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� Multiple direct-acting antiviral regimen failures

may generate multiple RASs.

� Prevalence of RASs increased according to the
number of failed regimens.

� These mutations contribute to viral resistance to
multiple treatment regimens.

� These mutations must be considered in decision
making of chronic hepatitis C treatment.
https://doi.org/10.1016/j.jhepr.2020.100138
Resistance-associated substitutions (RAS) in the
genome of the hepatitis C virus are 1 of the major
causes for failed treatment. We investigated RASs after
failure of various treatments for chronic hepatitis C,
and found that more complicated RASs accumulated
in the viral genome with successive failed treatments.
The highly resistant P32del RAS at NS5A region was
uniquely found in patients for whom DAA treatments
had failed, and was linked to the presence and
absence of specific RASs.
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Background & Aims: We aimed to clarify the features of resistance-associated substitutions (RASs) after failure of multiple
interferon (IFN)-free regimens in HCV genotype 1b infections.
Methods: A total of 1,193 patients with HCV for whom direct-acting antiviral (DAA) treatment had failed were enrolled from
67 institutions in Japan. The RASs in non-structural protein (NS)3, NS5A, and NS5B were determined by population
sequencing.
Results: Failure of 1, 2, and 3 regimens was observed in 1,101; 80; and 12 patients, respectively. Among patients with failure of
1 regimen, Y56H and D168V in NS3 were more frequently detected after failure of paritaprevir, whereas D168E was more
frequently detected after failure of regimens including asunaprevir. R30H and L31-RAS in NS5Awere frequently detected after
failure of regimens including daclatasvir. The prevalence of Y93-RAS was high irrespective of the regimen. S282T RAS in NS5B
was detected in 3.9% of ledipasvir/sofosbuvir failures. The prevalence of D168-RAS increased significantly according to the
number of failed regimens (p <0.01), which was similar to that seen with L31-RAS and Y93-RAS. The prevalence of patients
with RASs in either NS3 or NS5A, or in both, increased significantly with increasing numbers of failed regimens. The P32del,
which is unique to patients for whom DAA had failed, was linked to the absence of Y93H, the presence of L31F, and previous
exposure to IFN plus protease inhibitor regimens.
Conclusions: Failure of multiple DAA regimens can lead to the generation of multiple RASs in the NS3 and NS5A regions of the
HCV 1b genome. These mutations contribute to viral resistance to multiple treatment regimens and, therefore, should be
considered during decision making for treatment of chronic HCV.
© 2020 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Direct-acting antiviral regimens (DAAs) are highly effective for
the treatment of chronic HCV and have improved the rate of
sustained virological response (SVR) compared with interferon
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(IFN) and protease inhibitor (PI) therapy. In Japan, daclatasvir
plus asunaprevir (DCV + ASV) was first approved for the treat-
ment of HCV genotype-1b infection in 2014, followed by the
approval of 7 other regimens: ledipasvir/sofosbuvir (LDV/SOF),
ombitasvir/paritaprevir/ritonavir (OBV/PTV/r), elbasvir plus
grazoprevir (EBR + GZR), DCV/ASV/beclabuvir (DCV/ASV/BCV),
glecaprevir/pibrentasvir (GLE/PIB), and sofosbuvir/velpatasvir
(SOF/VEL) with or without ribavirin (RBV), which is the most
recent regimen, introduced in February 2019.1–8 Although the
SVR rates exceed 90% with the aforementioned regimens, some
patients experience virological failure despite DAA treatment.

Resistance-associated substitutions (RASs) are generated after
the failure of DAA therapy,9–15 and include R155, A156, and
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D168-RAS in non-structural protein (NS)3; S282T in NS5B16; and
L31 and Y93-RAS in NS5A, all of which may attenuate the
retreatment efficacy. The co-existence of multiple RAS in the
HCV genome may confer especially strong resistance. In addition
to these classically focused signature RASs, P32del or the A92K
RAS in NS5A confer strong resistance to pan-genotypic NS5A
inhibitors both in vitro and in vivo.17–19

