 cm/year during the first two years then pla-

teaued in subsequent years. After four years, approximately one-third of surviving colonies

were� 50 cm in maximum diameter. Projects used three to sixteen different genotypes and

significant differences did not occur in survivorship, condition, or growth. Restoration times

for three reefs were calculated based on NOAA Recovery Plan (NRP) metrics (colony abun-

dance and size) and the findings from projects reported here. Results support NRP conclu-

sions that reducing stressors is required before significant population growth and recovery

will occur. Until then, outplanting protects against local extinction and helps to maintain

genetic diversity in the wild.
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Introduction

The tropical western Atlantic reef-building coral Acropora cervicornis was abundant and wide-

spread throughout the Caribbean and Florida until the late 1970s [1]. The fast-growing coral

formed dense thickets in forereef, backreef, and patch-reef environments to depths over 20 m

[2–6] since the late Pleistocene [7, 8]. However, A. cervicornis abundance is now significantly

reduced throughout its geographical range, primarily as a result of coral disease [1, 9, 10],

bleaching [11–13], and other disturbances that affect sites at regional and local scales [14–16].

Today, A. cervicornis populations in Florida consist mostly of small (< 50 cm maximum diam-

eter) and scattered colonies [17–19]. The dramatic decline in populations resulted in the loss

of habitat complexity [20, 21], biological diversity [22], and the aesthetic quality of reef habi-

tats. In the Caribbean, only a few populations survive that resemble the thickets of the past;

these are in Honduras [23], the Dominican Republic [24, 25], and Belize [26, 27]. None persist

in the Florida Keys, though a few nearshore aggregations exist north of Miami [28, 29] and in

the Dry Tortugas [30].

Recovery has not occurred in Florida because stressors persist [31], including disease [9,

10], bleaching [14, 32], and episodic and severe cold-water events [33–38]. The mass mortality

of the abundant grazing sea urchin Diadema antillarum in the early 1980s [39] also reshaped

the ecology of coral reefs by releasing macroalgae from grazing [40]. There has since been a

limited recovery of this herbivore in Florida [41, 42]. The dramatic decline in abundance and

the absence of recovery of A. cervicornis and its congener A. palmata resulted in their listing as

Critically Endangered on the IUCN Red List [43]. The corals are also listed as Threatened

under the U.S. Endangered Species Act [44]. After the species were listed as Threatened in

2006 the National Oceanic and Atmospheric Administration (NOAA) developed a Recovery

Plan for the two species [6].

The NOAA Recovery Plan (NRP) aims for population viability through increased popula-

tion numbers and mitigation of stressors. Recovery criteria for the species include population

metrics such as abundance, colony size, genetic diversity, and recruitment, that when met,

along with the reduction of stressor impacts, would result in their delisting from the Endan-

gered Species Act. The NRP identified coral outplanting of nursery-raised colonies to offshore

reefs as a strategy to increase population numbers. The approach was based, in part, on a long

history of projects that reattached corals dislodged by storms or by ship groundings [45–49],

as well as outplanting advancements adapted from terrestrial silviculture practices and the

aquarium trade [50–54]. These outplanting projects removed small pieces of coral from natu-

ral populations and propagated them by fragmentation to produce thousands of derivative col-

onies [55–58]. The colonies were subsequently outplanted in bulk to offshore coral reefs,

where they were typically attached to the bottom using underwater cement or epoxy [55, 59,

60]. Colony numbers in individual nurseries quickly expanded from yearly production totals

of hundreds to many thousands of colonies. As a result, restoration work advanced from

restoring sites damaged by ship-groundings to projects that supplemented natural recruitment

and enhanced existing populations [60–65].

While coral outplanting is considered a viable strategy to help meet the restoration criteria

outlined in the NRP, coral propagation and outplanting are still a relatively new idea [66].

Though the practice is expanding rapidly and is now widely adopted by managers and restora-

tion practitioners [67], few projects have been running long enough to assess their long-term

potential to restore coral populations [48, 68–71]. An objective of the work reported here,

based on results from longer-term A. cervicornis outplanting projects, is to determine the best

approach to address and eventually overcome population declines. Results also inform the fea-

sibility of success criteria identified in the NRP and help show how outplanted populations
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compare to baseline populations from the 1970s. Photographs and in situ field measurements

documented how outplanting dates, site locations, habitat types, and genotypes relate to the

survivorship, growth, and condition of nursery-raised A. cervicornis colonies outplanted to off-

shore reefs.

Materials and methods

The Coral Restoration Foundation™ (CRF) cultivated the A. cervicornis colonies used in this

study in their coral nursery located 5 km offshore in the upper Florida Keys, over a sandy bot-

tom, and at a depth of approximately 9 m (Fig 1). Coral fragments within the nursery were

either fixed on disks or suspended from lines or tree structures [72, 73]. Colonies grew to

approximately 15 cm maximum diameter before outplanting to reefs by CRF staff or by

trained volunteers [55]. In 2013 larger colonies were also outplanted to Pickles (32 of 296),

French (3 of 161) and Conch Reefs (1 of 92) that were approximately 30 cm maximum diame-

ter, with a few larger than 40 cm. Twenty projects (Table 1), each defined by a cohort of colo-

nies outplanted at the same time and location, were started between 2007 and 2013 at six

different reefs in three benthic habitat types (Fig 1), including spur-and groove, patch-reef,

and hardbottom [74]. The number of outplants per project ranged from 18 to 400, including

three to 16 genotypes, increasing over time as nursery capacity increased and permits allowed.

