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Insights into brain anatomy are important for the early detection of neurodevelopmental
disorders, such as dyslexia. FreeSurfer is one of the most frequently applied automatized
software tools to study brain morphology. However, quality control of the outcomes
provided by FreeSurfer is often ignored and could lead to wrong statistical inferences.
Additional manual editing of the data may be a solution, although not without a cost in
time and resources. Past research in adults on comparing the automatized method of
FreeSurfer with and without additional manual editing indicated that although editing may
lead to significant differences in morphological measures between the methods in some
regions, it does not substantially change the sensitivity to detect clinical differences.
Given that automated approaches are more likely to fail in pediatric—and inherently more
noisy—data, we investigated in the current study whether FreeSurfer can be applied fully
automatically or additional manual edits of T1-images are needed in a pediatric sample.
Specifically, cortical thickness and surface area measures with and without additional
manual edits were compared in six regions of interest (ROIs) of the reading network in 5-
to-6-year-old children with and without dyslexia. Results revealed that additional editing
leads to statistical differences in the morphological measures, but that these differences
are consistent across subjects and that the sensitivity to reveal statistical differences in
the morphological measures between children with and without dyslexia is not affected,
even though conclusions of marginally significant findings can differ depending on the
method used. Thereby, our results indicate that additional manual editing of reading-
related regions in FreeSurfer has limited gain for pediatric samples.

Keywords: FreeSurfer, manual editing, automated processing, pediatric T1-weighted images, reading network,
developmental neuroimaging
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INTRODUCTION

The anatomy of the brain is considered to play a major role
in neurodevelopmental disorders, and investigating anatomical
features of the brain at pre-diagnostic age could offer us
insights into the causal brain mechanisms and early neural
markers of these disorders. Consequentially, it allows us to
apply early intervention tools, which have demonstrated to be
effective (Jones et al., 2007; Makrygianni and Reed, 2010; Peters-
Scheffer et al., 2011; Estes et al., 2015; Lovett et al., 2017).
In the case of dyslexia, starting intervention at the end of
kindergarten has shown to be most efficient for closing the
gap in reading performances with typically developing peers
(Wanzek and Vaughn, 2007; Ozernov-Palchik and Gaab, 2016).
Anatomical features of the brain can be studied non-invasively
by using structural MRI (T1) scans, and this can lead to a better
understanding of behavioral characteristics of developmental
disorders, such as dyslexia (Durston et al., 2001). One of the most
frequently applied software packages for structural brain imaging
analysis world-wide is FreeSurfer, an open-access software
program for the automated surface-based reconstruction of brain
images (Dale et al., 1999; Fischl et al., 1999a). In the current
study, we will examine whether FreeSurfer can be applied in
a fully automated way or whether additional manual edits are
needed to improve the automated analysis when studying regions
of the reading network in a pediatric population of 5-to-6-year-
old children with and without dyslexia.

FreeSurfer has been developed by the Martino Center for
Biomedical Imaging with the purpose to be robust, accurate
and easy to use (Fischl et al., 2002, 2004). The software tool
has an automatic reconstruction pipeline for the processing of
anatomical brain images, which involves several processing steps.
The first step is skull stripping, motion artifact correction, and
B1 bias field correction. The second step is gray-white matter
segmentation based on a deformable surface template defined
in MNI305 space. As an alternative, a template can be created
from one’s study sample (i.e., the average subject will form the
template) with the advantage of the optimal formation of white
and pial surfaces. The third step is region labeling on the cortical
surface that is performed by non-linear registration of the cortical
surface of the subject with the Desikan-Killiany/Destrieux atlas
(Desikan et al., 2006; Destrieux et al., 2010). FreeSurfer adopts
a probabilistic approach based on Markov random fields for
automated labeling of brain regions by the implementation
of a brain surface atlas that is generated by a training set
of 40 manually labeled brains, created from 10 young adults
(mean age = 21.5, age-range 19–24; six females, four males),
10 middle-aged adults (mean age = 49.8, age-range 41–57;
seven females, three males), 10 typically developing elderly
(mean age = 74.3, age-range 66–87; eight females, two males)
and 10 elderly with Alzheimer’s disease (mean age = 78.2,
age-range 71–86; five females, five males; Desikan et al., 2006;
Makowski et al., 2018). Outcome measures of the morphological
analyses are, amongst other, surface area, cortical thickness and
volume (Dale et al., 1999; Fischl et al., 1999a,b, 2001; Fischl and
Dale, 2000). The surface area corresponds to the white surface
(gray-white matter boundary), cortical thickness corresponds to

the distance between the white surface and the pial surface
[gray matter-cerebrospinal fluid (CSF) boundary], and volume
is the product of surface area and cortical thickness (Fischl
and Dale, 2000). It is suggested that surface area and cortical
thickness offer independent, but complementary information
on brain anatomy, since they have different genetic sources
(Panizzon et al., 2009; Winkler et al., 2010) and follow different
developmental trajectories (Kapellou et al., 2006).