We previously reported the prevalence and patterns of RASs
in NS3 and NS5A after DCV + ASV failure in a nationwide
multicenter study.9 However, few reports describe the accumu-
lation of RASs after multiple DAA regimen failures in a large
cohort.16 Thus, in the present study, we investigated the
characteristics of RASs after failure of single and multiple DAA
regimens, focussing on the characteristics of the rare but unique
RASs, P32del and A92K.
Methods
Patients
The present study enrolled patients after failure of DAA treat-
ment from 67 core regional hospitals belonging to the Regional
Core Centers for the Treatment of Liver Disease in Japan group
and the Japanese Red Cross Liver Study Group. Serum samples
were obtained from patients from March 2017 to August 2018.
All patients received treatment as recommended by the Guide-
lines of the Japanese Society of Hepatology. No patients received
DAA regimens including RBV because it was not included in the
national health insurance system in Japan until February 2019,
when SOF/VEL with RBV therapy became available for retreat-
ment. Attending physicians were responsible for the choice of
DAA regimen after the failure of DAA therapy in accordance with
the Guidelines of the Japanese Society of Hepatology. Treatment
failure was defined as virological failure either by premature
discontinuation with adverse events, viral breakthrough, or
relapse after completion of treatment.

We obtained the age, gender, HCV genotype, number and
regimens of failures with DAA, history of IFN with or without PIs,
history of hepatocellular carcinoma, liver cirrhosis, sampling
weeks after DAA therapy, and laboratory data [aspartate trans-
aminase (AST), alanine aminotransferase (ALT), platelet count
value, and HCV RNA titre] for all enrolled patients. The laboratory
data were measured at the sampling time of the RASs after
treatment failure. In the present study, patients who failed
treatment was registered and analysed prospectively. Given this
study design, we were unable to collect retrospective samples.
Baseline serum samples from the included patients were not
available. Cirrhosis was defined according to liver biopsy, and/or
Fibrosis-4 (FIB-4) index, and computed tomography/magnetic
resonance imaging (CT/MRI) imaging by the attending physi-
cians. Patients with decompensated cirrhosis were not included
in this study, because, at the time of study, no DAA regimen was
approved for decompensated cirrhosis. Among a total of 1,413
samples that were collected, the following were excluded: RASs
that could not be sequenced (n = 63), genotypes other than 1b
(n = 143), and insufficient information of previous DAA regimens
(n = 14). Finally, 1,193 samples were included in the present
cohort (Fig. S1 in the supplemental information online).

The present study was approved by the Institutional Ethics
Review Committee of Musashino Red Cross Hospital (approval
number 28064). Informed consent was obtained from each
patient at the time of sample acquisition, and the study followed
the ethical guidelines of the Declaration of Helsinki.
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Identification of RASs
Direct sequencing was used to detect RASs in the NS3, NS5A, and
NS5B regions of the HCV genome, as described previously.8 The
RASs in NS3 and in NS5A were analysed in all patients, and RASs
in NS5B were analysed in patients with failed LDV/SOF and DCV/
ASV/BCV therapies. We selected the following amino acid
sequences that may have the potential to confer cross-resistance
to protease inhibitors, NS5A inhibitors, or NS5B inhibitors; V36A/
C/G/L/M, F43I/S/V, Y56H/L, Q80H/K/l/R, S122R, R155C/G/I/K/M/Q/
S/T/W, A156F/G/S/T/V, and D168A/C/E/F/G/H/I/K/N/T/V/Y in NS3;
L28M/T, R30G/H/P/Q, L31F/I/M/V, P32del/L/S, P58D/S, A92K, and
Y93C/H/N/S/T in NS5A; and L159F, S282T, and C316H/N/Y in
NS5B.16,20 These sequences were compared with the reference
sequence of the HCV genotype 1b, the HCV-J strain (GenBank
Accession No. AJ238799; www.ncbi.nlm.nih.gov/nuccore/AJ2387
99.1).