CRF maintains records-of-lineage for genotypes (identified by microsatellites and haplotype

sequences of mt DNA) and colonies produced each year in the nursery.

Outplanted colonies were attached to the reef with epoxy in three different configurations.

Space between outplanted coral colonies allowed growth for one or two years before adjacent

corals might touch [75]. This spacing within clusters reduced competition and disease

Fig 1. Location of the coral restoration foundation™ nursery (24.9882˚ N, 80.43633˚ W), coral outplant sites, and

reef types. Reef types are from the Unified Florida Coral Reef Tract Map v2.0 (74). Carysfort (1), Molasses (2), and

Conch Reefs (3) were used as examples to calculate restoration times based on NOAA Recovery Plan criteria.

https://doi.org/10.1371/journal.pone.0231817.g001
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transmission if colonies became infected. Early projects (2007–2010) positioned three colonies

in a triangle approximately 1 m across with a different genotype at each corner. Later projects

(2012–2013) placed colonies in 1 m diameter ovals or clusters, using a random arrangement of

ten different genotypes for the ovals or monogenetic colonies for the clusters. No projects

started in 2011.

Monitoring of outplanted corals included periodic visits to record general observations

related to their condition (reflected by live tissue coverage), to attach broken fragments, and to

photograph outplanted colonies. Re-attaching broken fragments increased initial outplanting

success but quickly became impractical for projects that began with larger numbers of colo-

nies. Photographs were used to follow each outplanting project for approximately two years.

The photographs were matched to written project records to track outplant dates and loca-

tions, then screened for image quality, genotype tag identification, and scale information

before a unique identifier code was assigned. Only projects with complete photographic rec-

ords were analyzed. To be considered complete, a project included photographic documenta-

tion of all corals outplanted, with scale information, from at least two different visits.

Survivorship, condition, and growth data were recorded in situ in 2014 and 2015 using

SCUBA.

Twenty projects started between 2007 and 2013, and 2874 photographs (often with multiple

colonies per photograph) and in-situ measurements provided a multi-year record of 2419 cor-

als. Our analysis of individual cohorts was necessarily retrospective. The projects were not con-

ducted as part of a larger experimental design to assess differences among start dates, habitat

types, or reef sites. Also, projects included different sample sizes and monitoring dates. The 20

projects reported here comprise approximately one-third of the outplanting work conducted

Table 1. Coral outplanting project descriptions and results.

Project Site Start Date Habitat Type Depth (m) Config Genotypes (#) Colonies Outplanted Survival # Max Diameter (SE) Duration (years)

Molasses Reef 2007 Jul Spur & groove 7 T 3 18 2 (11%) 44.0 (26) 6.98

2008 Oct Hard-bottom 9 T 3 18 6 (33%) 47.0 (6.1) 5.76

2009 Jan Patch-reef 8 T 3 18 0 0 1.07

2010 Jul Patch-reef 8 T 3 24 0 0 0.95

2012 May Spur &Groove 7 O 10 400 164 (41%) 32.7 (1.5) 2.63

Pickles Reef 2008 Jul Spur & groove 5 T 3 18 6 (33%) 35.7 (4.6) 6.28

2009 Oct Hard-bottom 9 T 3 24 1 (4%) 26.0 (0) 5.00

2012 Apr Hard-bottom 6 O 11 400 288 (72%) 28.9(1.0) 2.56

2013 Jul Spur & groove 7 C 16 296 207 (70%) 30.4 (1.1) 1.32

White Bank 2008 Aug Patch-reef 10 T 3 18 0 0 1.57

Dry Rocks 2008 Nov Spur & groove 9 T 3 18 16 (89%) 40.2 (5.1) 5.77

2009 Jul Spur & groove 5 T 3 24 16 (67%) 56.4 (6.1) 5.22

2012 Jun Spur & groove 8 O 11 400 190 (48%) 31.4 (0.9) 2.63

French Reef 2009 Apr Spur & groove 9 T 3 18 14 (78%) 67.7 (6.0) 5.42

2010 May Spur & groove 9 T 3 24 2 (8%) 55.0 (19.0) 4.75

2013 Aug Spur & groove 10 C 10 161 104 (65%) 25.0 (1.5) 1.07

Conch Reef 2009 Aug Hard-bottom 8 T 3 24 13 (54%) NS 1.52

2009 Oct Hard-bottom 5 T 3 24 21 (88%) NS 1.32

2012 May Hard-bottom 8 O 13 400 52 (13%) 26.7 (1.9) 2.67

2013 Dec Hard-bottom 5 C 10 92 82 (75%) 29.1 (1.5) 1.10

Outplant configurations and numbers (N) for the 20 projects included Triangle (T), Mixed Genotype Ovals (O) and Monogenetic Cluster (C). Duration is the time from

initial outplanting to the last sampling date. NS is Not Sampled.

https://doi.org/10.1371/journal.pone.0231817.t001
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by CRF during this period. Not every CRF project was included in the analyses because, in

addition to missing scale information or incomplete photographic documentation, permits

required only a subset of total outplants to be monitored, so cohort analysis was not possible.

Survivorship and condition

Survivorship (the percentage of colonies with any living tissue in a cohort) and condition (per-

centage of living tissue to the nearest 5%) [76] were obtained from the photographs using

CANVAS software [77] and in situ using SCUBA. Weibull survival analysis models (using the

statistical software package JMP, version 12 SAS) were used to project survivorship beyond the

length of the studies [78]. Percent live tissue was analyzed in addition to survivorship because

the survivorship metric is binary (dead = 0; alive = 1), while partial mortality is a continuous

variable (0% to 100%) that impacts survivorship.