Over the past few decades, automated methods have increased
in popularity for analyzing brain morphology because of
increased efficiency (i.e., reduced time and costs) of the analyses
(Eickhoff et al., 2015). Although past research indicated that
cortical thickness obtained by the automated processing stream
of FreeSurfer has good agreement with cortical thickness from
histological and manual measurements (Fischl et al., 2002; Rosas
et al., 2002; Cardinale et al., 2014), FreeSurfer recommends1

to always visually check and, if observed necessary, manually
adapt images in between the automatic processing stages,
thereby optimizing the parcellation and segmentation of the
brain images. The automatic reconstruction process can be
interrupted for manual adjustments after specific processing
stages, including skull stripping, intensity normalization, white
matter segmentation and surface extraction (see Figure 1 of
the Supplementary Information). Manual adjustments include
fixing skull stripping errors, intensity normalization errors,
topological errors, white matter errors, and pial errors (see
the Supplementary Information). They might be necessary
when an experimenter visually observes that the image is not
well parcellated or segmented, as indicated by too little or
too much skull of the brain left behind after skull stripping,
incorrect placements of the pial surface or white surface, and
the presence of small holes on the brain surface (visible on the
inflated brain image). However, manually adapting images has
disadvantages. First and foremost, it is a very time-consuming,
labor-intensive task. In their guidelines, FreeSurfer suggests to
take around 30 min per image to fix errors, yet in reality, such
time window seems far too short as per image two-hundred
slices, preferably in four different views (i.e., coronal, sagittal,
axial and 3D-vision), need to be visually checked and possibly
edited using five different fixing steps (for details on the editing
process see the Supplementary Information). Also, manual
editing requires a certain level of expertise, which can only
be gained through practice and trial-and-error (Canna et al.,
2018). The experimenter needs to get experience with how many
edits at which locations are needed to obtain a desired change.
To visualize the outcomes of the editing process, the image
first has to undergo the automatic reconstruction process again.
Another disadvantage of manual editing is that compared to
the automated reconstruction of brain images, manual editing is
more prone to inter-subject variation and rater drift (i.e., rater
variation over time; Fischl et al., 2002; White et al., 2018).
Especially in large databases, in which data are segmented over
a prolonged period, intra-rater reliability will be difficult to
maintain as rater drift becomes more significant over time
(Spinks et al., 2002; Nugent et al., 2007). Due to the absence

1http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData
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of a standardized detailed protocol on performing manual
adjustments in FreeSurfer, inter-subject variation and rater drift
might be considerably larger after manually editing the data.

FreeSurfer’s fully automated approach and the automated
approach with additional manual edits have been compared
in former adult studies, more specifically in healthy adults
(Canna et al., 2018; Waters et al., 2019), adults with a history
of severe head injuries (Guenette et al., 2018) and in adults
with 22q11.2 deletion syndrome (McCarthy et al., 2015). Each
of these studies showed using paired samples t-tests that both
methods did not significantly differ in their regions of interest
(ROIs; McCarthy et al., 2015) or only in a minority of their
ROIs (Canna et al., 2018; Waters et al., 2019). Furthermore, the
intra-class correlations measuring consistency in differences
between the methods across subjects were high for the ROIs
included in these studies (McCarthy et al., 2015; Guenette et al.,
2018; Waters et al., 2019), except for a few subcortical ROIs
(Guenette et al., 2018). Finally, these studies showed that the
automated method with additional manual edits does not have
an increased sensitivity to detect differences when comparing a
clinical group (McCarthy et al., 2015) or investigating individual
brain-behavior relationships (Waters et al., 2019) between the
methods. Hence, according to these studies, manual editing does
not lead to differences in absolute values between the methods
in most ROIs. Additionally, differences between the methods—
in situations in which they occurred—are consistent, and
manual editing does not lead to an increased sensitivity to detect
individual or clinical group differences. However, since these
studies were conducted in adults, their outcomes might not
apply to pediatric populations. Manual adaptations are needed
to a considerably larger extent in pediatric data, since non-linear
and region-specific brain development leads to significant
differences between adult and child brains (Phan et al., 2018b).
In pediatric populations, segmentation and registration of MRI
data is more prone to errors because of the use of an adult
template (Muzik et al., 2000; Yoon et al., 2009; Phan et al.,
2018a). Also, MRI images of pediatric populations are generally
noisier and more prone to artifacts due to in-scanner motion
that is higher in children (Brown et al., 2010; van Dijk et al.,
2012). Head motion, in particular, will lead to severe ringing,
blurring, and ghosting artifacts, hindering the determination
of tissue boundaries, thereby risking the production of invalid
outcome measures (Backhausen et al., 2016; Phan et al., 2018a,b).
Even subtle motion, not easily detected by visual inspection,
will lead to systematic biases in the automatic measurements
of structural brain properties (Blumenthal et al., 2002; Reuter
et al., 2015; Alexander-Bloch et al., 2016). Errors are comparable
to yearly atrophy rates in neurodegenerative diseases (Barkhof
et al., 2009; Rosas et al., 2011) or yearly growth rates of normal
developing brain tissues (Hedman et al., 2012). Influences
of motion on outcomes generated by the automated image
processing pipeline of FreeSurfer (Blumenthal et al., 2002;
Reuter et al., 2015) are significant; in adults, a small increase in
motion led to 1.4%–2.0% gray matter volume reduction (Reuter
et al., 2015), and in children, a small amount of motion led to
4% gray matter volume reduction, a moderate amount to 7%
gray matter volume reduction and a large amount to 27% gray

