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-e present study especially concerns the investigation of the Couette flow and heat transfer with thermal radiation through an
inclined channel. Single-wall carbon nanotube (SWCNT) and multiple-wall carbon nanotube (MWCNT) are nanoparticles
embedded in the host fluid. -e dimensionless highly nonlinear differential equations (DEs) are solved via numerical scheme
bvp4c.-e effects of the physical parameters on heat transfer are presented in the form of graphs.-e results demonstrate that the
heat transfer is enhanced by using solid particle frictions (SWCNTand MWCNT). -e large estimation of a magnetic parameter
declines the velocity component. -e current and existing results with their comparisons are shown in the tabular form for the
validation of our code. -e current results are in good agreement with their existing results. Generally, fuzziness or uncertainty is
inherent in modeling, analysis, and experimentation. Due to the uncertain environmental conditions, fuzziness broadly exists in
various engineering heat transfer problems. In this work, the nanoparticles’ volume fraction of the SWCNTandMWCNTis taken
as uncertain parameters in terms of triangular fuzzy numbers (TFNs). -e TFNs are controlled by the α − cut which has less
computational effort for analyzing the fuzziness or uncertainties. Also, a comparison between the SWCNTandMWCNT through
the membership function and the variability of the uncertainty is studied.

1. Introduction

-e study of the flow of third-grade fluids [1–3] over an
inclined channel is an important application in engineering,
science, and technology. Some of these applications can be
found in materials manufactured by the extraction proce-
dure particularly in polymer processing, the flow of synovial
fluid in human joints, geological flows inside the Earth’s
mantle, microfluids, drilling of oil and gas wells, etc. In fluid
dynamics, the study of fundamental flow, namely, Couette
flows to attract the researchers by several non-Newtonian
fluids because of their uses in the technology and

engineering industry. -e unidirectional flow is used in
polymer engineering such as die flow, injection molding,
extrusion, plastic forming, continuous casting, and as-
thenosphere flows [4–7]. Magnetohydrodynamics (MHD)
deals with the study of the motion of electrical fluids in the
presence of a magnetic field. MHD flow has significant
importance applications in the inclined channel such as
geophysical, astrophysical, metallurgical processing, MHD
generators, pumps, geothermal reservoirs, polymer tech-
nology, and mineral industries. MHD fluid uses as a lu-
bricant to stop the unexpected variation of fluid viscosity
with temperature under certain norms. -ermal radiation is
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a process by which energy, in the form of electromagnetic
radiation, is emitted by a heated surface in all directions and
travels directly to its point of absorption at the speed of light;
thermal radiation does not require an intervening medium
to carry it. -ermal radiation plays an important role in
science and technology, such as the furnace design, glass
production, ship compressors, space vehicles, plasma
physics, propulsion systems, spacecraft, flow structure of
atomic plants, internal combustion engines, combustion
processes, gas turbines, solar radiations, and solar power
technology. Kamran and Siddique [8] calculated the ana-
lytical solutions for MHD flow between infinite parallel
plates. Siddiqui et al. [9] calculated the deliberated flow of a
third-grade fluid between two inclined parallel plates with
heat transfer using the homotopy perturbation method
(HPM). Aiyesimi et al. [10] studied the MHD Couette flow
and Poiseuille flow problems using the homotopy pertur-
bation method (HPM) and perturbation method (PM).-ey
examined that both methods have the same solutions. Later
on, Aiyesimi et al. [11] studied the solution of MHD Couette
flow and Poiseuille flow problems of the temperature and
velocity profile utilizing the perturbation method (PM).
Yusuf et al. [12] studied the Couette flow with the effect of
Soret, Dufour, and thermal radiation using the modified
domain decomposition method (MADM) in an inclined
channel. Okedayo et al. [13] used the MADM to study the
viscous dissipation, Joule heating, and MHD flow of a third-
grade fluid in an inclined channel. Farooq et al. [14] used the
PM to study the Poiseuille flow of a couple of stress fluids
with variable viscosity between two parallel inclined heated
plates. Zeeshan et al. [15] studied the impact of variable
thermal conductivity, heat generation, heat flux, and in-
clined uniform magnetic field on Poiseuille flow employing
the homotopy analysis method (HAM). In this way, there are
large kinds of literature about MHD and thermal radiation
such as [16–23].

Heat transfer is important in industrial areas to launch
transportation of energy in the system. Heat transfer is an
essential task due to the requirement for energy in the world.
In recent years, nanofluids have great attention because of
their large-scale usage in industries. -ere are many ap-
plications of nanofluids in science and engineering, such as
heat exchangers, solar cells, cooling of electronic equipment,
solar water heaters, cooling of diesel-electric generators,
nuclear reactors, cooling, and heating in buildings. -e
range of nanoscale particles is 1–100 nm, which benefits to
increase the thermophysical properties of the nanofluid. Due
to an increase in energy prices, the management of heat
transfer is a vital role in energy systems. -e nanofluids are
the mixture of solid-liquid which contain nanoparticles for
enhancing the heat transfer, investigated by Choi and
Eastman [24]. -e performance of nanoparticles in a heat
transfer mechanism is better than the base fluid; the reason is
that the suspended ultrafine particles increase the thermal
conductivity of the mixture and raise their competency of
energy transfer. Numerous literature studies [25–27] dis-
close the low volume fractions (1%–20% volume) for better
performance of thermal conductivity of the suspensions; we
can take more than 20% nanoparticles’ concentrations.

