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Leukemia stem cells (LSCs) are linked to relapse in acute myeloid leukemia (AML). The

LSC17 gene expression score robustly captures LSC stemness properties in AML and can

be used to predict survival outcomes and response to therapy, enabling risk-adapted,

upfront treatment approaches. The LSC17 score was developed and validated in a

research setting. To enable widespread use of the LSC17 score in clinical decision

making, we established a laboratory-developed test (LDT) for the LSC17 score that can be

deployed broadly in clinical molecular diagnostic laboratories. We extensively validated

the LSC17 LDT in a College of American Pathologists/Clinical Laboratory Improvements

Act (CAP/CLIA)-certified laboratory, determining specimen requirements, a synthetic

control, and performance parameters for the assay. Importantly, we correlated values

from the LSC17 LDT to clinical outcome in a reference cohort of patients with AML,

establishing a median assay value that can be used for clinical risk stratification of

individual patients with newly diagnosed AML. The assay was established in a second

independent CAP/CLIA-certified laboratory, and its technical performance was validated

using an independent cohort of patient samples, demonstrating that the LSC17 LDT can

be readily implemented in other settings. This study enables the clinical use of the LSC17

score for upfront risk-adapted management of patients with AML.

Introduction

Acute myeloid leukemia (AML) is a heterogeneous malignancy of hematopoietic stem cells.1 Significant
evidence links therapy resistance and relapse in AML to properties of the leukemia stem cells (LSCs)
that drive disease.1 We recently described a 17-gene LSC weighted-sum expression score (LSC17)
derived from functionally validated LSC populations from a large number of AML patient samples. The
LSC17 score is highly associated with survival outcomes and is predictive of initial therapy response
across a spectrum of patients with newly diagnosed AML of diverse subtypes. Furthermore, it refines
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Key Points

� This study describes
a new laboratory-
developed test (LDT)
for the LSC17 score
in a CAP/CLIA-
certified diagnostic
laboratory.

� The LSC17 LDT will
enable rapid risk
stratification at
diagnosis and a
personalized treat-
ment approach for
patients with AML.
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currently used risk classifications, including the European Leukemia-
Net risk groups,2,3 and has superior prognostic accuracy when
tested against other published LSC signatures in multivariate analy-
ses.2 The prognostic value of the LSC17 score has recently been
confirmed by other groups for both adult and pediatric AML.3,4

Prognostic criteria in AML are complex and require multiple labora-
tory assays that have variable turnaround times.5 As a result,
most patients receive standard induction chemotherapy with an
anthracycline-containing regimen (eg, 317) and risk-adapted man-
agement decisions, such as whether to proceed with stem cell trans-
plantation, are deferred until after the initial therapy. However, it is
clear that not all patients with AML benefit equally from standard
therapy. In particular, patients with a high LSC17 score do poorly
with standard induction and should be prioritized for alternative
upfront therapies or clinical trials.2 Thus, a rapid laboratory test to
measure the LSC17 score would enable upfront, risk-adapted treat-
ment decisions for patients with newly diagnosed AML and poten-
tially have a high clinical impact. To enable implementation, the
LSC17 score must be measurable by a validated, reliable clinical
assay with a turnaround time of a few days. In addition, to facilitate
broad uptake, the test should ideally be inexpensive and easy to per-
form and should have an established quality control process.

We describe the development, validation, and implementation of a
laboratory-developed test (LDT) for the LSC17 score in a College
of American Pathologists/Clinical Laboratory Improvements (CAP/
CLIA)-certified diagnostic laboratory that fulfills all of these criteria.
The test is performed on the NanoString nCounter platform, with an
in-laboratory running time of 2 workdays. The assay was readily
established in a second independent CAP/CLIA laboratory, demon-
strating ease of technical implementation and reproducibility. The
LSC17 LDT will provide clinicians with a rapid and powerful tool
that can be incorporated into risk-stratified management algorithms
for patients with AML.

Methods

Additional descriptions of patients and methods are provided in the
supplemental Methods.