matter volume reduction (Blumenthal et al., 2002). Despite these
difficulties faced with implementing FreeSurfer’s automated
pipeline in pediatric samples, over the past few years there
has been an increased use of FreeSurfer in pediatric samples,
resulting from an increased interest in early-onset identification
of neurodevelopmental disorders (Merkley et al., 2008;
Wolosin et al., 2009; Fallucca et al., 2011; Widjaja et al.,
2011; Overvliet et al., 2013; Wozniak et al., 2013; Mayer et al.,
2015; Mahajan et al., 2016; Yang et al., 2016; Gold et al.,
2017). Only a few of these studies mentioned whether they had
performed manual adaptations (Merkley et al., 2008; Fallucca
et al., 2011; Gold et al., 2017), and only one mentioned the actual
editing process by briefly informing which type of edits at which
locations had been made (Merkley et al., 2008). Currently, little is
known about the influence of additional manual editing pediatric
samples in FreeSurfer on morphological outcome measures.

In the current study, we will assess the added value of
FreeSurfer’s manual editing tool on outcome values of surface
area and cortical thickness that are generated by FreeSurfer’s
automated reconstruction pipeline in a pediatric population of
5-to-6-year-old children with and without dyslexia. We take a
similar approach as McCarthy et al. (2015) who investigated this
in adults. First, we will investigate whether outcome measures
obtained with the automated vs. semi-automated (i.e., additional
manually edited data) method differ significantly, and whether
these differences are consistent across subjects. We restrict our
analyses to six pre-defined ROIs of the Desikan-Killiany atlas that
belong to the reading network (Richlan et al., 2009; Beelen et al.,
2019); the fusiform gyrus, the inferior parietal gyrus, the inferior
temporal gyrus, the middle temporal gyrus, the pars opercularis
of the inferior frontal gyrus and the superior temporal gyrus,
as well as their right homologous counterparts. Then, we will
examine whether the implementation of the fully automated
approach (with no manual edits) affects the sensitivity to find
differences between groups (in our case pre-readers with and
without dyslexia diagnosis) by analyzing the difference in effect
size between the fully automated method and the automated
method with additional edits for the outcome measures surface
area and cortical thickness. In our pediatric study, it is expected
that the methods will significantly differ from one another, since
pediatric data as opposed to adult data require more manual
adjustments due to a non-matching template and increased
in-scanner head motion. In our former pediatric study (Beelen
et al., 2019), we observed for the automated method with manual
edits significant group differences in the surface area of the
bilateral fusiform gyrus between children with and without
dyslexia. However, a comparison with the fully automated
approach was not made. Hence, it remains to be seen whether
manually editing pediatric images in FreeSurfer will result into
an increased sensitivity to detect statistical differences between
children with and without dyslexia.

MATERIALS AND METHODS

Participants
Participants were 54 Flemish children, of whom 31 children
with (FRD+) and 23 children without (FRD−) a family risk for
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dyslexia, defined as a first-degree relative (parent or sibling)
with a clinical diagnosis of dyslexia. This sample is part
of a larger longitudinal project (Vanvooren et al., 2014), of
which the current sample is identical to the one described in
Beelen et al. (2019). Participants underwent cognitive-behavioral
tests once a year and EEG and MRI sessions alternately
once every 2 years from the last year of kindergarten until
the 5th grade of primary school. For the first MRI session,
participants were trained with a child-friendly ‘‘submarine’’
protocol (Theys et al., 2014). This protocol was invented to
make the participants familiar and at ease with the scanning
procedure to reduce in-scanner motion artifacts. Originally,
71 participants underwent the first MRI session, but due
to excessive motion in the scanner 17 participants were
excluded from the study, resulting in the remaining sample
of 54 participants. Images of the excluded participants had
severe blurring, ringing or ghosting artifacts due to which
they were unusable for analysis purposes according to the
Blumenthal criteria (Blumenthal et al., 2002; Phan et al.,
2018a). Images of the 54 participants that were included in
the study had no, mild or moderate ringing, blurring or
ghosting artifacts.

The cognitive-behavioral tests that were obtained from
the participants from grade 2 onwards each year included
a standardized word reading (Brus and Voeten, 1973) and
pseudo-word reading (van den Bos et al., 1994) test. Reading
tests were administered during the first semester of the 2nd to
4th grade, and the second semester of the 5th grade of primary
school. Based on these tests, participants were retrospectively
classified as typical readers (TR, n = 38) or readers with dyslexia
(DR, n = 16). Children scoring below the 10th percentile on
either the word reading or pseudo-word reading test at the
three last time points were classified as readers with dyslexia
(n = 15). If reading had only been assessed at two-time points,
the child’s reading score had to be below the 10th percentile at
both time points on either the word reading or pseudo-word
reading test to be classified as a reader with dyslexia (n = 1).
In our study, 45% of FRD+ children (n = 14) and 9% of
FRD− children (n = 2) fulfilled our dyslexia criteria (n = 16).
Demographics and behavioral assessment scores of the study
sample were mentioned in our former study (Beelen et al., 2019).
The study was approved by the local ethical committee of the
university hospital (UZ Leuven) and following ethical standards
described within the declaration of Helsinki. The study has not
been pre-registered. Informed consent had been obtained from
the parents.