Growth, size-frequency distributions, and genetics

The maximum skeletal diameter of colonies was measured using scale references in the photo-

graphs that included identifier tags (indicating genotype) of known sizes or PVC bars, or by

direct measurements underwater using SCUBA. Growth was estimated using Gompertz

growth functions: the general form is:

y ¼ ae� be� ct

where y is the size, a is the maximum size asymptote, b is the displacement of the curve along

the x-axis, c is the growth rate, and t is time. Due to gaps in the photographic record and

reduced sample sizes, colonies that survived four years or longer were combined into a single

group. Size measurements were not normally distributed, based on Wilks tests; therefore, log

transformation was performed to better approximate a normal distribution. Statistical analyses

using generalized linear models were performed using log-transformed data in R [79], includ-

ing analyses to determine whether or not there were genotype effects on survivorship, condi-

tion and growth.

GIS-based restoration analyses

The time (years) and effort (the number of outplanted colonies) required to restore Carysfort

Reef, Molasses Reef, and Conch Reef (Fig 1) were estimated using results from this study and

metrics in the NRP. Specifically, reef areas delineated by GIS were divided by survivorship esti-

mates after four years for cohorts that started with 1050 colonies. Based on the NRP abundance

and size metrics, each surviving colony that reaches� 50 cm maximum diameter restores 1

m2 of the reef. Two depth ranges were used to calculate restoration areas for the three reefs: 5

to 10 m approximates the historical distribution of the species in the Caribbean and Florida [2,

80] and 5 to 20 m water depth as identified in the NRP. The three reefs are management zones

in the Florida Keys National Marine Sanctuary, with boundaries that constrained the area esti-

mates. Areas were delineated in GIS using a two-step geoprocessing intersect procedure. First,

the Florida Keys 100 m grid cell habitat layer [17, 81] was clipped using the FKNMS manage-

ment-zone layer. Then, the resulting habitats-within-zones layer was overlaid with the South

Florida water depth layer. The final clipped and intersected layer contained polygons anno-

tated with zone, habitat, and depth information.
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Permits

The following permits supported work in the Florida Keys National Marine Sanctuary:

FKNMS-2008-006, FKNMS-2008-006-A2, FKNMS-2008-025, FKNMS-2008-026, FKNMS-

2008-053, FKNMS-2009-099, FKNMS-2010-103, FKNMS-2011-150-A1, FKNMS-2011-159

(A1, A2, A3, and A4), SAL-13-1086-SCRP. All necessary permits were obtained for the

described study, which complied with all relevant regulations.

Results

Survival and condition

Survivorship results based on individual colony counts for each cohort at the last monitoring

date are presented in Table 1. Without an experimental design to test whether or not the start

dates, reef sites, or habitat types affect survivorship, we instead used a retrospective approach

to evaluate project results. Individual cohorts exhibited significant variability in survivorship.

Seven of 20 cohorts had colonies that survived over five years, ranging from a low of 4% to a

high of 89%. The two cohorts monitored the longest started with 18 colonies outplanted in

2007 and 2008, with 11% and 33% survivorship after nearly seven and just over six years,

respectively. Five of the 20 cohorts had survivorship of 11% or less, ranging from one to five

years in duration. The four projects with the largest cohorts to start (400 colonies) were moni-

tored less than three years because they all began in 2012 or 2013. Survivorship results from

these projects ranged from 23% to 72%.

Weibull survival analysis also revealed significant variability among individual cohorts (Fig

2). A clear pattern of decline was evident over time, with survivorship between 0% and approx-

imately 10% after seven years. Survivorship at five years ranged from approximately 0% to

35%. Similar results were seen when analyzed by start date (Fig 3), but when analyzed by reef

site (Fig 4) and habitat type (Fig 5) survivorship at five years was approximately 10% or less.

The condition of outplanted colonies (Table 2) based on percent live tissue measurements

remained greater than 85% the first two years, corresponding with similar high colony survi-

vorship over the same period. After four years, the condition of surviving colonies declined to

50%. There were no significant differences among cohorts after four years. Genotype effects

related to survival (Kruskal-Wallis p = 0.49) and condition (Kruskal-Wallis p = 0.14) were not

statistically significant. It is important to note that the earliest projects comprised smaller sam-

ple sizes for outplanted colonies and fewer genotypes (Table 1).

Growth, size-frequency distributions, and genetics

Colonies in spur-and-groove habitats (Fig 6) had a larger mean colony diameter (37.5

cm ± 1.4 SE) after two years than those on hard-bottom sites (31.9 cm ± 1.4 SE, pairwise Wil-

coxon p = 0.014). Mean colony diameter did not differ significantly between patch-reef sites

(30.7 cm ± 8.1 SE) and hard-bottom sites or between patch-reef sites and spur-and-groove

sites (pairwise Wilcoxon, p = 1.0 for both comparisons). However, the patch-reef colonies suf-

fered significant mortality during the first year and after, so their growth records are shorter.