Statistical analysis
Significance between prevalence of RASs after failure of regimens
was analysed using a chi-square test. All statistical analyses were
performed with EZR (ver. 1.35, Saitama Medical Center, Jichi
Medical University, Saitama, Japan), a graphical user interface for
R (ver. 3.3.2, The R Foundation for Statistical Computing, Vienna,
Austria) designed to add frequently used statistical functions.21
Results
RAS patterns according to failed regimens in patients
Among the 1,101 patients for whom 1 regimen had failed, failure
of DCV + ASV, LDV/SOF, OBV/PTV/r, EBR + GZR, and DCV/ASV/BCV
was observed in 917, 143, 19, 15, and 7 patients, respectively.
Given that GLE/PIB therapy became available in November 2017
and SOF/VEL with or without RBV therapy became available in
February 2019 in Japan, no patients with failure of these
regimens were enrolled in the present study. The RASs detected
for each regimen are shown in Table 1. The clinical information of
the patients enrolled in the present study are shown in Table S1
in the supplemental information online. Given the differences in
treatment timing and changes of treatment application criteria,
patient background differed for each regimen.

The detection rates of any known RASs that contributed to the
failure of each regimen were: 776 of 927 patients after failure of
DCV + ASV (83.7%; D168A/E/T/V, R155K at NS3 for ASV and L31F/
V, Y93H/N at NS5A for DCV); 114 of 142 patients after LDV/SOF
failure (80.2%; Y93H at NS5A for LDV and S282T at NS5B for SOF);
14 of 17 patients after OBV/PTV/r failure (82.4%; Y56H, R155K,
D168A/T/V at NS3 for PTV and L28T, Y93H at NE5A for OBV); 15
of 15 patients (100%) after EBR + GZR failure (D168A/V/T at NS3
for GZR and L31V, Y93H at NS5A for EBR); and 7 of 7 patients
(100%) after failure of DCV/ASV/BCV (D168A/E/T/V, R155K at NS3
for ASV and L31F/V, Y93H/N at NS5A for DCV, BCV were not
investigated).

Fig. 1A shows the prevalence of RASs in the NS3 region
according to the failed regimen, excluding patients who had
previously received IFN + PI combination therapies. The preva-
lence of Y56-RASs, A156-RASs, and D168-RASs differed between
regimens. Detailed patterns of the observed RASs are described
in Table S2 in the supplemental information online. V36M in the
NS3 region was detected in 2 patients only after receiving DCV +
ASV therapy, and V36L was detected in 1 patient. F43 RAS was
not detected (data not shown), and Y56L was detected in only 1
patient after LDV/SOF failure. Y56H was more frequently
2vol. 2 j 100138
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Table 1. Resistance-associated substitutions in HCV genotype 1b detected in this studya.

Treatment regimen Resistance-associated substitution

1st 2nd 3rd n NS3 NS5A NS5B

Failure of 1 regimen
DCV + ASV 917 V36I/L/M, Y56F/H, Q80K/L/R,

S122A/C/E/G/I/N/Q/R/T/V, 155G/Q,
A156G/S, D168A/C/E/F/G/I/H/K/
L/N/Q/T/V/Y Y

L28G/I/K/M/S/T/V, R30A/E/G/H/K/L/M/P/Q/S/T/stop,
L31E/F/I/M/Q/V, P32del/F/I/L/M/V,
P58A/E/G/H/L/Q/R/S/T, A92E/G/H/K/N/P/Q/T/V,
Y93A/C/F/G/H/L/N/R/S/V

NA

LDV/SOF 143 V36I. Y56F/L, Q80K/L/R,
S122C/G/N/T, D168E/V

L28I/M, R30H/L/Q, L31F/I/M/V, P32del,
P58A/L/R/S, A92E/K/T/V, Y93G/H/N/S

S282C/T
C316N

OBV/PTV/r 19 Y56F/H, Q80L, S122G/N/T, D168E/V L28T, L31F/V, P58Q/S, A92V, Y93C/H/R NA
EBR + GZR 15 Y56F, S122G/T, A156G, D168A/E L28M, L31I/M/V, Y93H NA
DCV/ASV/BCV 7 Y56F/H, Q80L/R,