Carbon nanotubes (CNTs) are cylindrical shape materials
made of graphene. -ere are two types of CNTs, SWCNT
and MWCNT, which are used in this work. As compared to
other nanomaterials, SWCNT and MWCNT are of great
importance for scholars due to their significant thermal
conductivities, bent without any damage, and mechanical
power. Saqib et al. [28] studied natural convection flow using
carboxymethyl cellulose (CMS) as a base fluid and CNTs as
hybrid nanofluids between two vertical parallel plates. For
the exact solution, the Caputo–Fabrizio fractional derivative
with the Laplace transform method is used. Hatami and
Ganji [29] discussed the natural convection flow of sodium
alginate (SA) as a base fluid and copper (Cu) and silver (Ag)
as a nanofluid between two vertical parallel plates using the
differential transform method (DTM). Khan et al. [30]
studied the Navier slip boundary conditions for heat transfer
using CNTs. Noreen et al. [31] studied the velocity slips and
thermal analysis on MHD peristaltic flow in an asymmetric
channel using CNTs. Ebaid and Al Sharif [32] deliberated the
effect of MHD on nanofluids’ motion using CNTs and
enhanced the heat transfer rate. -e flow and heat transport
of a special kind of second-grade hybrid Al2O3 + Cu/H2O
nanofluid over a permeable stretching/shrinking sheet was
addressed by Roy and Pop [33].

-e flow of fluids with heat transfer is essential in
science and engineering. After controlling the physical
quantities like chemical diffusion, magnetic effect, volume
friction of nanoparticles, and heat transmission, the fluid
models are transformed into linear and nonlinear DEs.
After governing these physical problems, they are con-
verted into linear or nonlinear DEs. In general, the
physical problems with involved geometry, coefficients,
parameters, and initial and boundary conditions greatly
affect the solution of DEs. -en, the coefficients, param-
eters, and initial and boundary conditions are not crisp due
to the mechanical defect, experimental error, and mea-
surement error. So, in this situation, fuzzy set theory is a
powerful tool for a better understanding of the considered
phenomena, and it is more accurate than assuming the
crisp or classical physical problems. To be more specific,
FDEs play a significant role in reducing uncertainity and
providing a correct approach to characterise a physical
issue with unknown parameters, initial and boundary
conditions.

In 1965, Zadeh [34] presented the fuzzy set theory (FST).
FST is a very valuable tool to define the situation in which
information is imprecise, vague, or uncertain. FST is com-
pletely defined by its membership function or belongingness,
and the membership function describes each element of the
universe of discourse by a number from the [0, 1] interval. On
the contrary, the degree of nonbelongingness is a comple-
ment to “one” of the membership degree or belongingness.
Fuzzy number (FN) can be expected as a function whose
range is specified from zero to one. Every numerical value in
the range is allocated a definite grade of the membership
function where zero signifies the minimum possible grade
and one is the maximum possible grade. Arithmetic oper-
ations on FNs were developed by Dubois and Prade [35].
Different types of FNs can be categories in triangular,
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trapezoidal, and Gaussian fuzzy numbers. Here, we consider
TFNs for the sake of completeness. Also, many scholars have
applied FST to obtain well-known results in the field of
commerce and science [36–46].

-e information of dynamical systems modeled by
partial or ordinary differential equations is commonly
incomplete, vague, or uncertain, while FDEs represent a
proper way to model the dynamical systems under
vagueness or uncertainty. -is impreciseness or vagueness
can be defined mathematically using FNs or TFNs. In
recent years, there have been many studies revolving
around the concept of FDEs. Seikala [47] introduced the
fuzzy differentiability concept. Later on, Kaleva [48] pre-
sented fuzzy differentiation and integration. Kandel and
Byatt [49] introduced the FDEs in 1987. Buckley et al. [50]
used two methods’ extension principle and FNs for the
solution of FDEs. Gasilov et al. [51] studied the system of
FDEs with the TFNs. Salahshour et al. [52] studied the
fuzzy logistic equation and alley effect using FDEs with the
help of TFNs. Biswal et al. [53] studied the natural con-
vection of nanofluid flow between two parallel plates using
the HPM in a fuzzy environment. -e volume fraction of
nanoparticles is considered as the TFN and also shows that
the fuzzy result is better than a crisp result. Borah et al. [54]
discussed the MHD flow of second-grade fluids in a fuzzy
environment using fractional derivatives Atanga-
na–Baleanu and Caputo–Fabrizio. -e nondimensional
governing equations are converted into fuzzified governing
equations with the help of the Zadeh extension principle
and triangular fuzzy number. MHD and ohmic heating on
the third-grade fluid in an inclined channel in a fuzzy
environment was investigated by Nadeem et al. [55]. To
discuss the uncertainty, the triangle membership function
was used.