The maximum average size for colonies in spur-and-groove habitats was 48.8 cm (± 3.3 SE),

which was not significantly different from that in the hard-bottom site colonies (44.0 cm ± 6.0

SE, pairwise Wilcoxon p = 0.85). The Gompertz growth functions for each habitat type, are as
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Fig 2. Weibull survival among cohorts. Individual cohorts are identified by numbers as follows: Molasses Reef (1–5;

2007, 2008, 2009, 2010, 2011), Pickles Reef (6–9; 2008, 2009, 2012, 2013), White Bank (10; 2008), Dry Rocks (11–13;

2008, 2009, 2012), French Reef (14–16; 2009, 2010, 2013), Conch Reef (17–20; 2009a, 2009b, 2012, 2013). Cohort

details are presented in Table 1.

https://doi.org/10.1371/journal.pone.0231817.g002

Fig 3. Weibull survival over time by year outplanted. Different years are indicated by different colors. 2009a and

2009b distinguish outplanting projects started in winter/spring versus summer/autumn, respectively.

https://doi.org/10.1371/journal.pone.0231817.g003
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Fig 4. Weibull survival over time by reef location. Different reef locations are indicated by different colors.

https://doi.org/10.1371/journal.pone.0231817.g004

Fig 5. Weibull survivorship over time by habitat type. Different habitat types are indicated by different colors.

https://doi.org/10.1371/journal.pone.0231817.g005
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follows:

Spur� and Groove yspur ¼ 50:88e� 1:363e� 0:0017t

Patch Reef ypatch ¼ 69:46e� 2:066e� 0:0016t

Hard� bottom yhard ¼ 35:40e� 0:926e� 0:0030t

where y equals maximum skeletal diameter (cm) and t is the number of days at-large.

The size-frequency distribution of colony sizes by outplant duration are presented in Fig 7.

The largest colony sizes in Year 1 are from the 2013 cohorts that included 42 colonies (out of

542 total) with larger initial maximum diameters of 30 cm. It is also possible that fusion

occurred among some colonies after one year. Results on both the arithmetic scale and the log-

transformed data indicate a shift in the curve to the right and a flattening through time. Means

and modes generally increased over time (Table 3), except in year three, which likely reflects

large differences in sample sizes among years and different mortality rates among different

cohorts. After four years, > 37% of the surviving outplants were larger than 50 cm in diameter,

with 16.5% of colonies larger than 100 cm. The mode of colony diameter for each year class

also generally increased over time, reaching 52.3 cm after four years. Kurtosis decreased

through time indicating movement toward the normal distribution, as colonies from the nurs-

ery were initially approximately the same size. The positive skew in all four years indicates that

the outplant population tended to be dominated by smaller colonies. Despite changes in mean

colony size, the coefficient of variation was largely unchanged through time indicating that

variability increased with larger mean colony size.

Genotype identification during in situ monitoring visits was not always possible due to

identifier-tag losses. Genotypes in different habitat types did not exhibit statistically significant

differences in percent-survival or condition (Kruskal-Wallis p = 0.48 and p = 0.14, respec-

tively). No significant difference in colony diameter was evident based on results for 18 geno-

types (Kruskal-Wallis p = 0.13), though a couple of pairwise Wilcoxon growth comparisons

were suggestive at p = 0.058 and p = 0.56).

GIS-based restoration analyses

Results based on the fitted Weibull curves (Figs 2–5) suggest survivorship of approximately

15% to 40% after four years. This range of survivorship is similar to colony counts for the

cohorts (Table 1). Colony growth after four years averaged nearly 50 cm maximum diameter

(Fig 6) with approximately one-third of surviving colonies after four years this size (Fig 7).

Therefore, starting with a cohort of 1050 colonies and assuming survival rates between 15%

and 40%, between 158 and 420 colonies survive to four years post-outplanting and between 52

and 139 colonies of these reach the� 50 cm maximum diameter size criterion specified in the

NRP. Using the abundance criterion (1 colony/m2) in the NRP, rough estimates of the total

Table 2. Percent live tissue coverage (i.e. condition) of outplanted colonies over time.

Condition Year 1 Year 2 Year 3 Year 4

Mean % (± SE) 85.2 (1.1) 91.7 (1.8) 60.5 (1.6) 50.3 (4.0)

N 724 197 769 132

The apparent increase in live tissue coverage at Year 2 is likely due to the reduced sample size (a result of fewer

suitable photographs that were available to analyze.)

https://doi.org/10.1371/journal.pone.0231817.t002
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Fig 6. Maximum skeletal diameter of A. cervicornis colonies over time by habitat type. A) spur-and-groove, B)

patch-reef, and C) hardbottom. Dots represent sample dates. Error bars represent standard error. Trendlines are

Gompertz growth functions.

https://doi.org/10.1371/journal.pone.0231817.g006

Fig 7. Size-frequency distributions for outplanted A. cervicornis colonies by project duration. A) Year 1 (N = 724);

B) Year 2 (N = 197); C) Year 3 (N = 769); and D) Year 4+ (N = 132) (outplanted colonies combined from all projects

that survived four years or longer). Curves are based on log transformations. The largest colony sizes in Year 1 are

from the 2013 cohorts that included 42 colonies (out of 542 total) with larger initial maximum diameters of 30 cm.

https://doi.org/10.1371/journal.pone.0231817.g007
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restored area that results from 1050 colonies after four years is between 52 m2 (1050 out-

planted colonies x 15% survivorship x 33% of surviving colonies� 50 cm maximum diameter)

and 139 m2 (1050 outplanted colonies x 40% survivorship x 33% of surviving colonies� 50 cm

maximum diameter). Based on the GIS-derived habitat areas (S1 Table) for Carysfort Reef (Fig

8), Molasses Reef (Fig 9) and Conch Reef (Fig 10) in the upper Florida Keys (Fig 1), restoration

times using the two survivorship estimates of 15% and 40% are presented in Table 4. NOAA

identified the 5% coverage criterion to represent “a small portion of potential core habitat

strata with the assumption that, under this condition, additional lower-density stands would

occupy additional habitat strata.” We use the 5% criterion to model these three reefs, which

should be distinguished from the 5% NOAA criterion that was designed to apply across the

entire region.