S122C/G, R155Q, D168A/E/V
L28M, R30Q, L31M/V, P32del, Y93H/R C316N

Failure of 2 regimens
DCV + ASV LDV/SOF 57 Y56F, Q80K/L/R, S122C/G/T,

R155K/Q, A156G, D168E/T/V/Y
L28G/M/T, R30H/L/Q, L31F/I/M/V,
P32del/I/M/V, P58A/Q/R/S, A92E/V, Y93C/H/R

S282C/T
C316N

EBR + GZR 4 Y56F, R155/W, A156G, D168N L28M, R30Q, L31F/I/M/V, P32del, Y93F/H NA
DCV/ASV/BCV 16 Y56F, Q80L/R, S122G,

R155Q, D168E/T/V
L28M/V, R30Q, L31F/I/M/V,
P58A/L, A92K, Y93H

S282R, C316N

LDV/SOF DCV + ASV 1 S122G L31I/V, Y93H C316N
DCV/ASV/BCV 1 Y56F, D168E L31M/V, P58S, Y93H (-)

EBR + GZR LDV/SOF 1 Y56F L31M, Y93H (-)
Failure of 3 regimens

DCV + ASV LDV/SOF EBR + GZR 3 Y56H, Q80L, S122G, D168A/E/T L28M, R30Q, L31I/M/V, Y93H (-)
DCV/ASV/BCV 8 Q80L, S122G/N, D168E/V L28M, L31M/V, Y93H C316N

OBV/PTV/r EBR + GZR 1 Y56H, S122I, D168C/F/G/Vb R30Q, L31M, Y93H NA
aASV, asunaprevir; BCV, beclabuvir; DCV, daclatasvir; EBR, elbasvir; GZR, grazoprevir; LDV, ledipasvir; NA, not assessed; NS, non-structural; OBV, ombitasvir; PTV/r,
paritaprevir/ritonavir; SOF, sofosbuvir.
bThe actual resistance-associated substitutions at this position could not be determined because of the limitations of direct sequencing.
detected after OBV/PTV/r failure (3 patients, 20%) than after
failure of therapy including ASV (3 of 814 patients, 0.36%,
p <0.01). All 3 patients who had experienced OBV/PTV/r failure
had only D168V simultaneously, in contrast to 3 patients who
had experienced ASV failure, who had various D168 mutations.
Q80K/L/R was frequently observed in patients after failure of any
treatment. S122R was observed in 3 patients after DCV + ASV
failure. The observed R155-RAS was only R155G, and the 4 pa-
tients with R155G had all failed DCV + ASV treatment (0.5%).
A156T and A156V were not detected, and A156G was detected in
2 patients after DCV + ASV failure (0.2%) and in 1 patient after
EBR + GZR failure (8.3%, p = 0.03). D168-RAS was detected in
38.8% of ASV failures (316 of 814 patients), whereas it was less
frequently detected in GZR failures (16.7%, 2 of 12 patients, not
significant). The prevalence of D168E was significantly higher in
those patients who had experienced ASV failure compared with
those who had experienced PTV failure (30% vs. 0%, p = 0.03). By
contrast, the frequency of D168V was significantly higher in
those patients who had experienced PTV failure than in those
who had experienced ASV failure (20% vs. 5.0%, p = 0.045).

Among the NS5A-RASs, the prevalence of L31-RAS was lower
in patients who had experienced DV/SOF failure (47%) and OBV/
PTV/r failure (5.9%) compared with those who had experienced
failure of other regimens (DCV + ASV 71%, EBR + GZR 93%, and
DCV/ASV/BCV 71%; p <0.01, Fig. 1B). The prevalence of L31F and
L31V in NS5A was significantly lower in patients with LDV/SOF
failure (2.8% and 13%) compared with patients with failure of
treatment including DSV (8.4% and 31%, p = 0.03 and <0.01;
Table S3 in the supplemental information online). L31M was
observed in 35% of patients who had failed treatment including
DSV, and in 0% of patients with OBV/PTV/r failure (p <0.01). After
failure of EBR + GZR, the prevalence of L31-RASs was high
(Fig. 1B), but the frequency of L31-RASs did not show any pattern,
JHEP Reports 2020
whereas L31F was not detected. R30-RAS was rarely detected in
patients with OBV/PTV/r failure (0%), whereas it was more
frequent in patients with failure of other regimens (DCV + ASV
23%, LDV/SOF 28%, EBR + GZR 20%, and DCV/ASV/BCV 14%,
p = 0.03, Fig. 1B). The prevalence of R30H in patients after DCV +
ASV failure was higher than after LDV/SOF failure (7.6% vs. 1.4%, p
= 0.03), and R30H was not detected after failure of the other
regimens (Table S3 in the supplemental information online).
L28-RAS and P58-RAS were rarely detected after treatment fail-
ure and were not significantly associated with the failure of any
of the regimens. By contrast, Y93-RAS and Y93H were frequently
detected irrespective of which DAA regimens had failed. P32del
was detected in 38 patients with failure of regimens including
DCV (4.1%) and in 3 patients with LDV/SOF failure (2.1%). A92K
was detected in 26 patients (2.8%) with DCV + ASV failure and in
2 patients (1.4%) with LDV/SOF failure.