In the literature review, it scrutinized that there is no such
study that has been accounted in an MHD Couette flow with
pure water as the base fluid and CNTs (SWCNTs and
MWCNTs) as nanoparticles through the inclined heated
channel in the presence of thermal radiation. -e governing
nonlinear coupled ordinary differential equations are solved by
numerical scheme bvp4c. Furthermore, after checking the
accuracy of bvp4c, the results of existing works in the literature
are compared.-e nanoparticles’ volume fraction performs the
main role in the enhancement of heat transfer and thermo-
physical properties.-e particular applications of nanoparticles
are in solar water heating, engine cooling, cooling of trans-
former oil, cooling of the radiator, cooling in machining, and
defense. Some researchers take nanoparticles’ volume fraction
0 to 4% for the enhancement of heat transfer. However, from
different sources [25–27], we can take nanoparticles’ volume
fractionmore than 20% for better performance of heat transfer.
So, the volume fraction of nanoparticles (SWCNTs and
MWCNTs) is taken as a fuzzy number or uncertain because it
depends on the added nanoparticle volume or dimensions of
particles or the shape of particles of the fluid. In this respect,
volume fraction has been taken as an uncertain parameter in
terms of fuzzy numbers in the present study. To handle this
problem in a fuzzy environment, FDEs and the triangular fuzzy
plot with the α − cut approachwere used. Also, the comparison

of SWCNTs and MWCNTs is discussed through triangular
fuzzy plots.

2. Preliminaries

In this section, some basic notations and definitions are
used.

Definition 1 (see [34]). Fuzzy set is defined as a set of or-
dered pairs such that 􏽥U � (y, μ􏽥U(y)): y ∈ X,􏽮 μ􏽥U(y) ∈
[0, 1]}, where X is the universal set and μ􏽥U(y) is the
membership function of 􏽥U and mapping defined as
μ􏽥U(y): X⟶ [0, 1].

Definition 2 (see [35]). -e α − levelor α − cut of a fuzzy set
􏽥U is a crisp set Uα and defined by Uα � y/μ􏽥U(y)≥ α􏽮 􏽯, where
0≤ α≤ 1.

Definition 3 (see [35, 55]). Let 􏽥U � (a1, a2, a3) with mem-
bership function μ􏽥U(y) be called a membership function of
the TFN if

μ􏽥U(y) �

a1 − y

a1 − a2
, fory ∈ a1, a2􏼂 􏼃,

a3 − y

a3 − a2
, fory ∈ a2, a3􏼂 􏼃,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Membership functions allow us to graphically represent
a fuzzy set. -e x-axis signifies the universe of discourse,
while the y-axis signifies the degrees of membership in the
[0, 1] interval. -e TFNs with peak (or center) a2, left width
a2- a1 > 0, and right width a3-a2 > 0 are transformed into the
interval numbers through α-cut approach, which is written
as 􏽥U � [u1(y;α),u2 (y;α)] � [a1 +α(a2 − a1),a3 − α (a3 − a2)],
where 0≤α≤1. A TFN 􏽥U � (a1,a2,a3) and the α-cut of the
membership function are seen in Figure 1. An arbitrary TFN
satisfies the following conditions: (i) u1(y;α) is an increasing
function on [0, 1]. (ii) u2(y;α) is a decreasing function on [0,
1]. (iii) u1(y;α)≤u2(y;α) on [0, 1]. (iv) u1(y;α) and u2(y;α)

are bounded on left continuous and right continuous at [0,
1], respectively. (v) u1(y,α) � u2(y,α) � u(y) where u(y) is a
crisp number at α − cut�1.

Uα must be a closed interval for every 0≤ α≤ 1; also, α is
called the level of credibility or presumption. Membership
function or grade is also named as a grade of possibility or
grade of credibility for a given number. Also, Figure 1 de-
scribes the membership function of a triangular fuzzy un-
certainty. So, the triangular fuzzy uncertainty is defined as
u1(y; α) (lower bound), u(y) (most belief value), and
u2(y; α) (upper bound).

Definition 4 (see [47, 50, 55]). Let I be a real interval. A
mapping 􏽥u: I⟶ F is called a fuzzy process, defined as
􏽥u(y; α) � [u1(y; α), u1(y; α)], y ∈ I and α ∈ [0, 1]. -e de-
rivative d􏽥u(y; α)/dy ∈ F of a fuzzy process 􏽥u(y; α) is defined
by d􏽥u(y; α)/dy � [du1(y; α)/dy/du2(y; α)/dy].
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Definition 5 (see [47, 50, 55]). Let I⊆R and 􏽥u be a fuzzy-
valued function defined on I. Let 􏽥u(y; α) � [u1(y; α),

u2(y; α)] for all α-cuts. Assume that u1(y; α) and u2(y; α)

have continuous derivatives or are differentiable, for all y ∈ I

and α; then, [d􏽥u(y; α)/dy]α � [du1(y; α)/dy/du2(y; α)/
dy]α. Similarly, we can define higher-order ordinary de-
rivatives in the same way. An FN by an ordered pair of
functions [d􏽥u(y; α)/dy]α satisfies the following conditions:
(i) du1(y; α)/dy and du2(y; α)/dy are continuous on [0, 1].
(ii) du1(y; α)/dy is an increasing function on [0, 1]. (iii)
du2(y; α)/dy is a decreasing function on [0, 1]. (iv)
du1(y; α)/dy≤du2(y; α)/dy on [0, 1].