Discussion

The 2006 listing of Acropora cervicornis and A. palmata as Threatened under the U.S. Endan-

gered Species Act raised awareness and helped to increase funding to support coral restoration

in Florida and the Caribbean. Initial project results documented high survivorship for out-

planted corals but few studies were monitored beyond a year or two [75, 82]. Similarly, survi-

vorship in the present study was generally high during the first two years but mortality

increased after this point with substantial variability among cohorts. The primary goal of mon-

itoring conducted through 2010 was to evaluate the feasibility of outplanting to increase popu-

lation numbers on offshore reefs. While the number of outplanted corals was small in these

early projects, for cohorts monitored at least five years survivorship ranged from 0% to 89%

(Table 1). The highest survivorship was for a 2008 cohort outplanted in spur-and-groove habi-

tat at Dry Rocks. The results suggest that cohorts at Dry Rocks did well, with 67% survivorship

after 5.2 years for a cohort started in 2009. However, more work is needed because sample

sizes were small in terms of outplanted colonies and the number of cohorts monitored. For

example, a 2009 cohort with 18 colonies outplanted at French Reef had 78% survivorship after

5.4 years, but a second cohort of 24 colonies outplanted in 2010 had 8% survivorship after 4.8

years. The former cohort was not affected by the 2010 cold-water event [36–38], which sug-

gests that while there may be site-specific differences, episodic events can also be variable in

their impact. In addition, the lack of a formal experimental design did not allow us to identify

variables that might predispose cohorts to have greater survivorship based on start dates, reefs

sites, or habitat types. After 2010, permit restrictions were relaxed and the number of corals

outplanted increased more than fifteen-fold. Longer-term results from these projects are only

available for several years because monitoring did not occur after 2015.

The Weibull models (Figs 2–5) are useful because they provide survivorship projections

beyond the time frame of the study, but with caveats. Typically, the shape of the curves and

Table 3. Statistics based on size-frequency distributions of outplanted A. cervicornis populations.

Metric Year 1 Year 2 Year 3 Year 4

Mean (SE) cm 26.1 (0.5) 34.7 (1.0) 30.4 (0.6) 48.4 (3.0)

Mode (cm) 31 34.7 30 52.3

CV 0.5 0.3 0.5 0.6

Skewness 1.5 -0.1 0.9 1

Kurtosis 4.1 -0.6 2.35 1.3

N 724 197 769 132

N is the combined number of coral colonies in all projects at each time interval.

https://doi.org/10.1371/journal.pone.0231817.t003
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confidence intervals can be used to compare different populations and to estimate metrics that

determine whether or not the risk of failure (death) increases or decreases through time. How-

ever, these additional metrics are not appropriate because of the variable start dates and sample

sizes. Instead, the curves allow visualization to estimate short- and long-term survivorship.

When analyzed by cohort (Fig 2), Weibull survivorship models had similarly high variation

compared to colony counts for individual cohorts (Table 1). However, the Weibull curves

beyond seven years estimate survivorship less than 10 percent. Therefore, significant chal-

lenges remain to achieve high long-term survivorship routinely. Weibull modeling exhibited

less variability for cohorts by start date (Fig 3), followed by reef sites (Fig 4), and habitat types

(Fig 5), which resulted from pooling cohort results by treatments. Survivorship at seven years

by start date was similar to what was seen for the cohort analyses, but approached 0% for the

Weibull curves by reef sites and habitat types. Reef site variability (Fig 4) was shaped on the

low end by White Banks that comprised one patch reef cohort with 100% mortality within the

Fig 8. Forereef habitats and bathymetry for the carysfort reef sanctuary preservation area, located in the Florida

Keys National Marine Sanctuary.

https://doi.org/10.1371/journal.pone.0231817.g008
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first two years, caused by the 2010 cold-water event. Two Molasses Reef cohorts died the first

year, and the largest cohort of 400 outplants had 41% survivorship after 2.6 years. For habitat

types (Fig 5), patch reefs comprised only two cohorts, both of which died in the first year. For

spur-and-groove and hardbottom habitats (Fig 5), the sample sizes included ten and seven

cohorts, respectively. Survivorship results ranged from 11% to 78% for spur-and-groove habi-

tat and 4% to 88% for hardbottom habitat. While the Weibull models for spur-and-groove and

hardbottom habitats appear nearly identical, it is premature to assume that habitat type does

not impact survivorship without explicitly testing for this result.

Colony growth results for the first two years documented rates that are similar to many his-

torical populations of A. cervicornis [83, 84] and other coral outplanting projects [85, 86]. After

two years, colony growth generally slowed. However, approximately 15% of outplanted colo-

nies that survived four years attained greater than 100 cm maximum colony diameter, so at

least a small proportion of outplanted colonies retain the capacity to grow as fast and large as

Fig 9. Forereef habitats and bathymetry for the molasses reef sanctuary preservation area, located in the Florida

Keys National Marine Sanctuary.

https://doi.org/10.1371/journal.pone.0231817.g009
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the largest colonies in natural local populations [18]. Larger maximum colony diameter was

achieved after two years in spur-and-groove habitat compared to hard-bottom (Fig 6) which

may reflect greater hydrodynamic flow in the former that results from increased topographic

complexity [87–90]. Maximum colony diameter did not always correlate with survivorship or

habitat type. For example, survivorship after three years at Dry Rocks (spur-and-groove) was

nearly two times higher than at Conch Reef (hardbottom) for 2012 cohorts (Table 1) but maxi-

mum colony size was the same at both locations. Caution is required about these results

because they are based on retrospective analysis rather than an experimental design to formally

test the effects of reef locations and habitat types.