Among RASs in NS5B, S282T was detected in 3.9% of patients
who had failed LDV/SOF treatment (Table S4 in the supplemental
information online). All the RASs identified at position C316 were
C316N, and were detected in 53% of patients after LDV/SOF
failure and in 67% of patients after DCV/ASV/BCV failure.

The serum sampling time after treatment was recorded in 931
patients: 68 patients were sampled within 12 weeks, 118 were
sampled within 12–24 weeks, 344 were sampled within 24
weeks–1 year, and 406 were sampled 1–3 years after treatment
failure. D168-RASs in NS3 showed a relationship to the period
between treatment and sampling, with their prevalence
decreasing with increasing time (Table S5 in the supplemental
information online). The prevalence of other RASs at the NS3,
NS5A, and NS5B regions showed no relationship with the
sampling period. When sorted according to regimens, only
D168E in NS3 showed time-dependent decreases of prevalence
after failure of DCV + ASV therapy (Table S6 in the supplemental
3vol. 2 j 100138
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information online), whereas the prevalence of L31M in NS5A
increased (Table S7 in the supplemental information online). No
RASs showed a time-dependent relationship after failure of LDV/
SOF (Table S8 and S9 in the supplemental information online).
Given that all the samples were obtained in the period up to
1 year after failure of OBV/PTV/r, EBR + GZR, and DCV/ASV/BCV,
no significant relationship was detected between these RASs and
the time period before sampling.

RAS patterns according to the number of failed regimens
Failure of multiple regimens was observed in 92 patients, with
failure of 2 regimens in 80 patients and failure of 3 regimens in 12
JHEP Reports 2020
patients. The RASs detected for each regimen are shown in Table 1,
and the clinical characteristics of the patients are shown in
Table S10 in the supplemental information online. The incidence
of liver cirrhosis was higher in patients who had experienced
multiple treatment failures than in those who had experienced
failure of 1 regimen. In addition, a previous history of hepatocel-
lular carcinoma and IFN therapy with PIs was more frequent in
patientswith a history ofmultiple treatment failures than in those
with failure of 1 regimen. Given that we aimed to compare the
relationships between the pattern of RAS accumulation and fail-
ure of IFN-free therapy, we used the data of patients who had not
received IFN + PI therapy to analyse NS3-RASs.
4vol. 2 j 100138
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Fig. 2. Prevalence of RASs in the NS3 and NS5A regions of the HCV 1b viral genome according to the number of failed treatments. (A) The prevalence of Y56-
RASs and D168-RASs in the NS3 region was significantly higher in patients who had experienced multiple treatment failures (both p <0.01). The prevalence of
V36-RASs in patients who had experienced 2 treatment failures was higher than in patients who had experience 1 treatment failure, but no significance was
detected (4.8% vs. 0.2%, p = 0.11). A156-RASs were more prevalent in patients who had experienced failure of 2 regimens, although again the difference was not
significant (4.8% vs. 0.5%, p = 0.25). Patients who had previously received interferon plus protease inhibitor treatment and only and ledipasvir/sofosbuvir (LDV/
SOF) therapy were excluded from this analysis. (B) The prevalence of L31-RASs and Y93-RASs in the NS5A region tended to increase in patients who had
experienced multiple treatment failures. The prevalence of RASs was analysed using a chi-square test, with p <0.05 considered to be statistically significant. NS,
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Fig. 2 shows the prevalence of RASs according to the number
of treatment failures for each patient across each treatment
regimen lineage. Among the patients who received treatment
with PIs, the prevalence of Y56-RAS and D168-RAS increased
according to the number of failed regimens, including PIs (1 vs. 2
vs. 3: Y56-RAS 0.6% vs. 4.8% vs. 50%, and D168-RAS 39% vs. 71% vs.
100%, both p <0.01, Fig. 2A). Detailed analysis of these RASs
revealed that Y56H and D168E were more prevalent after failure
of multiple regimens compared with failures of a single regimen
(both p <0.01, Table S11 in the supplemental information online).
The prevalence of RASs at L31 and Y93 in NS5A also tended to
increase according to the number of failed regimens (p = 0.09
and 0.07, respectively; Fig. 2B). There was no significant increase
in the prevalence of NS5A-RASs according to the number of
failed regimens (Table S12 in the supplemental information
online). P32del was detected in 5 patients (6.3%), A92K was
detected in 1 patient (1.3%), and S282T was not detected in
patients who experienced 2 failed regimens (Table S12 and S13
in the supplemental information online).