3. Problem Formulation

Consider the steady incompressible Couette flow of pure
water as a base fluid, and SWCNT and MWCNT nano-
particles are added separately in an inclined channel with
heat transfer. -e distance between two inclined parallel
plates is 2H with the x-axis as the flow direction. -e upper
plate is moving with constant speed U, while the lower plate
is fixed. -e plates having constant temperatures with the
upper plate instantaneously change in temperature T2 − T1.
An unchanging magnetic field B0 is applied in the y-di-
rection and is expected undisturbed as the induced magnetic
field is neglected under the assumption of a small magnetic
Reynolds number. Radiative heat flux is considered here.
-e pressure and ambient air are ignored so that the flow is
due to the movement of the upper plate and alone with
gravity. -e properties of SWCNTs, MWCNTs, and water
are given in Table 1.

In the equations, the flow of an incompressible, unidi-
rectional, third-grade fluid with the effects of MHD is given
[8–11]:

divV � 0, (2)

ρ
dV
dt

� − ∇p + div􏽢S + J × B + fρ, (3)

B � B∘ + b, (4)

where ρ is the constant density, d/dt is the material de-
rivative, V is the velocity vector, p is the pressure, τ∗ is the
stress tensor, J is the electric current density, B is the total
magnetic field, B∘ denotes the imposed magnetic field, and b
represents the induced magnetic field.

J � σ[V × B + E], (5)

∇ × B � μmJ,

∇ × E � −
zB
zt

,

∇ · B � 0,

(6)

where E is the electric field (E � 0), μm is the magnetic
permeability, and σ is the electrical conductivity.

􏽢S � μA1 + α1A2 + α2A
2
1 + β1A3

+ β2 A2A1 + A1A2( 􏼁 + β3 trA2
1􏼐 􏼑A1,

(7)

wherein μ is the coefficient of viscosity and α1, α2, β1, β2,
and β3 are material constants. -e Rivlin–Ericksen tensors
An are defined as A∘ � I is the identity tensor:

An �
dAn− 1

dt
+ An− 1(gradV) +(gradV)

TAn− 1, n≥ 1. (8)

-e geometry of the problem is presented in Figure 2.
For radiation, Rosseland approximation is used [16–18]:

qr � −
4σ∗

3k
∗.

zT
4

zy
, (9)

u 2 
(y,
α)

u1 (y,α)
u1 (y,α)

Membership Function μ0 (y)

u2 (y,α)

1

α-cut = 0

α-cut = 1

α-cut = 1

α-cut = 0

α-cut = 0

1

0.5 0.5

01 1–1 u– (y,α)

y

Figure 1: Membership functions of a TFN.

Table 1: -ermophysical properties of the base fluid and
nanoparticles.

Materials ρ (kg/m3) Cρ (J/kgK) k (W/m) σ (s/m)

Pure water 997.1 4179.0 0.6130 0.05
SWCNTs 2600.0 425.0 6600.0 21
MWCNTs 1600.0 796.0 3000.0 44
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where σ∗ is the Stefan–Boltzmann constant, k∗ is the ab-
sorption coefficient, and T4 is the linear temperature

function. T4 is expanded by Taylor series expansion about
T∞ as

T
4

� 4T
3
∞T − 3T

4
∞. (10)

Define velocity and temperature profiles for one-di-
mensional flows as follows [8, 11, 55]:

V � u(y) 0 0􏼂 􏼃, θ � θ(y). (11)

Using equations (2)–(6) along with equations (7)–(11),

μnf

d
2
V

dy
2 + 6 β2 + β3( 􏼁

dV

dy
􏼠 􏼡

2
d
2
V

dy
2 + gρnf sin c − σnfB

2
oV � 0, (12)

knf

d
2
T

dy
2 + μnf

dV

dy
􏼠 􏼡

2

+ 2 β2 + β3( 􏼁
dV

dy
􏼠 􏼡

4

−
1

ρcp􏼐 􏼑
f

dqr

dy
+ σnfBoV

2
� 0. (13)

Introduce the following nondimensional parameters.
Eqs. (11) and (12), with the boundary conditions become,
work done due to deformation and Joule heating in a
nondimensional form is given as

u � uU,

y � yH,

T �
T − T1

T2 − T1
,

(14)

d
2
u

dy
2 + 6β(1 − ψ)

2.5 du

dy
􏼠 􏼡

2
d
2
u

dy
2

− (1 − ψ)
2.5

m2Mu +(1 − ψ)
2.5

m3K � 0,

(15)

with boundary conditions

u(− 1) � 0,

u(1) � 1,

(16)

1 +
4N

3m1
􏼠 􏼡

d
2θ

dy
2 +

Br

m1(1 − ψ)
2.5

du

dy
􏼠 􏼡

2

+
2βBr

m1

du

dy
􏼠 􏼡

4

+
m2Br

m1
Mu2 � 0,

(17)

with boundary conditions

θ(− 1) � 0,

θ(1) � 1,
(18)

where β � (U/H)2β2 + β3/μf is a third-grade fluid param-
eter, K � ρfgH2/Uμf sin ϕ is a gravitational parameter,
M � B2

0σfH2/μf is a magnetic parameter, Br � U2μf/kfΔT
is the Brinkman number, and N � 4σ∗T3

∞/kf(ρcp)fk∗ is the
thermal radiation.