Image Acquisition
Scanning sessions of participants took place at the university
hospital of Leuven (UZ Leuven). Total scanning time was nearly
half an hour and T1-weighted brain images were acquired within
6 min. and 22 s. Scans were taken with a Philips 3T-scanner
(Best, Netherlands) with 3D Turbo field echo and a 32-channel
head coil. Per the scanning session, 182 contiguous coronal slices
were collected with the following parameter settings: TR = 9.6 ms;
TE = 4.6 ms; flip angle = 8◦; FOV = 250× 250× 218 mm3; voxel
size = 1× 1× 1.2 mm3.

Processing of T1-Weighted Images
The T1-weighted images were processed by the automated
cross-sectional reconstruction processing stream in FreeSurfer
version 5.3 on a Linux Ubuntu software system version 14.02.
First, an isotropic brain image was created with all non-brain
tissue removed by using a hybrid watershed/surface deformation
procedure (Ségonne et al., 2004). Second, motion correction
and b1-bias field correction were applied. Furthermore, images
underwent segmentation of gray/white matter structures (Fischl
et al., 2002, 2004), intensity normalization (Sied et al., 1998),
gray/white matter boundary tessellation, automated topological
correction (Fischl et al., 2001; Ségonne et al., 2007) and surface
deformation following intensity gradients to optimally place gray
matter/white matter/CSF borders (Dale and Sereno, 1993; Dale
et al., 1999; Fischl and Dale, 2000). Thereafter, the Desikan-
Killiany atlas was used to perform the cortical parcellation. The
atlas automatically subdivides the human cortex into 34 gyral
regions-of-interest based on anatomical markers of curvature
and sulcal information on the inflated brain images (Desikan
et al., 2006). For our study, we selected six ROIs that belonged
to the reading network and their right homologous counterparts
from the Desikan-Killiany atlas, which were bilaterally the
fusiform gyrus, the inferior parietal gyrus, the inferior temporal
gyrus, the middle temporal gyrus, the pars opercularis of the
inferior frontal gyrus and the superior temporal gyrus (Beelen
et al., 2019). Finally, signal-to-noise ratio (SNR) was calculated
using the following formula (see Gedamu et al., 2008, p. 313):

SNR =
µsignal intensity

0.8 · σnoise intensity

‘‘. . . where signal intensity is the mean of the signal intensity
distribution and noise intensity is the standard deviation of the
noise intensity distribution of the image. Dividing by a factor
of 0.8 is done to compensate for the Rayleigh distribution effect
in the background noise.’’ Mean signal intensity corresponds
to the mean intensity of white matter. In our sample, mean
SNR = 977.36 dB; SD = 3324.54 dB.

Manual Intervention
The data that underwent the automated cross-sectional
processing stream were copied. The copies underwent an
additional manual editing procedure (i.e., automated data
with additional edits), whereas the original processed images
did not (i.e., fully automated data). The reconstructed brain
images that underwent additional manual editing were adjusted
in FreeSurfer’s supporting toolbox Freeview. Manual edits
were performed according to a self-written manual editing
protocol (see the Supplementary Information for a broad
description of the editing process). In short, editing consisted of
the following steps: (1) fixing skull stripping errors; (2) fixing
intensity normalization errors; (3) fixing topological errors;
(4) fixing white matter errors; and (5) fixing pial errors. After
the manual adjustments were completed, the images underwent
the automated reconstruction process again and were visually
checked for remaining errors. If necessary, the same process
was repeated.

Frontiers in Human Neuroscience | www.frontiersin.org 4 April 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Beelen et al. Manually Editing Pediatric FreeSurfer Data

Statistical Analyses
Statistical analyses were performed in IBM SPSS, version
25.0 (IBM Corp. 2017). Full factorial mixed-effect model
analyses were run to compare surface area and cortical
thickness of the ROIs between edited and unedited data.
As a starting point, the following two models were tested:
surface area/cortical thickness = method (2) + region (6) +
hemisphere (2) + method∗region (12) + method∗hemisphere
(12) + region∗hemisphere (12) + method∗region∗hemisphere
(24), and by using a backward selection procedure, the
best models (i.e., with the lowest AIC) were selected for
both outcome measures. The selected models were: surface
area/cortical thickness = method (2) + region (6) + hemisphere
(2) + region∗hemisphere (12). All independent factors in the
model were fixed, and the subject was the random intercept.
Uncorrected results were presented. In the next step, we
investigated the consistency of the outcome measures surface
area and cortical thickness between the methods by calculating
intra-class correlations (ICCs) per ROI and across subjects
using a two-way mixed effect model. In a final step, to analyze
whether manual edits increase the sensitivity to find statistical
group differences between children with (DR) and without (TR)
dyslexia, the p-value and effect size (Hedges’ g) of the mean
difference in cortical thickness and surface area between DR and
TR were calculated per ROI for each method, and the effect sizes
were compared across ROIs between the methods using paired
samples t-tests.