NanoString Elements assay design

A custom assay was designed for the NanoString nCounter Analy-
sis System (nCAS), using first-generation Elements reagents and
procedures.6 The LSC17 score is calculated based on expression
levels of the 17 genes that make up the LSC17 signature, normal-
ized to 12 housekeeping genes chosen to represent a range of
absolute expression levels.2 Pairs of probes �75 nucleotides in
length, with target sequences of 50 bp, were designed by Nano-
String Technologies to target the 17 LSC signature genes and 12
reference genes and were synthesized as polyacrylamide gel
electrophoresis–purified ultramers (IDT, Coralville, IA). RNA hybridi-
zation sequences were chosen to best overlap the target regions of
the probes used in the original research assay design described
previously.2

Assay protocols

Assay protocols followed the manufacturer’s standard procedures
for sample preparation, probe hybridization, and analysis using the
nCAS. The assay was run with both the Elements and Elements XT
reagent kits. Cartridges were loaded with 150 ng RNA per sample,

20 mL reporter probe mix, and 5 mL capture probe mix (TagSets;
NanoString). For validation runs, a mix of oligonucleotides (300 fM
each) matching the target sequence for each probe was run on
each cartridge as a normalization control. Samples were incubated
at 67�C for a minimum of 16 hours for hybridization using the
nCAS Prep Station (version, 4.0.11.1). After hybridization, excess
probes were washed out with a 2-step magnetic bead-based purifi-
cation according to the manufacturer’s protocol, and purified
TagSet-target complexes were immobilized onto the streptavidin-
coated internal surface of the cartridge, using the nCAS Prep
Station.

Transcript counts were measured with the nCAS Digital Analyzer
(version 2.1.2.3) at the high-resolution setting. Cartridges were
sealed and scanned on the nCAS Digital Analyzer, and fluorescent
barcodes were counted at a high sensitivity of 280 fields of view for
data collection. Digital images were processed with final barcode
counts collected in reporter code count output files. Quality control
and normalization were performed with nSolver analysis software
v.4.0, using default settings for gene expression analysis (supple-
mental Methods).

Reporter code count files generated by the nCAS Digital Analyzer
were used to calculate LSC17 scores for individual patient samples
with a custom script in R2. Gene expression values were scaled to
be comparable to those of the clinical reference cohort, using a mul-
tiplicative factor computed from the expression of the 12 house-
keeping genes. The LSC17 score was computed from the
normalized gene expression as a sum of the scaled expression val-
ues, weighted by gene-specific coefficients, as described previ-
ously.2 The calculated LSC17 scores, which ranged between
–0.15 and 11.4, were classified as high or low based on whether
they were above or below the median LSC17 score of the clinical
reference cohort, respectively.

Synthetic reference control

To construct a synthetic control for the LSC17 LDT, the targeted
exon sequences from the 17 signature genes that form part of the
LSC17 score, as well as additional flanking upstream and down-
stream sequences, were combined into a single contiguous plasmid
sequence. As each of the 17 signature genes is represented at sin-
gle copy number within the control, their abundance in the assay
should be equal in the absence of technical variation. Housekeeping
gene exon sequences were incorporated within the synthetic control
staggered at 13, 23, 33, and 43 copy numbers, thereby forming
a quantitative reference ladder (supplemental Figure 1).

Statistical analysis

For the measurement of technical variation of LDT, log2-transformed
probe counts were used to calculate LSC17 scores of representa-
tive high- and low-score patient samples over 9 replicate runs (Fig-
ure 4). The standard deviations for the sets of high and low scores
were averaged to approximate the technical variation of the LDT at
a mean standard deviation of �0.05.

Results

Assay design and conversion to Elements format

To establish a clinical grade LDT for the LSC17 score that can be
run efficiently and transferred easily to other clinical molecular
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diagnostics laboratories, we adapted a research assay that was
developed for the NanoString nCounter Analysis System (nCAS).2

This research assay measures the expression of 29 genes: 17 sig-
nature genes that contribute to the LSC17 score, plus 12 house-
keeping genes used for normalization.