Here, ρnf, μnf, knf, (ρCp)nf, σf, andψ denote the den-
sity, viscosity, thermal conductivity, specific heat, electrical
conductivity, and nanoparticles’ volume fraction of nano-
fluids, respectively [29, 32].

m3 � ρnf � (1 − ψ) + ψ
ρs3

ρf

􏼢 􏼣ρf,

μnf � μf(1 − ψ)
− 2.5

,

m � ρcp􏼐 􏼑
nf

� (1 − ψ) ρcp􏼐 􏼑
f

+ ψ ρcp􏼐 􏼑
s5

􏼔 􏼕,

m1 �
knf

kf

�
2kf + 2ψ1 ks1

− kf􏼐 􏼑 + ks1

2kf − ψ1 ks1
− kf􏼐 􏼑 + ks1

,

m2 �
σnf

σf

� 1 +
3 σs4

− σf􏼐 􏼑ψ

σs4
+ 2σf􏼐 􏼑 − σs4

− σf􏼐 􏼑ψ
.

(19)

-e properties of the base fluid and nanoparticles are
listed in Table 1.

g

γ

2Hx

y

u (y)

Figure 2: Geometry of the problem.
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3.1. Formulation of the Crisp Problem into the Fuzzy Problem
Using FDEs. -e velocity and temperature are affected by a
small change in the value of the volume fraction of nano-
particles. Some researchers take the volume fraction of
nanoparticles in the range [0.01–0.04], so the point is that the
flow of fluid just depends on these values. -en, uncertainty

arises due to the fixed crisp values of the volume fraction of
nanoparticles. So, it is better to handle a difficult problem in
a fuzzy environment by taking volume fraction as the FN.

For the fuzzy form, the governing coupled differential
equations (15)–(18) can be written as

d
2
u(y, α)

dy
2 + 6β(1 − ψ)

2.5 du(y, α)

dy
􏼠 􏼡

2
d
2
u(y, α)

dy
2 − (1 − ψ)

2.5
m2Mu(y, α) +(1 − ψ)

2.5
m3K � 0, (20)

1 +
4N

3m1
􏼠 􏼡

d
2θ(y, α)

dy
2 +

Br

m1(1 − ψ)
2.5

du(y, α)

dy
􏼠 􏼡

2

+
2βBr

m1

du(y, α)

dy
􏼠 􏼡

4

+
m2Br

m1
Mu

2
(y, α) � 0, (21)

with boundary conditions

u(y, α) � 0, θ(y, α) � 0 aty � − 1,

u(y, α) � 1, θ(y, α) � 1 aty � 1.
(22)

For the fuzzy solution, equations (15)–(18) can be
converted into FDEs using the α-cut approach. So, according
to Definitions 4 and 5, we have

d
2

dy
2 u1(y, α), u2(y, α)( 􏼁 + 6β(1 − ψ)

2.5 d

dy
u1(y, α), u2(y, α)( 􏼁􏼠 􏼡

2
d
2

dy
2 u1(y, α), u2(y, α)( 􏼁

− (1 − ψ)
2.5

m2M u1(y, α), u2(y, α)( 􏼁 +(1 − ψ)
2.5

m3K � 0,

(23)

1 +
4N

3m1
􏼠 􏼡

d
2

dy
2 θ1(y, α), θ2(y, α)( 􏼁 +

Br

m1(1 − ψ)
2.5

d

dy
u1(y, α), u2(y, α)( 􏼁􏼠 􏼡

2

+
2βBr

m1

d

dy
u1(y, α), u2(y, α)( 􏼁􏼠 􏼡

4

+
m2Br

m1
M u1(y, α), u2(y, α)( 􏼁 � 0,

(24)

with boundary conditions

u1(y, α), u2(y, α)( 􏼁 � (0, 0), θ1(y, α), θ2(y, α)( 􏼁

� (0, 0) aty � − 1,

u1(y, α), u2(y, α)( 􏼁 � (1, 1), θ1(y, α), θ2(y, α)( 􏼁

� (1, 1) aty � 1,

(25)

where “___” stands for the fuzzy form and fuzzy velocity
profile is u(y, α) � [u1(y, α), u2(y, α)], 0≤ α≤ 1. Here,
u1(y, α) is the lower bound and u2(y, α) the upper bound of
fuzzy velocity profiles. Similarly, the fuzzy temperature
profiles are θ(y, α) � [θ1(y, α), θ2(y, α)], 0≤ α≤ 1.

-e crisp values and TFNs of these FNs are listed in
Table 2. -e TFN defined the variation of the FN at each
α-cut. -e TFNs are used to describe the triangular mem-
bership functions of the FNs which range from 0 to 1; see
Figure 1. -e investigated ranges are generally used to build
up the said problem.