RESULTS

Method comparisons were performed across ROIs and subjects
(DR and TR), and ICCs were calculated per ROI and across
subjects. Furthermore, sensitivity between the methods was
tested by comparing the size of the group differences between
DR and TR. For surface area, results revealed that there is a
significant difference between the methods (F(1,1242) = 75.67;
p < 0.001). The automated method with additional edits
(µ = 3,229.1 mm2; SE = 45.7 mm2) has overall a significantly
higher mean surface area than the fully automated method
(µ = 3,077.0 mm2; SE = 45.7 mm2; for an example of the
difference in surface area between the methods in an individual
subject, see Figure 1A). Also, there are no interaction effects
between method and ROI or method, hemisphere and ROI,
which suggests that results are similar across ROIs. Table 1A
indicates that for each ROI the mean surface area is larger
for the automated method with additional edits than the fully
automated method. For cortical thickness, results also revealed
that there is a significant difference between the methods
(F(1,1242) = 7.03; p = 0.008). The automated method with
additional edits (µ = 2,890.9 µm; SE = 25.8 µm) has overall
a significantly lower mean thickness than the fully automated
method (µ = 2,914.5 µm; SE = 25.8 µm). Also, there are
no interaction effects between method and ROI or method,
hemisphere and ROI, which suggests that results are similar
across ROIs. Table 1B indicates that for each ROI the mean
cortical thickness is smaller for the automated method with

FIGURE 1 | (A) Example of a subject (B34) with a clear difference in mean
surface area of the left fusiform gyrus between the methods. Red lines
represent the pial surface [i.e., the border between gray matter and
cerebrospinal fluid (CSF)] and dark blue lines the white surface (i.e., the border
between white matter and gray matter, the surface area). The subject has a
lower mean surface area of the left fusiform gyrus (see the blue arrow) after
full-automatic processing (left) as opposed to after additional manual editing
(right). (B) The mean surface area of the left fusiform gyrus per subject for the
fully automated method and the automated method with additional edits. The
intra-class correlation (ICC) corresponds to the difference in surface area
between the methods across subjects (ICC value = 0.939, see Table 2A).
The red arrow and circle indicate for both methods the mean surface area of
the left fusiform gyrus for subject B34. (C) Effect sizes (Hedges g’) of the
mean difference in surface area of the left fusiform gyrus between children
with (DR) and without (TR) dyslexia for the fully automated method (g = 0.994)
and the automated method with additional edits (g = 1.059).

additional edits than the fully automated method. For surface
area and cortical thickness, ICC values indicated for each ROI
excellent consistency between the methods (ICCs > 0.90; see
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TABLE 1 | For both methods per ROI the mean and standard deviation.

ROI Mean and SD for
the fully

automated
method

Mean and SD for
the automated
method with

additional manual
edits

(A)
Fusiform g. left M = 3,090.93

SD = 485.47
M = 3,256.26

SD = 498.68
Fusiform g. right M = 2,953.93

SD = 409.25
M = 3,129.02

SD = 447.76
Inferior parietal g. left M = 4,276.39

SD = 532.61
M = 4,467.59

SD = 546.43
Inferior parietal g. right M = 5,145.48

SD = 712.30
M = 5,338.54

SD = 729.91
Inferior temporal g. left M = 2,800.80

SD = 419.59
M = 3,008.20

SD = 411.68
Inferior temporal g. right M = 2,780.28

SD = 434.67
M = 2,977.48

SD = 431.43
Middle temporal g. left M = 2,768.91

SD = 476.36
M = 2,913.91

SD = 470.51
Middle temporal g. right M = 3,201.00

SD = 439.69
M = 3,351.52

SD = 431.69
Pars opercularis of the
inferior frontal g. left

M = 1,532.00
SD = 261.91

M = 1,603.46
SD = 323.45

Pars opercularis of the
inferior frontal g. right

M = 1,311.87
SD = 215.36

M = 1,349.24
SD = 211.44

Superior temporal g. left M = 3,620.76
SD = 448.58

M = 3,781.39
SD = 410.60

Superior temporal g. right M = 3,441.19
SD = 408.07

M = 3,572.22
SD = 378.57

(B)
Fusiform g. left M = 2,980.83

SD = 207.23
M = 2,939.43

SD = 190.28
Fusiform g. right M = 3,094.72

SD = 202.26
M = 3,053.04

SD = 167.55
Inferior parietal g. left M = 2,492.09

SD = 264.42
M = 2,466.02

SD = 263.78
Inferior parietal g. right M = 2,631.57

SD = 256.81
M = 2,610.78

SD = 232.49
Inferior temporal g. left M = 2,792.69

SD = 253.34
M = 2,774.57

SD = 265.17
Inferior temporal g. right M = 2,912.50

SD = 269.33
M = 2,895.56

SD = 216.24
Middle temporal g. left M = 2,975.56

SD = 330.09
M = 2,962.93

SD = 333.42
Middle temporal g. right M = 3,105.20

SD = 308.95
M = 3,100.63

SD = 242.42
Pars opercularis of the
inferior frontal g. left

M = 2,949.63
SD = 223.13

M = 2,912.61
SD = 240.76

Pars opercularis of the
inferior frontal g. right

M = 2,860.28
SD = 241.91

M = 2,823.09
SD = 237.54

Superior temporal g. left M = 3,037.09
SD = 241.35

M = 3,028.31
SD = 230.00

Superior temporal g. right M = 3,142.09
SD = 214.90

M = 3,123.39
SD = 195.58

(A) For surface area, for each method per ROI and per hemisphere the mean and
standard deviation (SD) in mm2. (B) For cortical thickness, for each method per ROI
and per hemisphere the mean and standard deviation (SD) in µm.