The original LSC17 assay used a custom codeset for standard
NanoString reagents, in which pairs of gene-specific oligonucleotide
probes were synthesized, with 1 probe of the pair biotinylated and
the other conjugated to a fluorescent reporter tag.6 To make the
LSC17 LDT more easily transferable, we adapted the assay proto-
col to use Elements reagents, an updated NanoString sample prep
kit that employs user-supplied, gene-specific oligonucleotide probes
along with generic manufacturer-supplied adapters. This design
allows for the assay to be easily integrated into the workflow in a
laboratory running multiple NanoString assays. Elements-compatible
RNA sequence hybridization probes were designed to bind and
evaluate the expression of the 17 signature genes used to calculate
the LSC17 score, plus the 12 housekeeping genes, along with
internal negative and positive control probes. Probe sequences
were designed to match or overlap target regions from the original
research assay as closely as possible.

Because rapid turnaround time is necessary for clinical AML risk
assessment, we developed a workflow in which results from the
LSC17 LDT using Elements reagents can be made available within
48 hours after sample receipt (Figure 1A). RNA extraction and
quantification for all samples on a run can be completed in approxi-
mately half a workday (4 hours), followed by setup of hybridization
reactions. Hybridization of RNA to oligonucleotide probes requires a
16-hour overnight incubation. The setup of the nCounter cartridge
and the on-machine run time (6 hours) occur on the second day.
The LSC17 score is calculated by feeding the generated data files
into a custom R2 script. Results can be returned by the end of the
second workday.

After design and workflow implementation, we tested both within-
and between-run reproducibility of LSC17 scores from patient
samples. Within-run variability was assessed by testing multiple rep-
licates of samples within a single run. Thirty-six samples collected
from patients with AML for clinical validation of the assay were
tested in duplicate on the same NanoString cartridges, with parallel
sample processing using identical reagents. Within-run variability
was very small, with replicates displaying high correlation in LSC17
scores (R 5 0.961; P , .001; Figure 1B). The LSC17 score was
also highly stable when tested between runs: 45 samples were
tested twice on different days, using different batches of reagents.
These tests also showed a high correlation in LSC17 scores
between the 2 runs for each sample (R 5 0.963; P , .001; Figure
1C). In 97% and 93% of within-run and between-run replicates,
respectively, the LSC17 scores differed by ,0.1 (equivalent to 2
standard deviations; see “Methods”). In fact, in most cases, the dif-
ference in the LSC17 scores between replicates was much smaller

Figure 1. A NanoString-based laboratory-developed test reproducibly measures LSC17 score. (A) Workflow in the clinical laboratory for the LSC17 LDT. Samples

received by the middle of a workday can be reported by the end of the next workday. (B-C) Plots showing within-run (B) and between-run (C) correlation in replicate meas-

urements of the LSC17 score. (D) Box-and-whisker plots showing difference (D) in within-run and between-run replicate measurements of the LSC17 score. Boxes represent

interquartile range (IQR), with median indicated. Whiskers represent 10th and 90th percentiles. The dotted line (D0.1) indicates 2 standard deviations of the technical varia-

tion of the assay. (E) Plot showing correlation between LSC17 scores measured using Elements and Elements XT reagents. In panels B-D, each dot represents an indepen-

dent patient sample; R, Spearman correlation coefficient.
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Figure 2. LSC17 score measured by the LDT is strongly associated with

survival outcomes. (A) Plot showing LSC17 scores of 306 patients with AML

from PM measured by the original research assay2 and by the LSC17 LDT. Each

dot represents 1 patient sample. R, Spearman correlation coefficient. (B-C)

Kaplan-Meier estimates of overall (B) and relapse-free (C) survival of 306 patients

in the PM AML cohort according to LSC17 scores measured by the LDT and

classified as high (above median) or low (below median). The median LSC17 score

for the cohort was 0.51.
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than 0.1 (Figure 1D). Thus, 0.1 represents a conservative estimate
of the expected technical variation between measurements.

In addition, we tested whether the use of Elements XT reagents, a
newer version of the NanoString reagent kit that allows for smaller
reaction volumes, would affect assay performance. LSC17 scores
for 21 samples from patients with AML tested with both Elements
and Elements XT reagents were highly correlated (R 5 0.931;
P , .001; Figure 1E), indicating that Elements XT reagents have
equivalent performance to original Elements reagents for this assay.