Now we proposed a numerical method bvp4c to solve
crisp differential equations and FDEs. It is a Lobatto IIIa
formula with three stages based on the finite-difference

algorithm. It has a collocation polynomial, and in [a, b], the
collocation formula yields a sixth-order accurate uniform C1
continuous solution. For error control and mesh selection,
the continuous solution residual is employed. Further
solvers, such as NDSOLVE, HPM, HAM, and ADM, and
many other similar approaches are less consistent than
bvp4c.

We transformed the governing ODEs to the system of
the first order as follows.

Let

u(y) � w(1)

u′(y) � w′(1) � w(2),

u″(y) � w″(1) � w′(2),

(26)

w′(2) �
1 − ψ1( 􏼁

2.5
m2Mw(1) − 1 − ψ1( 􏼁

2.5
m3K

1 + 6β 1 − ψ1( 􏼁
2.5

(w(2))
2 , (27)
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θ(y) � w(3),

θ′(y) � w′(3) � w(4),

θ″(y) � w′(4),

(28)

w′(4) �
− 3

3m1 + 4N

Br(w(2))
2

(1 − ψ)
2.5􏼢

+ 2βBr(w(2))
4

+ m1MBr(w(1))
2
􏽩.

(29)

Boundary conditions are

wa(1) � 0,

wb(1) � 1,

wa(3) � 0,

wb(3) � 1.

(30)

To find the solution of Eqs. (24) to (28), a code in
MATLAB software for bvp4c method is constructed.

4. Results and Discussion

In this section, pure water (H2O) is chosen as a base fluid,
and SWCNTand MWCNTare nanoparticles added into the
base fluid to enhance the heat transfer rate between two
heated inclined parallel plates. -e numerical solutions of
governing coupled nonlinear differential equations are
achieved through numerical technique bvp4c. -e effect of
crisp thermophysical parameters, such as nanoparticle
volume fraction ψ, gravitational parameter K, magnetic
parameter M, Brinkman number Br, and nondimensionless
non-Newtonian viscosity β, on velocity and temperature
profiles is drawn in Figures 3–8.

Tables 3 and 4 show the comparison of velocity and
temperature fields for different values of β [10, 11] when
K � 1, Br � 5, M � 5, N � 0, andψ � 0. -e validation of
our results of the present study was found to be in excellent
agreement.

Figure 3 demonstrates the impact of β on velocity and
temperature profiles when other parameters are fixed. It
is seen that the velocity and temperature of the nanofluid
increase with increasing the values of β because of the
increase in the boundary layer thickness. Figure 4 dis-
plays the influence of gravitational parameter K on ve-
locity and temperature profiles when other physical
parameters are fixed. It is noticed that the velocity and
temperature of the nanofluid rise rapidly in the center of
the inclined plates with increasing the values of K. -e
reason is that when K increases, the upper plate move-
ment expands the nanofluid velocity, which strengthens
Joule dissipation; thereby, the rate of heat transfer is
enhanced.-e effect ofM on the velocity and temperature
profile is seen in Figure 5. When the value of M is

increased, the velocity drops due to the Lorentz forces,
but the temperature profile rises. -e rate at which the
nanofluid flow declines is less noticeable from the lower
plate to the higher plate. Physically, when the magnetic
parameter rises, the rate of nanofluid flow near the
moving upper plate is significantly reduced compared to
the stationary lower plate. Also, it is noticed that in-
creases in the magnetic parameter cause an increase in
Joule heating, which raises the heat transfer rate. Figure 6
visualizes the effect of N on the nanofluid of the tem-
perature profile. As depicted, it is seen that the tem-
perature profile performs a decreasing function with
increasing N, therefore, representing a damping impact
on the heat transfer performance and nanofluid flow. -e
effect of the viscous dissipation parameter Br on the
temperature profile is demonstrated in Figure 7. It is
observed that the temperature of the nanofluid increases
with increasing the values of Br. -e physical meaning of
Br is when Br increases, the dissipation of heat in the
boundary layer region increases, so the flow of the
nanofluid is enhanced, and the heat transfer rate grows.

-e effect of ψ via the velocity profile of nanomaterials
SWCNT and MWCNT is shown in Figure 8(a). When ψ
increases, the velocity of the nanofluid decreases. -e ve-
locity of the regular fluid is maximum at ψ � 0, which
means that, by increasing the nanofluid volume fraction, it
becomes denser. Physically, it means that the boundary
layer of nanofluids is thicker than regular fluids; conse-
quently, the velocity shows a decreasing behavior with
increasing values of ψ. -e effect of ψ on the temperature
profile of nanomaterials SWCNT and MWCNT is depicted
in Figure 8(b). It can be seen that the temperature profiles
increase with an increase in ψ. Physically, this is true be-
cause of the thicker thermal boundary layer which increases
the heat transfer.