Complexity of accumulated RASs according to the number of
failed regimens
The association between the number of failed DAA regimens and
the number of RASs accumulated in each patient was analysed
(Fig. 3). The number of RASs in NS3 increased with the number of
failed PI regimens. The prevalence of multiple RASs in NS3 was
11%, 19%, and 50% for patients with 1, 2, or 3 failed PI regimens,
respectively (p = 0.02, Fig. 3A). The same trend was observed for
NS5A-RASs (Fig. 3B), and the prevalence of multiple RASs in
NS5A was 67%, 76%, and 100% for patients with 1, 2, or 3 failed
regimens, including NS5A inhibitors, respectively (p = 0.01).
Finally, the prevalence of patients with both NS3-RASs and
NS5A-RASs increased with increasing numbers of failed regimes
(1 vs. 2 vs. 3: 44% vs. 54% vs. 89%, respectively; p <0.01, Fig. 3C).

Virological and clinical characteristics of unique P32del and
A92K RASs
In total, 46 patients had the P32del RAS, whereas 29 had the
A92K RAS. Patients with the P32del had a previous history of IFN
JHEP Reports 2020
therapy or IFN + PI therapy [odds ratio (OR) of 3.1 and 6.6,
respectively, Table 2]. There was a similar association with a
previous history of IFN + PI therapy for the A92K RAS (p = 0.07).
Neither P32del nor A92K showed an association with liver
cirrhosis.

The prevalence of L31F was significantly higher in patients
with P32del (52%) compared with those without (5.8%, p <0.01,
Fig. 4A), whereas the opposite was observed for L31I/M/V.
Similarly, Y93H rarely co-occurred with P32del (11%), compared
with those without P32del (77%, p <0.01) (Fig. 4A). According to a
multivariate logistic regression analysis, the presence of L31F [OR
18.5, 95% prediction interval 7.71–44.2, p <0.01] and the absence
of Y93H (OR 26.1, 95% prediction interval 9.30–73.0, p <0.01)
were significantly related to the presence of P32del. The pres-
ence of A92K was correlated with the presence of L28T and the
absence of L31M and Y93H (Fig. 4B). L28T was detected in 14% of
A92K-positive patients, and in 0.5% of A92K-negative patients.
The prevalence of L31M was 3.4% in patients with A92K vs. 33%
in those without A92K (p <0.01), whereas the prevalence of Y93H
was 6.9% in patients with A92K vs. 76% in those without A92K
(p <0.01) (Fig. 4B). According to the multivariate analysis, the
presence of L28T (OR 8.4, 95% prediction interval 1.8–40, p <0.01)
and absence of Y93H (OR 35.2, 95% prediction interval 8.2–151,
p <0.01) were significantly associated with the presence of A92K.
Discussion
In the present study, we assessed the impact of multiple treat-
ment failures on the complexity of accumulated RASs by inves-
tigating the RAS landscape in the genomes of HCV 1b in patients
who had received various treatment regimens. Perhaps unsur-
prisingly, RAS patterns showed slight differences in patients who
had received different treatment regimens. Y56H and D168V in
NS3 were more frequently detected after regimens including
PTV, whereas D168E in NS3 was more frequently detected after
failure of regimens including ASV. D168V was previously re-
ported to confer strong resistance and D168E weak resistance to
PTV in vitro,12 whereas they both conferred strong resistance
against ASV.20 A combination of Y56H + D168V conferred high
5vol. 2 j 100138
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Table 2. Factors related to the RASs P32del and A92Ka.