Colony growth measured as maximum diameter appears to be constrained in Florida

because only a small percentage of colonies grew larger than 50 cm maximum diameter by

year four. This may represent a present-day functional size limit. This limit may incorporate

Fig 10. Forereef habitats and bathymetry for the conch reef sanctuary preservation area, located in the Florida

Keys National Marine Sanctuary.

https://doi.org/10.1371/journal.pone.0231817.g010
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the effects of fragmentation from wave action [91] and the balance between axial extension at

the growing tips and mortality due to basal predation by the territorial damselfish Stegastes
planifrons [92] or the coralivorous snail Coralliophila abbreviata. Growth could also slow at

larger sizes as branching patterns change or when metabolic resources are redistributed for

other processes, such as reproduction [85]. While most A. cervicornis colonies in the natural

population are also relatively small, less than 50 cm maximum diameter in the Florida Keys

[17, 18], a few significantly larger colonies exist in the Dry Tortugas [30, 93]. In Puerto Rico,

growth results from a natural population that is recovering after five years of no bleaching or

disease exceeded Florida by several times [94]. The Puerto Rico results are noteworthy because

they reveal that natural remnant populations retain the potential to grow and recover at rates

that are some of the highest recorded for the species.

The condition of corals also matters when assessing restoration goals and A. cervicornis out-

plant condition declined with time across all project start dates. The natural population in the

Florida Keys exhibited similar decreasing condition with increasing size [18]. Decreasing coral

condition over time is important because it has negative implications for population growth.

For example, in Puerto Rico, the growth and survival of A. cervicornis colonies declined signifi-

cantly when partial mortality exceeded 20% [95]. Most colonies outplanted in the projects

reported here exceeded this threshold at three years and exceeded 50% by four years. Various

factors cause significant partial mortality including disease, predation by corallivores such as

the gastropod Coralliophila abbreviata and the polychaete Hermodice carunctulata [28, 96, 97],

and activity by damselfishes, chiefly Stegastes planifrons [92, 98]. Identifying causes of mortal-

ity could be relevant to restoration success if they can be mitigated by interventions [99]. How-

ever, even when interventions are possible such as removing corallivores [100], they are labor-

intensive, effective only in the short-term, and ecological complexity can make it difficult to

ascribe success to a particular intervention. For example, damselfish cause significant partial

mortality to larger colonies of A. cervivornis, but they can also reduce the impact of corallivores

[98]. An important result of projects reported here and elsewhere [86] is that high short-term

survivorship of outplanted colonies is achievable without follow-on interventions.

The implication from our findings that genetics did not have a significant impact on sur-

vival, condition, or growth may be related to the small number of genotypes used initially, the

small sample sizes of cohorts to start, and the lack of experimental design that tested for

Table 4. Reef areas and restoration efforts (years) for three reefs in the Florida Keys.

GIS-derived habitat areas Carysfort Reef (m2) Molasses Reef (m2) Conch Reef (m2)

Total reef area (5–20 m) 4,913,499 581,121 518,707

5% (5–20 m) 245,675 29,056 25,935

5% (5–10 m) 166,876 19,393 6,679

Restoration Time (years) 15% Survivorship 15% Survivorship 15% Survivorship

Total reef area (5–20 m) 94,490 12,298 10,978

5% (5–20 m) 4,725 615 549

5% (5–10 m) 3,209 410 141

Restoration Time (years) 40% Survivorship 40% Survivorship 40% Survivorship

Total reef area (5–20 m) 35,349 4,181 3,732

5% (5–20 m) 1,768 209 187

5% (5–10 m) 1,201 140 48

Reef areas for total area and two depth ranges that were used to calculate restoration efforts based on 15% and 40% survivorship after four years. GIS-derived habitat

areas are from S1 Table.

https://doi.org/10.1371/journal.pone.0231817.t004
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genotype effects. All nursery-raised genotypes used in these studies were selected for outplant-

ing based on exhibiting normal growth patterns and rates. In other Florida-based studies, sig-

nificant genotype effects among nursery-raised corals were seen in common growth

experiments with some genotypes growing ten times faster than others [85], and others show-

ing higher survivorship and faster growth after a coral bleaching event [101]. Significant

growth rate differences were also observed among genotypes maintained in a coral nursery but

not after outplanting [102]. Although different rearing methods can produce different growth

forms, they may not lead to differences in calcification rates [103]. While identifying signifi-

cant growth differences among colonies is interesting, the long-term survival of outplanted

corals on reefs will reflect trade-offs between growth and other factors such as reproductive

output, calcification rates, and resilience to disease and bleaching. How genetic variation

affects adaptation and phenotypic plasticity in corals is an emerging area of research, including

a focus on allelic and haplotypic richness within and among populations [104–108]. Ulti-

mately, the principles of conservation genetics should inform coral outplanting practices,

which requires information about coral population genetics [107, 109–111].