Establishment of a reference data set for clinical

interpretation of the LSC17 LDT

The prognostic value of the LSC17 score was originally validated
retrospectively in a large number of patients with AML from multiple
independent cohorts, by classifying patients as having high or low
LSC17 scores based on the median score within each cohort.2 Pro-
spectively, to classify a patient with newly diagnosed AML as high
vs low risk, that individual’s LSC17 score can be compared with
the median score of a reference patient cohort, as long as the
scores are measured using the same validated LDT. To establish a
reference data set for the LSC17 LDT, we used a clinical cohort
from our original LSC17 validation study, a group of 306 patients
with AML of diverse subtypes treated with induction chemotherapy
at Princess Margaret Cancer Centre (PM). LSC17 scores measured
in this cohort were highly correlated with clinical outcomes.2

We first compared the LSC17 score of individual patient samples
measured with the LDT to the score previously obtained by the

research assay. To make this comparison, we adjusted gene expres-
sion values using batch correction and normalization to the house-
keeping reference gene counts in all sample lanes (see “Methods”).
After normalization, LSC17 scores from the LDT were comparable
to those obtained from the original research assay (R 5 0.826;
P , .001; Figure 2A). Normalized scores for the Elements-based
LDT were in general higher than for the assay using standard
reagents (median LSC17 score 0.51 vs 0.44, respectively). Twenty-
four of 306 samples (8%) had a normalized LSC17 score that dif-
fered by more than 0.3 between the 2 assays. Eight samples (3%)
had a change in classification of their LSC17 score, switching from
a clear high to clear low score or vice versa (higher or lower than
the median by at least 0.1). Underlying gene expression values were
well preserved in the LDT. Expression values for all 17 LSC17
genes and 12 housekeeping controls were well correlated between
the original assay and the LDT.

We evaluated the correlation of the LSC17 score measured by the
LDT with survival outcomes in the reference cohort, using the nor-
malized median LSC17 score (0.51) to divide the cohort into
patients with high (above-median) and low (below-median) scores.
As seen with the original research assay, a high LSC17 score mea-
sured by the clinical LDT was strongly associated with shorter over-
all survival and relapse-free survival (Figure 2B-C, respectively).
Moreover, LSC17 scores measured by the LDT achieved better risk
stratification than the original assay, with higher hazard ratios in both
univariate and multivariate analyses compared with those from the
original assay, and smaller P-values (Table 1). Risk stratification was

Table 1. Overall survival for PM cohort of 306 patients with AML by LSC17 score, continuous or discretized, as measured by research

and clinical assays

Overall survival
Continuous scores univariate analysis (n 5 306)* Discretized scores univariate analysis (n 5 306)*

Covariate Hazard ratio (95% CI)† P‡ Hazard ratio (95% CI)† P‡

High score (research) 4.82 (2.98-7.78) ,.001 2.72 (2.04-3.63) ,.001

High score (clinical) 6.69 (4.31-10.39) ,.001 3.33 (2.48-4.47) ,.001

Continuous scores multivariate analysis 1 (n 5 283)* Discretized scores multivariate analysis 1 (n 5 283)*

High score (research) 4.35 (2.42-7.82) ,.001 2.51 (1.79-3.51) ,.001

Age 1.00 (0.99-1.01) .18 1.00 (0.99-1.01) .29

WBC count 1.00 (1.00-1.00) .001 1.00 (1.00-1.00) .002

Favorable cytogenetics 0.46 (0.27-0.80) .006 0.46 (0.26-0.79) .005

Adverse cytogenetics 1.92 (1.28-2.88) .001 1.91 (1.29-2.84) .001

Secondary/t-AML 2.21 (1.49-3.28) ,.001 2.43 (1.64-3.60) ,.001

Continuous scores multivariate analysis 2 (P < .001)§ Discretized scores multivariate analysis 2 (P < .001)§