Factor

Univariate analysis Multivariate analysis

RAS (+) RAS (−) p valueb Odds ratio 95% prediction interval p valuec

P32del
Number of patients 46 1,147
Age over 60 years 85.7% 82.6% 0.75
Sex, male 34.1% 40.0% 0.53
Liver cirrhosis 33.3% 36.6% 0.81
Previous history of IFN ± RBV therapy 78.6% 49.8% <0.01 3.1 1.16–8.12 0.02
Previous history of IFN + PI therapy 51.2% 14.4% <0.01 6.6 2.83–15.6 <0.01
Previous history of HCC therapy 11.9% 15.2% 0.71
Multiple DAA therapy failures 10.9% 7.6% 0.59

A92K
Number of patients 29 1,164
Age over 60 years 78.6% 82.8% 0.74
Sex male 34.1% 40.0% 0.53
Liver cirrhosis 33.3% 36.6% 0.81
Previous history of IFN ± RBV therapy 64.0% 50.6% 0.26
Previous history of IFN + PI therapy 30.8% 15.5% 0.07
Previous history of HCC therapy 3.8% 15.3% 0.18
Multiple DAA therapy failures 10.9% 7.6% 0.59

aDAA, direct-acting antiviral; HCC, hepatocellular carcinoma; IFN, interferon; PI, protease inhibitor; RAS, resistance-associated substitution; RBV, ribavirin.
bChi-square test.
cMultivariate logistic regression analysis.
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resistance to PTV according to a replicon assay.22 L31F/M/V and
R30H in NS5A were more frequently detected after failure of
regimens including DCV. L31-RASs are known to confer strong
resistance to DCV, whereas R30H was reported to confer mild
resistance.23 In the present study, Y93H was frequently observed
irrespective of which DAA regimen had failed. In some patients,
we observed S282T in NS5B after LDV/SOF failure. S282T is
known to confer resistance to SOF in HCV genotypes 1a, 4, and 5,
but not previously in HCV genotype 1b.20

We focused here on the unique RASs P32del and A92K. P32del
is a known predictor of GLE/PIB failure and confers strong
resistance to PIB according to a replicon assay.18,24 In total 46
JHEP Reports 2020
patients with P32del were detected in the present cohort, 43 of
whom had failed a regimen including DCV, and 3 of whom had
failed LDV/SOF without a history of DCV use. P32del has never
been detected in DAA-treatment naïve patients. These results
suggest that any NS5A inhibitors could induce the accumulation
of P32del in the viral genome. P32del and A92K appear to be
mutually exclusive to Y93H. Krishnan et al. reported 2 patients
with P32del after failure of GLE/PIB, both of whom did not have
the Y93-RAS.18 Kumada et al. and Poordad et al. reported 2 and 1
cases, respectively of P32del without Y93-RAS in patients who
failed GLE/PIB therapy.25,26 Mawatari et al. reported 1 case of
A92K without Y93-RAS in patients with LDV/SOF failure.19 Our
6vol. 2 j 100138
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P32del(−) (p <0.01). L31I, L31M, L31V, and Y93H were exclusive to patients with P32del (p = 0.048, <0.01, 0.03, and <0.01, respectively). According to a multivariate
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p <0.01). The prevalence of RASs was analysed using a chi-square test, with p <0.05 considered to be statistically significant. RASs, resistance-associated
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results suggest the absence of Y93H as an indicator of the
presence of P32del or A92K. In 50% of the patients with P32del,
we detected simultaneous L31F-RASs. The prevalence of L31F in
DAA-untreated patients and in patients with failed DAA treat-
ment are reported to be 0.4% and �15%, respectively.18,27 The
resistance conferred by L31F alone is not high according to
in vitro analyses,12,18 but L31F in combination with P32del con-
fers strong resistance to PIB,18 LDV, EBR, and VEL.17