A significant challenge for A. cervicornis restoration practitioners is how to address the

inevitable population declines that are caused by multiple sources of mortality. One approach

is based on the idea of assisted evolution, in which selective breeding of corals or other genetic

enhancements are used to produce corals that can thrive against the increasing frequency and

magnitude of stressors, especially those related to warming and bleaching [112, 113]. There

are, however, important lessons from the terrestrial realm that suggest super-coral progress

will take decades or longer and require unprecedented amounts of funding. For example,

work to restore the American chestnut (Castanea dentata), after it was nearly wiped out by a

still pervasive introduced disease, started approximately a hundred years ago. Hybridization,

backcrossing, and transformation with a resistance-conferring transgene achieved some suc-

cesses. However, tens of millions of additional dollars are needed [114]. Coral bleaching and

disease each present their own set of challenges related to coral physiology, microbiome

dynamics, and a changing physical and chemical environment that makes the super coral

approach more complicated than chestnut blight. Research to achieve super corals based on

assisted evolution will undoubtedly advance our understanding of coral biology. However,

coral practitioners need to be pragmatic about shorter-term approaches that might work to

restore or help A. cervicornis populations recover.

Another approach to address high mortality rates is to repeatedly outplant large numbers of

nursery-raised colonies to maintain or increase population numbers until stressors are miti-

gated or until the outplanted populations expand by themselves. This approach provides a gen-

eral operational definition of restoration and is one way to measure success, even though it’s

open-ended in terms of time and effort, not quantitative in terms of population criteria, and

far short of recovery to conditions defined by historical baselines. Indeed, this approach

describes the long-term commitment to restoration by the Coral Restoration Foundation™ and

other agencies such as NOAA [115]. In addition, A. cervicornis outplanting projects, as they

are conventionally conducted, address a narrow definition of restoration that focuses on a sin-

gle species rather than restoring the structure and function of the ecosystem to the state before

declines occurred [48]. Fortunately, there is detailed information from the 1970s and 1980s

(before widespread declines) about the distribution and abundance of A. cervicornis for multi-

ple reefs in the Florida Keys [116–119] that define a restoration target for what recovery might

look like in the absence of stressors and the significant mortality events that result [31].

Notably, A. cervicornis recovered naturally following major hurricane destruction in 1960

at Dry Rocks, a reef with prolific amounts of A. cervicornis, where damage was not apparent

five years later [116]. When a second storm (Hurricane Betsy) hit the same reef in September
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1965, by October 1967 damage was once again not noticeable to trained geologists who had

long-term experience at the site [116, 120]. The absence of major regional and global stressors

in the 1960s, and the rapid growth of A. cervicornis, clearly explains the quick recovery after

the two storms. However, in the absence of stressor mitigation, specifically related to global

warming, practical restoration objectives must acknowledge that full and rapid recovery to his-

torical baselines is not a realistic goal. Indeed, the NRP for A. palmata and A. cervicornis recog-

nizes the challenges of restoration conducted against a background of mounting stressors. As a

result, the NRP notes that restoration of the species will take 400 years, mainly due to estimates

of how long it will take to decrease stressors related to increased warming [121] and associated

increased frequency and intensity of coral bleaching and disease [122–124].

Therefore, we suggest that a working definition of restoration success for A. cervicornis is to

attain self-sustaining populations started from outplanted nursery-raised corals that spawn

annually and that have demographic and genetic characteristics similar to the remnant natural

populations of the region. This definition falls short of recovery to historical baselines as a res-

toration goal because it is unrealistic to expect that nursery-raised corals will perform better

than the remnant populations from which they were collected [112, 125]. The NRP contains

population-based criteria that can help refine the above definition of restoration success. For

example, based on abundance, coral thickets must encompass approximately 5% of forereef

habitats between 5 and 20 m depth throughout the range of the species, with thickets com-

posed of colonies� 50 cm maximum diameter at a density of 1 colony per m2, or live benthic

cover of approximately 25%. Populations must also be maintained for 20 years with these char-

acteristics, based on a balance between sexual and asexual recruitment to maintain existing

genetic diversity. The 5% criterion was selected to represent “a small portion of potential core

habitat strata with the assumption that, under this condition, additional, lower-density stands

would occupy additional habitat strata [6].” While 5% seems like a reasonable goal, current

coral outplanting capacity will need to be significantly scaled up, long-term survivorship needs

to increase, or both, to approach this restoration target within a decadal time-frame for select

reefs (Table 4). The NRP also acknowledges that to meet or exceed the 5% criterion at the

regional scale stressor mitigation and natural recovery will be required.

If stressors are diminished to a point where natural recovery begins, defined by net popula-

tion growth, then a simple calculation demonstrates what recovery might look like in the

absence of significant mortality. For example, if an outplanted population of 1050 corals grows

at a rate of 10% per year [126] and ignoring carrying capacity constraints, then after ten years

the population would increase to 2723 colonies, based on the standard exponential growth

equation. Without continual outplanting effort, a 10% growth rate does not lead to a particu-

larly meaningful population increase considering the high mortality results presented here. On

the other hand, if an outplanted population of 1050 corals nearly doubles per year with expo-

nential population growth, it would reach 643,761 colonies in ten years. While doubling a pop-

ulation per year might appear unrealistic, Shinn calculated that a small A. cervicornis colony of

ten branches could generate 59 km of branches in ten years in the absence of what he referred

to as pruning [116]. The rapid recovery of A. cervicornis populations is therefore possible

under ideal conditions, starting from low outplanting numbers. Recovery in two years after

Hurricane Donna devastated A. cervicornis at Dry Rocks in 1960 [116] and current recovery

after five years at several locations in Puerto Rico [94] supports the idea that population growth

can be rapid when stressors are absent.