Tables 2A,B and Figure 1B). Finally, the effect sizes measuring
mean differences between DR and TR across ROIs were not
significantly different between the methods for surface area
(t(11) = −1.72; p = 0.113) or cortical thickness t(11) = 2.04;
p = 0.066). Significant group differences between DR and TR

TABLE 2 | Intra-class correlations (ICCs) per ROI and across subjects.

ROI ICCs for the left
hemisphere

ICCs for the right
hemisphere

(A)
Fusiform g. 0.939 0.941
Inferior parietal g. 0.944 0.959
Inferior temporal g. 0.911 0.943
Middle temporal g. 0.970 0.963
Pars opercularis of the
inferior frontal g.

0.950 0.957

Superior temporal g. 0.962 0.965
(B)
Fusiform g. 0.938 0.928
Inferior parietal g. 0.935 0.955
Inferior temporal g. 0.951 0.941
Middle temporal g. 0.966 0.944
Pars opercularis of the
inferior frontal g.

0.968 0.948

Superior temporal g. 0.959 0.960

(A) For surface area, for both hemispheres per ROI and across subjects the intra-class
correlations (ICCs) between the methods based on a two-way mixed-effects model.
(B) For cortical thickness, for both hemispheres per ROI and across subjects the intra-
class correlations (ICCs) between the methods based on a two-way mixed-effects model.

were observed in the surface area of the bilateral fusiform
gyrus for both the automated data with additional edits (see
also Beelen et al., 2019) and the fully automated data (see
Table 3A). Also, the accompanying effect sizes were large
(see Table 3A and Figure 1C). Contrary, border significant
results were observed in the surface area of the right inferior
temporal gyrus for the automated method with additional edits
as opposed to the fully automated method (Table 3A), and in
the cortical thickness of the pars opercularis of the left inferior
frontal gyrus for the fully automated method as opposed to
the automated method with additional edits (Table 3B). Hence,
depending on the choice of method border significant results
lead to different conclusions on group differences between DR
and TR.

DISCUSSION

In this study, we investigated for the first time in a pediatric
population whether additional manual editing of FreeSurfer
data generated with the automated reconstruction pipeline
is of added value. First, we investigated in 5-to-6-year-old
children in six ROIs belonging to the reading network and their
right counterparts if there are statistical differences in cortical
thickness or surface area when generated fully automatically
in FreeSurfer vs. automatically with additional manual editing.
Additionally, for both morphological measures, we checked if
differences between the methods are consistent across subjects.
Finally, we investigated whether manual editing leads to an
increased sensitivity to detect statistical differences in surface
area or cortical thickness between 5-to-6-year-old children with
and without dyslexia. Results revealed that the methods differ
significantly from each other. Specifically, the automated method
with additional manual edits reported larger and thinner ROIs
than the fully automated method. Additionally, the intra-class
correlations between the methods were high for all ROIs,
revealing that although the methods differ significantly, the
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TABLE 3 | For both methods per ROI the P-values and effect sizes (Hedges’ g)
of reading group differences (DR vs. TR.)

ROI P-values and
effect sizes

(Hedges’ g) of
reading group
differences (DR
vs. TR) for the
fully automated

method

P-values and
effect sizes

(Hedges’ g) of
reading group
differences (DR
vs. TR) for the
automated
method with

additional manual
edits

(A)
Fusiform g. left t(52) = 3.34;

p = 0.002;
g = 0.994

t(52) = 3.55;
p = 0.001;
g = 1.059

Fusiform g. right t(52) = 2.83;
p = 0.007;
g = 0.842

t(52) = 2.96;
p = 0.005;
g = 0.879

Inferior parietal g. left t(52) = −0.43;
p = 0.671;
g = 0.129

t(52) = −0.49;
p = 0.628;
g = 0.145

Inferior parietal g. right t(52) = 0.01;
p = 0.993;
g = 0.003

t(52) = 0.44;
p = 0.663;
g = 0.131

Inferior temporal g. left t(52) = 0.98;
p = 0.333;
g = 0.291

t(52) = 1.48;
p = 0.144;
g = 0.442

Inferior temporal g. right t(52) = 1.62;
p = 0.112;
g = 0.481

t(52) = 2.05;
p = 0.046;
g = 0.609

Middle temporal g. left t(52) = 1.15;
p = 0.254;
g = 0.343

t(52) = 1.22;
p = 0.229;
g = 0.363

Middle temporal g. right t(52) = 1.12;
p = 0.268;
g = 0.333

t(52) = 1.33;
p = 0.190;
g = 0.397

Pars opercularis of the
inferior frontal g. left

t(52) = 1.00;
p = 0.333;
g = 0.293

t(52) = 0.62;
p = 0.536;
g = 0.185

Pars opercularis of the
inferior frontal g. right

t(52) = 0.69;
p = 0.496;
g = 0.204

t(52) = 0.76;
p = 0.451;
g = 0.226

Superior temporal g. left t(47) = 0.81;
p = 0.424;
g = 0.195

t(52) = 0.63;
p = 0.533;
g = 0.187

Superior temporal g. right t(52) = 1.28;
p = 0.207;
g = 0.379

t(52) = 1.08;
p = 0.286;
g = 0.320

(B)
Fusiform g. left t(52) = 0.44;