In patients who had experienced multiple treatment failures,
the prevalence of signature RASs in NS3 and NS5A increased with
increasing numbers of failed treatments. The effect of multiple
treatment failure on RASs becamemore apparent by counting the
number of RASs in the NS3 and NS5A regions (Fig. 3). The fre-
quency of cirrhosis also increased along with the number of failed
regimens, which suggests that patients with cirrhosis are prone to
treatment failure. Cirrhosis may increase the rate of accumulation
of some RASs. Clinicians commonly choose retreatment regimens
to avoid lineage drugs that have previously failed. Currently, only
3 drug lineages are available for the treatment of HCV; thus,
current treatment with combined drug lineages will inevitably
lead to the overlap of 1 or more drug lineages. Failure of multiple
JHEP Reports 2020
treatments may increase the resistance to the duplicated drug
lineage and also facilitate the acquisition of resistance to multiple
drug lineages that do not overlap. Repeated failure of DAA therapy
may lead to the accumulation ofmore complexed RASs, increasing
the difficulty of retreatment.

The present study was carried out in a homogeneous cohort
in terms of race and viral genotype. One of limitations was that
we used a population-sequencing method and did not utilise
deep sequencing because of its prohibitive costs. We counted
every possible amino acid that resulted from nucleotide-level
differences at each position of the codon. For example, when G
and U were detected simultaneously at the 1st and 2nd positions
of the codon in combinationwith C or U in the 3rd position of the
codon, cysteine (UGC, UGU), phenylalanine (UUC, UUU), glycine
(GGC, GGU) and valine (GUC, GUU) were all counted as possible
amino acids. However, because direct sequencing cannot deter-
mine that 2 specific nucleic acids are linked to each other on the
same sequence, some false identifications may have occurred.
Deep sequencing is needed to accurately determine the nucleo-
tide sequences in question, and is rapidly becoming more
accessible for large cohorts in terms of its cost-effectiveness.
7vol. 2 j 100138
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In the present study, the duration between treatment failure
and serum sample collection was not uniform. We found that
some RASs were influenced by the period of sample acquisition
after treatment failure. NS3-RASs are known to disappear early
because of low fitness, in contrast to NS5A-RASs, which are
known to persist for longer.20,28 The differences in each pa-
tient’s clinical background in each regimen group may also
contribute selection bias in the choice of treatment regimen by
the attending physicians. The numbers of patients with mul-
tiple regimen failures in the present cohort was limited,
possibly because of the improved efficacy of first-line DAA
regimens. In this nation-wide study, patients who experienced
failed treatments were registered and analysed prospectively,
and we were unable to collect retrospective samples. Serum
samples from the included patients at baseline and at intervals
between failed regimens were also not available. We previously
studied the prevalence of RASs in DAA-naïve patients, and
found a very low prevalence of L31 and Y93 RASs.29 Therefore,
JHEP Reports 2020
some of RASs in the present study might emerge after treat-
ment failure. The lack of baseline samples for these patients
means that we cannot draw any conclusions about the emer-
gence of RASs after successive treatment failures. We also could
not compare the RASs found in patients with relapse vs. viral
breakthrough, because these data were not available. We did
not ask about the possibility of reinfection in the questionnaire.
The actual incidence of reinfection in Japan is unknown, but
should be low given that most patients are not high-risk
groups for HCV.

In conclusion, we have revealed differences in the RASs
detected in the HCV 1b genome in patients with failed treatment
regimens, and observed an increased prevalence of RASs after
failure, possibly caused by repetitive use of the same class of
DAAs. Based on these results, it is imperative that physicians
make correct choices when it comes to retreatment regimens,
which should be based on careful investigation of factors,
including RASs, to avoid treatment failure.
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