Now, we discuss the nanoparticles’ volume fraction of the
SWCNTandMWCNTin a fuzzy environment.-e governing
equations of momentum and energy are converted into FDEs;
then, the bvp4c scheme is employed for the numerical solu-
tion. -e nanoparticle volume fraction ψ is taken as TFN (see
Table 2). Moreover, we utilized the α-cut approach (0≤α≤1) to
analyze the uncertainty. -en, the velocity and temperature
profiles are said to be fuzzy.-e α-cut controls the fuzzy terms,
for instance, if α-cut � 0, it will cover the whole interval of
nanoparticles’ volume fraction; that is, ψ � [0, 0.2]. α-cut
increases as (0.05 to 0.95) the width of lower and upper bounds
of fuzzy velocity or temperature profiles decreases. When
α-cut� 1, then the lower and upper bounds of fuzzy velocity or
temperature profiles are coherent with each other, so they
provide a crisp result. It is important to note that if the width
between lower and upper bounds of the velocity or temper-
ature profile is less, the uncertainty is less. -e fuzzy velocity
and temperature profiles are plotted in Figures 9 and 10 for
some particular values of α-cut, (α � 0, 0.3, 0.6, and 1). -e
triangular membership functions are depicted in Figures 11
and 12 for different values of y.

Figures 9 and 10 show the nanoparticles’ volume
fraction of SWCNTs andMWCNTs taken as the TFN (see in
Table 1); then, the fuzzy velocity and temperature profiles

Table 2: TFNs of fuzzy nanoparticles of volume fraction.

Fuzzy
number

Crisp
value TFN α-cut approach

ψ 0.01–0.04 [0, 0.1, 0.2] [0 + 0.1α, 0.2 − 0.1α], α ∈ [0, 1]
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Figure 3: Influence of β on u(y) and θ(y).
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are controlled by α-cut (α ∈ [0, 1]). Figures 9(a) and 10(a)
describe the effect of the α-cut on fuzzy velocity profile
u(y, α) for the volume fraction of SWCNTs and MWCNTs
which are TFNs, respectively. It is seen that α significantly
affects the fuzzy velocity profile of the regular fluid and
nanofluid.-e lower bound of the velocity profile shows the
regular fluid, and the upper bound of the velocity profile
displays the nanofluid at α � 0. Physically, it means that, at
α � 0, the thermal boundary layer of u1(y, α) is thinner, and
the thermal boundary layer of u2(y, α) is denser. -e ve-
locity of a regular fluid is maximum compared to the ve-
locity of the nanofluid for different values of α. When α-cut
increases, the width between u1(y, α) and u2(y, α) de-
creases, and at α-cut � 1, they coherent with one another
which is a real flow of the nanofluid. It is noted that the

width between u1(y, α) and u2(y, α) is very less, so the
uncertainty is less.

-e effect of the α-cut on temperature profile θ(y, α) is
represented in Figures 9(b) and 10(b) for the fuzzy volume
fraction of SWCNTs and MWCNTs, respectively. -e lower
bound of the temperature profile shows the regular fluid, and
the upper bound of the temperature profile shows the
nanofluid at α � 0. Physically, it means that, at α � 0, the
thermal boundary layer of θ1(y, α) is denser, and the
thermal boundary layer of θ2(y, α) is thinner. Momentum
and thermal boundary layers show opposite behavior at
α � 0, which shows that the heat transfer is maximum.
When α-cut increases, the width between θ1(y, α) and
θ2(y, α) decreases, and at α-cut � 1, they coherent with one
another which is the real flow of the nanofluid. It is noted
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Figure 8: Influence of ψ on u(y) and θ(y).

Table 3: Comparison of numerical results with analytical results for the velocity of Couette flow when
K � 1, Br � 5, M � 5, N � 0, andψ � 0.

β � 0.001 β � 0.1
Y PM [10] ADM [11] Present results (bvp4c) PM [10] ADM [11] Present results (bvp4c)
− 1 0 0 0 0 0 0
− 0.8 0.080599 0.080571 0.080607 0.0.81260 0.081425 0.083115
− 0.6 0.136936 0.136935 0.136939 0.140203 0.143142 0.142375
− 0.4 0.180453 0.180451 0.180449 0.187494 0.187499 0.189643
− 0.2 0.219997 0.21999 0.219984 0.232351 0.234952 0.233923
0 0.263605 0.263606 0.263602 0.283677 0.283699 0.283364
0.2 0.320143 0.320145 0.320104 0.351506 0.355152 0.347445
0.4 0.401095 0.401099 0.400987 0.448301 0.450123 0.436373
0.6 0.522872 0.522972 0.522653 0.578833 0.578958 0.563876
0.8 0.710055 0.721005 0.709739 0.753411 0.756252 0.746170
1 1 1 0.999997 1 1 1

Table 4: Comparison of numerical results with analytical results for the temperature of Couette flow when
K � 1, Br � 5, M � 5, N � 0, andψ � 0.

β � 0.001 β � 0.1
Y PM [10] ADM [11] Present results (bvp4c) PM [10] ADM [11] Present results (bvp4c)
− 1 0 0 0 0 0 0
− 0.8 1.22328 1.25252 0.533675 1.402449 1.52425 0.596488
− 0.6 2.34181 2.42512 1.037249 2.404120 2.50214 1.159899
− 0.4 3.31125 3.42523 1.509760 3.151470 3.12542 1.688806
− 0.2 4.09503 4.10295 1.941188 3.982890 3.89898 2.171262
0 4.65215 4.56522 2.315419 4.776961 4.65824 2.587627
0.2 4.91100 5.00252 2.606950 5.081522 5.00252 2.906360
0.4 4.81112 4.91252 2.770656 4.783381 4.78588 3.072202
0.6 4.33810 4.45210 2.718227 4.162820 4.21500 2.980832
0.8 3.17165 3.01255 2.264215 3.194671 3.20125 2.426644
1 1 1 1 1 1 1
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that the width between θ1(y, α) and θ2(y, α) is very less, so
the uncertainty is less.