High score (research) 1.07 (0.38-2.97) .88 1.55 (1.01-2.38) .04

High score (clinical) 4.96 (1.94-12.6) ,.001 2.09 (1.36-3.21) ,.001

Age 1.01 (0.99-1.02) .06 1.00 (0.99-1.01) .15

WBC count 1.00 (1.00-1.00) .01 1.00 (1.00-1.00) .004

Favorable cytogenetics 0.52 (0.30-0.90) .02 0.51 (0.29-0.88) .01

Adverse cytogenetics 1.71 (1.14-2.55) .008 1.73 (1.16-2.57) .006

Secondary/tAML 2.13 (1.44-3.15) ,.001 2.26 (1.52-3.36) ,.001

CI, confidence interval; t-AML, therapy-related AML.
*Number of patients with full clinical annotations are shown.
†The 95% CI is displayed for each hazard ratio calculated by means of the multivariate Cox regression analysis.
‡The P-values were calculated by means of the Wald test.
§Inclusion of LSC17 scores measured by the clinical assay in multivariate model 2 significantly improves predictions of patient outcomes compared with multivariate model 1. P-values

were calculated by means of the likelihood ratio test.
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superior both when LSC17 score was treated as a continuous vari-
able and when it was discretized into high and low categories.
These results indicate that the LSC17 LDT is at least equal to and
likely superior to the original research assay in capturing the clini-
cally relevant stemness features of this gene expression signature.
Furthermore, the median LSC17 score of this reference data set
provides a basis for clinical interpretation of the Elements-based
LSC17 LDT. LSC17 scores higher than the reference median score
of 0.51 are associated with worse outcomes for patients treated
with standard induction chemotherapy and vice versa.

Specimen requirements and sample processing

To facilitate clinical adoption of the LSC17 LDT, we examined
clinical and laboratory parameters to determine the acceptable

sample types and optimal collection conditions for the assay.
Most of the samples used in our original research study had
been viably frozen after Ficoll separation. However, Ficoll sepa-
ration and freezing are not generally part of the normal handling
of clinical samples. We therefore tested the effects of these
sample-processing variables on the LDT assay. To compare
fresh vs frozen samples, we extracted RNA from 4 peripheral
blood (PB) samples, before and after the samples had been fro-
zen. LSC17 scores were nearly identical for fresh and frozen
samples (Figure 3A). LSC17 scores also were highly similar for
Ficoll-separated and unseparated bone marrow (BM) samples
collected in EDTA (R 5 0.95; P , .001; n 5 41; Figure 3B),
indicating that the Ficoll separation step does not affect the
LSC17 score measurement.
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Most patients with newly diagnosed AML undergo BM aspiration.
However, PB samples may be tested at diagnosis if the PB blast
percentage is high or when a high-quality BM sample is not avail-
able. We therefore tested whether PB and BM samples from the
same patient would yield similar LSC17 scores. We measured the
LSC17 score from paired PB and BM samples that were collected
from 10 patients in our validation cohort. PB and BM LSC17 scores
agreed well (Figure 3C), although scores were more concordant
when the PB blast percentage was high (Figure 3D). For the 3 sam-
ples with PB blast percentage .20%, the difference between the
PB and BM scores was within the technical variation of the assay
(ie, ,0.1; Figure 1D). Thus, although the LSC17 score can be mea-
sured in either PB or BM samples, facilitating clinical application,
BM should be used as the sample source in cases where the PB
blast percentage is less than 20%.

In clinical practice, diagnostic laboratories may not be able to pro-
cess samples immediately after collection. We therefore assessed
whether time between sample collection and RNA extraction
affected LSC17 score results. For 13 patients, BM samples were

collected in EDTA tubes and left at 4�C for 8, 24, or 48 hours
before RNA extraction. The LSC17 scores measured at all 3 extrac-
tion time points were similar (R . 0.762; P # .01), with the magni-
tude of the difference in scores comparable to the between-run
differences seen with replicate samples (mean difference in LSC17
score 5 0.15; maximum 5 0.23; Figure 3E). Scores for individual
patients measured at different time points were identically classified.