p = 0.665;
g = 0.129

t(52) = 0.52;
p = 0.606;
g = 0.151

Fusiform g. right t(52) = 0.48;
p = 0.636;
g = 0.142

t(52) = −0.52;
p = 0.606;
g = 0.154

Inferior parietal g. left t(52) = 0.26;
p = 0.800;
g = 0.075

t(52) = 0.01;
p = 0.989;
g = 0.004

Inferior parietal g. right t(52) = 1.19;
p = 0.238;
g = 0.356

t(52) = 0.75;
p = 0.458;
g = 0.223

Inferior temporal g. left t(52) = 0.61;
p = 0.545;
g = 0.180

t(52) = 0.76;
p = 0.452;
g = 0.225

Inferior temporal g. right t(52) = 1.01; t(52) = 0.69;

(Continued)

TABLE 3 | Continued

ROI P-values and
effect sizes

(Hedges’ g) of
reading group
differences (DR
vs. TR) for the
fully automated

method

P-values and
effect sizes

(Hedges’ g) of
reading group
differences (DR
vs. TR) for the
automated
method with

additional manual
edits

p = 0.320; p = 0.495;
g = 0.297 g = 0.207

Middle temporal g. left t(52) = 0.84;
p = 0.405;
g = 0.251

t(52) = 0.72;
p = 0.478;
g = 0.212

Middle temporal g. right t(52) = 1.26;
p = 0.214;
g = 0.374

t(52) = 1.44;
p = 0.157;
g = 0.429

Pars opercularis of the
inferior frontal g. left

t(52) = 2.11;
p = 0.040;
g = 0.629

t(52) = 1.51;
p = 0.137;
g = 0.449

Pars opercularis of the
inferior frontal g. right

t(52) = 2.00;
p = 0.051;
g = 0.594

t(21) = 0.99;
p = 0.333;
g = 0.342

Superior temporal g. left t(52) = 1.27;
p = 0.210;
g = 0.379

t(52) = 0.72;
p = 0.477;
g = 0.212

Superior temporal g. right t(52) = 1.72;
p = 0.091;
g = 0.512

t(52) = 1.92;
p = 0.061;
g = 0.571

(A) For surface area, for each method per ROI and per hemisphere the p-value
(significance at level p< 0.05) and the effect size (Hedges’ g) of reading group differences
(DR vs. TR). (B) For cortical thickness, for each method per ROI and per hemisphere the
p-value (significance at level p < 0.05) and the effect size (Hedges’ g) of reading group
differences (DR vs. TR).

difference is consistent, and therefore leads to similar statistical
inferences regarding outcome measures. Finally, effect sizes
of differences in surface area or cortical thickness between
children with and without dyslexia did not differ between the
methods, indicating that manual editing does not lead to an
increased sensitivity to detect dyslexia-related morphological
brain differences in a pediatric sample, although conclusions
of marginally significant findings can differ depending on the
chosen method.

In line with our expectation, we observed that the fully
automated method and the automated method with manual edits
significantly differ in surface area and cortical thickness across
ROIs. Compared to the automated method with manual edits,
the fully automated method has a lower surface area and a higher
cortical thickness across ROIs. Adult studies of McCarthy et al.
(2015), Canna et al. (2018) and Waters et al. (2019) observed
in only 0%–26.5% of the ROIs in their studies differences in
brain morphometry between the methods. Also, they observed
no differences in brain morphometry between the methods in
ROIs of our study. Hence, it seems that pediatric data needs
more manual adjustments than adult data. However, there were
few methodological differences between these studies and our
study. McCarthy et al. (2015) applied Bonferroni correction to
34 ROIs in their study, whereas in our study there were fewer
ROIs to correct for. Additionally, whereas our study focused on
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fixing all possible type of edits, the study of Waters et al. (2019)
focused on fixing skull stripping errors only, and the study of
Canna et al. (2018) on fixing intensity normalization errors only.
If we would perform a similar amount of Bonferroni corrections
as McCarthy et al. (2015), i.e., correct for 34 ROIs, we would
also fail to observe differences in outcome measures between
the methods. Yet, suggestively their correction has been too
strong. As a consequence, it cannot be confirmed that pediatric
data needs more manual adaptations than adult data. Future
studies should implement similar paradigms and focus more on
replicating findings.

Another observation in our study was the high intra-class
correlations between the methods for all ROIs, which indicate
that even though the methods may differ for particular ROIs, the
differences are highly consistent across subjects, and the observed
relation for cortical thickness and surface area is maintained
across subjects. The high intra-class correlations suggest that
the choice of method is less relevant, since they indicate that
both methods lead to similar statistical inferences on group
estimates. Nevertheless, it remains important to stick to a single
method within a study, as for certain ROIs the methods may
statistically differ from each other (see also Guenette et al.,
2018). In line with our results, studies of McCarthy et al. (2015)
and Waters et al. (2019) observed for all brain regions high
intra-class correlations between the methods. On the contrary,
Guenette et al. (2018) observed high intra-class correlations for
few subcortical ROIs, and, for instance, not for the amygdala
and hippocampus. Past research, however, demonstrated that
areas such as the amygdala and hippocampus are troublesome
areas to segment for FreeSurfer and that their volumes are often
overestimated (Tae et al., 2008; Nugent et al., 2013; Schoemaker
et al., 2016; Schmidt et al., 2018). Hence, for these subcortical
regions, extra caution is warranted.