-e comparison of SWCNTs and MWCNTs through
fuzzy plots for various values of y is depicted in Figures 11
and 12. -e volume fraction of SWCNTs and MWCNTs is
the TFN. Figures 11 and 12 represent the fuzzy plots of fuzzy
velocity and temperature profiles for different values of y.
-e fuzzy velocity of SWCNTs is greater than the fuzzy
velocity of MWCNTs. Physically, it is correct because the

density of SWCNTs is less than the density of MWCNTs.
Comparing for the fuzzy temperature distribution, SWCNTs
have greater thermal conductivity than MWCNTs but less
density. So, SWCNTs bear more heat than MWCNTs, and in
this study, we suggest that SWCNTs are better for the en-
hanced heat transfer as compared to MWCNTs. Also, the
SWCNTs show better behavior as compared to MWCNTs
because of their less width according to the membership
function.
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Figure 9: Effect of the fuzzy volume fraction of the nanofluid (SWCNT) on u(y, α) and θ(y, α).
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Figure 11: Effects of the TFN volume fraction of the SWCNTand MWCNTon u(y, α). (a) At y � − 0.25. (b) At y � 0.25. (c) At y � − 0.75.
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5. Conclusion

In this study, the effect of CNTs on MHD Couette flow via an
inclined channel in a fuzzy environment is reported. -e
SWCNTs and MCNTs are nanoparticles, while pure water is
the base fluid.-e effects of Brinkman number (Br), magnetic
parameter (M), the volume fraction of nanoparticles (ψ),

viscosity (β), thermal radiation (N), and gravitational pa-
rameter (K) are considered. -e impact of different

parameters on heat transfer, velocity, and temperature pro-
files is analyzed. For mathematical computation, bvp4c is
used, and the present results are found to be in excellent
agreement as compared to existing results. -e governing
nonlinear DEs are converted into FDEs; then, the numerical
technique bvp4c employed. -e volume fraction of nano-
particles is considered as TFNs through α-cut(0≤ α≤ 1), and
the fuzziness is controlled. Some of the important and
convenient achieved results are as follows:
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(i) -e velocity and temperature profiles increase
when the gravitation parameter (K) and fluid pa-
rameter (β) increase.

(ii) -e velocity profile decreases when a magnetic
parameter (M) increases, and the temperature
profile increases near the boundary layer.

(iii) -e temperature profile decreases when the thermal
radiation parameter (N) increases due to heat
transfer. -e temperature profile increases with an
increase in the Brinkman number (Br).

(iv) -e temperature profile increases and the velocity
profile decreases when the volume fractions of
SWCNTs and MWCNTs increase.

(v) -e comparison of SWCNTs and MWCNTs shows
that SWCNTs have a better heat transfer rate as
compared to MWCNTs. Also, the comparison of
SWCNTs and MWCNTs is examined through tri-
angular membership plots of fuzzy velocity and
temperature profiles, which shows that the width of
MWCNTs is greater than that of SWCNTs.

(vi) -e results indicate that the crisp solution is always
in-between the upper and lower solutions when
α-cut increases from 0 to 1. -e lower solution
shows the minimum flow of the fluid (regular
fluid), and the upper solution shows the maximum
flow of the nanofluid when α-cut � 0.

(vii) In future works, one can use other fuzzy numbers to
solve the heat transfer problems.

Abbreviations

x, y: Cartesian coordinates
u: Normal component of the flow
T: Transpose of the matrix
θ (y): Dimensionless temperature
T1, T2: Reference and ambient temperatures
M: Magnetic parameter
Br: Brinkman number
β: -ird-grade fluid parameter
P: Pressure
􏽢S: Cauchy stress tensor
α1, α2, β1, β2, and β3: Material constants
μm: Magnetic permeability
μ: Coefficient of viscosity
θ(y, α): Fuzzy temperature profile
σ∗: Stefan–Boltzmann constant
k∗: Absorption coefficient
N: -ermal radiation
ρnf: Density of the nanofluid
μnf: Viscosity of the nanofluid
(ρCp)nf: Specific heat of the nanofluid
ψ: Nanoparticles’ volume fraction
θ1(y, α): Lower fuzzy temperature profile
θ2(y, α): Upper fuzzy temperature profile
d/dt: Material derivative
δ: Electrical conductivity
K: Gravitational parameter

ρ: Density of the fluid
α: Level or cut technique
FDE: Fuzzy differential equation
μU(x): Membership function
u(y, α): Fuzzy velocity profile
u1(y, α): Lower fuzzy velocity profile
u2(y, α): Upper fuzzy velocity profile
TFN: Triangular fuzzy number
B: Total magnetic field
f: External body force
An: Rivlin–Ericksen tensors
A∘: Identity tensor
H: Distance between two plates
knf: -ermal conductivity of the nanofluid
σf: Electrical conductivity of the

nanofluid.
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