In some cases, a sample may have to be transported from the clini-
cal center where it is collected to a distant laboratory for measure-
ment of the LSC17 score. To increase RNA stability in such cases,
samples can be collected in PAXgene tubes (Qiagen), which are
designed to preserve intracellular RNA. We therefore collected BM
specimens for 19 patients in both PAXgene and EDTA tubes for
comparison of resultant LSC17 scores. PAXgene samples were
stored for up to 5 days at 4�C before RNA extraction, whereas sam-
ples collected in EDTA were processed after 8 hours. LSC17
scores between the 2 conditions correlated highly (R 5 0.907;
P , .001; Figure 3F). Based on these results, PAXgene tubes may
be preferred for collection of samples that cannot be processed
immediately, such as for reference laboratories that receive samples
from distant sites.

Synthetic control development

We initially used validated patient samples as reference standards
for the performance of the LSC17 assay. However, patient samples
are not ideal controls for assay performance in the long term
because of their limited supply. We therefore designed a synthetic
plasmid control for the assay encompassing the 17 signature genes
and the 12 housekeeping genes (supplemental Figure 1A). We
used the synthetic control to evaluate the performance of individual
probes in the LSC17 LDT, by testing 2 patient samples with known
high and low LSC17 scores in parallel with the synthetic plasmid
control over 9 consecutive runs. Performance across all 17 probes,
as well as the housekeeping genes, was comparable (Figure 4A).
The calculated LSC17 score of the patient samples and the syn-
thetic control was highly reproducible over the 9 consecutive runs
(Figure 4B). This synthetic control thus provides a sustainable and
constant reference for performance of the LSC17 LDT over time.

Establishment of the LSC17 LDT in an

independent laboratory

The design of the LSC17 LDT is intended to facilitate broad imple-
mentation in independent molecular diagnostics laboratories. After
successful validation of the clinical assay at PM, we collaborated
with the Mayo Clinic (Rochester, MN) to establish the LSC17 score
assay in their molecular hematopathology laboratory (MH Labora-
tory), a high-volume academic and reference laboratory testing facil-
ity. The Mayo Clinic MH Laboratory independently obtained
reagents, including TagSets from NanoString Technologies and
probe sets synthesized by IDT. The LSC17 LDT was run at the MH
Laboratory following the standard protocol provided by the PM labo-
ratory, with RNA inputs ranging from 100 to 200 ng.

A reciprocal sample analysis was performed to assess the repro-
ducibility of LSC17 scores measured at the 2 sites. Twenty-four
patient samples from PM and 36 patient samples from Mayo Clinic
were tested at both sites, with RNA extraction performed indepen-
dently at each site for each sample. LSC17 scores measured at PM
and at Mayo Clinic MH Laboratory correlated highly (R 5 0.981;
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P , .001; Figure 5A). Notably, the difference in scores measured at
the 2 sites was quantitatively similar to the variation between runs in
our single-site validation studies (Figure 1C-D), indicating that the
assay was highly reproducible between laboratories. These results
demonstrate that the LSC17 LDT is robust and can be easily imple-
mented at independent clinical molecular testing facilities with high
accuracy and precision.

Finally, we tested whether the median LSC17 score from our refer-
ence data set could be used to assess risk in Mayo Clinic patients.
The LSC17 score was measured by the Mayo Clinic MH Laboratory
for 45 diagnostic samples obtained from patients with AML for
whom clinical follow-up data were available (supplemental Table 1).
Of these, 26 patients were treated with intensive induction therapy
(all but 1 with a 317 backbone) and were classified as having a
high (n 5 12) or low (n 5 14) LSC17 score based on the PM ref-
erence median score of 0.51. Patients with a low LSC17 score had
significantly better overall survival than patients with a high LSC17
score (hazard ratio, 4.19; 95% confidence interval, 1.10-15.9;
P 5 .03; median survival, not reached vs 191 days, respectively,
Figure 5B), confirming that stratification based on the median score
of the reference data set provides a site-independent, technically
reproducible assessment of risk for patients with AML at diagnosis.