Finally, our study revealed no significant differences between
the methods in effect sizes comparing children with and without
dyslexia, indicating no increased sensitivity to detect clinical
group differences. Note, however, that marginally significant
results can switch from significant to non-significant depending
on the method used (see the right inferior temporal gyrus in
Table 2A and the pars opercularis of the left inferior frontal gyrus
in Table 2B), whereas stronger group differences (as observed
in the bilateral area of the fusiform gyrus, Table 2A), remain
significant regardless of whether manual edits are performed or
not. In sum, although it might seem worthwhile to edit pediatric
data, as shown by outcome differences between the methods
in the segmentation process and in the output matrices that
FreeSurfer generates, results indicate that the additional time
and costs required to manually adjust images do not result
into an increased sensitivity to detect morphological differences
between the reading groups. On the contrary, one should
consider whether the benefits of performing manual adaptations
to optimize the data outweigh the costs of the high amount of
time required for editing and the accompanying costs involved.
Especially in large data sets, due to the excessive time needed
for editing, benefits might not outweigh the costs, even though
some quality control of the data (e.g., dealing with outliers,
severe artifacts and motion) would be necessary. Hence, the

results of our study and previous adult studies together indicate
that manually adjusting data in FreeSurfer has a limited impact
on statistical findings regarding clinical group estimates and
individual neurocognitive measures. Possibly, there could be
gains for pediatric images with severe motion, which had been
excluded from our study. Furthermore, it should be mentioned
that under certain circumstances one should always consider the
adaptation of the brain image. For instance, in cases involving
individual brain modeling or in cases where individual data
is needed for accurate predictions of personal diagnosis or
treatment outcomes. In such cases, one should aim for the most
accurate result, which usually corresponds to some adaption of
the image.

Currently, we have no ground truth on whether automated
brain imaging methods or human experts provide the best
outcomes (i.e., outcomes that are closest to the true values)
regarding brain measures such as surface area or cortical
thickness. For a long time, manual editing has been considered
to be the golden standard, but is slowly overtaken by
automated methods that get more and more accurate while
constantly being adapted and improved. In the future, automatic
editing procedures or machine learning techniques may
become available that can assist or even replace the manual
editing procedure, significantly reducing the time needed for
adjustments and improving the segmentation of the brain
regions. For instance, Canna et al. (2018) developed in their
study an automated control point search (ACPS) that improved
surface reconstructions to a similar extent as manually editing
(i.e., there was a high reproducibility between the method
with manual and automated edits across different data sets).
Likewise, Sta Cruz et al. (2020) developed in their study a
machine learning random forest imputation technique to replace
missing or incorrect average values across regions by imputed
values that were computed based on available multivariate
information. Sta Cruz et al. (2020) tested their newly developed
technique on morphological child and adult data that had
been automatically processed by FreeSurfer and additionally
underwent manual editing. The edited data was compared to
the data acquired with the machine learning random forest
imputation technique. The newly developed technique proved
to be equally effective as manual editing, and would especially
be interesting for studies consisting of large datasets, containing
more than 250 participants.

A drawback is that we cannot make any claims regarding the
necessity of additional editing for images with severe motion
(n = 17), as they had been excluded from our analyses. Since
a significant part of our study sample showed severe motion,
future studies on pediatric populations are strongly encouraged
to focus on diminishing motion artifacts, for instance by
using prospection techniques (Brown et al., 2010; Kuperman
et al., 2011; Tisdall et al., 2012). An example would be the
implementation of equipment that continuously localizes and
follows head position during scanning (White et al., 2010; Tisdall
et al., 2012). Furthermore, we recommend implementing a
template specifically designed for children in pediatric imaging
studies (Alexander et al., 2017; Phan et al., 2018a). Such an
atlas will lead to fewer errors in the segmentation process, and
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therefore more accurate outcome measures, as well as to an
increased sensitivity to find clinical group differences (Phan et al.,
2018a). When using an age-specific pediatric atlas as opposed to
the adult atlas used by FreeSurfer, it has been shown that only
half of the number of subjects is needed to detect significant
morphological differences in gray matter volume between 5-to-6-
year-old children with and without dyslexia. Recently developed
atlases for pediatric populations are the neonatal M-CRIB atlas
(Alexander et al., 2017), which is based on the Desikan-Killiany
atlas, and could potentially be implemented within the FreeSurfer
pipeline. Soon, it is expected that more and more age-specific
pediatric atlases will become available.

To conclude, results show that although T1-weighted images
fully automatically generated by FreeSurfer, and images with
additional manually edits statistically differ in measures of
cortical thickness and surface area in a pediatric sample of 5-to-6-
year-old children with and without dyslexia, these differences are
highly consistent, and additional editing does not result into an
increased sensitivity to detect morphological differences between
the reading groups.
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