What then is needed to achieve NOAA Recovery Plan success criteria, other than stressor

abatement? Innovations in outplanting technology, identifying sites that promote survival and

growth, and increases in the number, survivorship, and condition of colonies outplanted are

critical requirements. For example, large numbers of individual A. cervicornis could be
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strategically outplanted to locations where the conditions are known to promote survival and

growth; these include conditions such as low algae cover [99] and high hydrodynamic flow

[89, 90]. However, there are likely stochastic elements to survivorship from year-to-year and

site-to-site that makes it challenging to identify the best sites to achieve high survivorship–or

even if there are best sites. Frequent and detailed monitoring may identify causes of mortality

that are specific to some reef sites and not others, such as disease or high predation. Until then,

outplanting efforts should continue to focus on sites defined by the historical distribution of

the species. Pilot studies may also be useful where smaller numbers of colonies are outplanted

to evaluate habitat suitability year-to-year before numbers ramp up significantly.

w attachments techniques are also needed instead of the commonly used method that relies

on cementing individual corals to the benthos, one-at-a-time. If new approaches to outplant-

ing increase colony numbers by an order of magnitude, say to 10,000 colonies per outplanting

event, 27,183 colonies would result after ten years with a 10% growth rate under logistic popu-

lation growth. If survivorship after ten years is 15%, then the remaining 4077 colonies would

restore approximately 1346 m2 of habitat (with one third reaching 50 cm or greater maximum

diameter). If survivorship improved to 40%, then the remaining 10,873 colonies (with one

third greater than 50 cm maximum diameter) would restore approximately 3588 m2 of habitat.

For A. cervicornis at depths of 5–10 m, the projected area of 3588 m2 equates to 2.1%, 19%, and

54% of the historical distributions at Carysfort (3588 m2/166,876 m2), Molasses (3588 m2/

19,393 m2), and Conch Reefs (3588 m2/6679 m2), respectively. Recovery to meet the NOAA

abundance criterion for the two smallest reefs would thus be attainable at the scale of decades,

but only if survivorship is 40%. These numbers reflect outplanting one cohort at the start of

the decade. The restoration times would go down substantially if cohorts are outplanted year-

after-year, if survivorship significantly increases, or both.

While the projected area of 3588 m2 does not meet the NRP criterion that populations

maintain themselves for 20 years, it provides a rough estimate of what would be required to

restore a population, based on thicket abundance and size under the NRP definition. It is

important to note that there is ecological value in even partially restored populations based on

reports of higher fish abundance than degraded populations [127–130]. Fish and mobile inver-

tebrates were not assessed in our studies, but they could easily be included in future monitor-

ing programs [99, 127]. It may also be pragmatic to regard lush, continuous cover by

acroporid corals to be an exceptional and ephemeral phenomenon in the presence of existing

stressors. Although highly desirable, thickets may grow or shrink over time [131]. Restored

populations that are reduced in abundance and size, even substantially below NRP metrics,

still might function as reserve or seed populations that simply persist until favorable conditions

allow for growth. The number of enduring reserve populations at multiple locations might be

considered another measure of restoration success.

In addition to innovations in outplanting technology to increase numbers and survivorship,

new monitoring techniques will be needed to replace the in situ counting and measurement of

individual corals conducted to date. In particular, high-definition photo-mosaics [132–134]

combined with computer-enhanced point count metrics [135] can be used to measure the per-

formance of thousands of outplanted corals, addressing NRP abundance and size metrics that

describe the status of populations.

Our findings suggest that restoration projects have an important role to play in the persis-

tence and recovery of A. cervicornis. The NRP specifically calls for “active population enhance-

ment” using offshore nurseries and other strategies to improve population densities and

genetic diversity. However, many constraints related to historical conditions and existing

stressors remain [136, 137]. Indeed, as early as 1964 it was recognized that reduced reef growth

occurs opposite large tidal passes in the Florida Keys [138]. At least half of all potential reef
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tract area in the Florida Keys was also not considered suitable for long-term coral growth

[116]. Long-term commitments to outplanting and monitoring will be needed to identify habi-

tat types, reef locations, and ecosystem interactions that impact survival rates. In addition,

modeling efforts can help forecast the trajectories of coral populations [139]. Although the

data with which to parameterize such models are limited [126, 140–143], our results provide a

start. Given the fast growth rate of A. cervicornis observed in this study and elsewhere [4, 60,

65, 94], recovery of the species could be rapid under suitable conditions [31, 112, 116] and if

the adaptive potential of populations is maximized [144]. However, until suitable conditions

arise, the capacity to grow large numbers of healthy colonies in offshore nurseries and the

increasing capacity of restoration programs to outplant large numbers of genetically diverse

colonies provides A. cervicornis with important protection against local extinction. This

approach also applies to other coral species listed as Threatened under the Endangered Species

Act. In particular, its congener A. palmata and the large mounding corals Orbicella faveolata
and O. franksi, which are the focus of emerging technologies [145] to grow in nurseries for out-

planting to offshore reefs in Florida.

Supporting information

S1 Table. Total areas (m2) by habitat type and depth for sanctuary preservation areas

located at Carysfort reef, molasses reef, and conch reef. Check marks indicate habitats used

for two depth ranges to evaluate time and effort required to meet recovery metrics identified

in the NOAA Recovery Plan. Suitable habitat was determined based on historical distribution

of Acropora cervicornis in Florida.
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