Discussion

This study presents the first clinical development of a risk assess-
ment tool based on an LSC gene expression signature. Our results
establish the technical parameters for an LDT that measures the
LSC17 score in AML at diagnosis and provide a stable and durable
synthetic control for assay performance. We demonstrate the clini-
cal predictive value of the assay based on a median score of 0.51
obtained from a reference data set. Importantly, we show that this
clinical assay can be easily established at an independent test site
with no loss of accuracy or precision. The design and optimization
of this assay will allow for the LSC17 score to be used broadly as a
clinical tool for risk assessment in patients with AML.

The LSC17 LDT has several characteristics that make it suitable for
adoption in clinical laboratories. The LSC17 score can be reported
on the second workday after a sample is received in the laboratory,
thus providing upfront risk assessment in patients with newly diag-
nosed AML within a time frame equal to or better than current cyto-
genetic and molecular tests. The LSC17 LDT is also highly cost
effective, as it can be run at a cost as low as US $200 per sample
(reagent cost) assuming full-cartridge runs (11 samples plus con-
trol). Our studies indicate that the LSC17 LDT is robust to sample
collection conditions that reflect real-world sample handling and col-
lection, such as freeze/thaw and time between sample collection
and RNA processing, with samples collected in PAXgene tubes
producing accurate results with as much as 5 days between collec-
tion and processing. The development of a single high-quality syn-
thetic control standard allows for monitoring of the stability of assay
performance over time, with significant advantages over validated
patient samples that are quickly exhausted or mixed oligonucleotide
controls that are difficult to replicate accurately because of measure-
ment and pipetting error.

Importantly, we have shown that the LSC17 LDT can be easily
established in an independent laboratory setting. Expression signa-
ture assays such as the LSC17 score derive their clinical validity

from testing cohorts of patients with known clinical outcomes after
standardized treatment. In practice, it is very difficult to assemble an
adequate clinical sample set to validate an assay de novo. Thus, the
demonstration that the median score of the PM reference data set
could be applied for risk stratification of the independent Mayo
Clinic patient cohort obviates the need for independent laboratories
to establish their own reference cohorts.

Because the LSC17 LDT does have some within- and between-run
variability, it is necessary to interpret LSC17 scores near the median
value with caution. Scores near the median value may be called
“high” or “low” on different runs solely because of technical variabil-
ity; thus it will be necessary to measure the between-run variability
seen in a particular laboratory and to make the level of variation clear
in reporting LSC17 scores. Reporting of the LSC17 score should
incorporate a “gray zone” in which the distance from the median
score is within technical variation of the assay. Reporting of the
absolute LSC17 score will also be helpful to clinicians in interpreta-
tion of test results, by giving a sense of how close to the median
value a patient’s score lies. However, it should be noted that clinical
utility of the score has been established only for discretized scores
classified as high or low based on the median of the reference data
set. Of the 306 cases in our representative PM reference cohort,
LSC17 scores in 55 (18%) fell within a gray zone defined as
median 6 0.1 (ie, 0.41-0.61). Thus, in most cases, LSC17 scores
can be unambiguously classified as high or low.

The LSC17 score has been clearly demonstrated to provide robust
risk assessment beyond currently used systems, such as the Euro-
pean LeukemiaNet classification, for patients with newly diagnosed
AML who receive standard induction chemotherapy.2,3 We have
previously shown that patients with low LSC17 scores receive sig-
nificant survival benefit from the addition of low fractionated doses
of gemtuzumab ozogamicin to standard induction chemotherapy.2

With the development of a CAP/CLIA-certified LDT to measure the
LSC17 score, such patients can now be identified soon after their
AML diagnosis, allowing for the provision of gemtuzumab ozogami-
cin to the subset of patients who will benefit the most. Incorporation
of the LSC17 score into clinical management of AML will also
enable identification of high-risk patients who do poorly with stan-
dard induction and who may benefit from alternative upfront thera-
pies or enrollment in clinical trials. The LSC17 score will also be of
value in clinical trials as a correlative test to determine whether novel
therapies are benefitting AML patients at highest risk. Wide availabil-
ity of the LSC17 LDT has the potential to open up new approaches
to AML care in both clinical and research settings.
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