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Abstract

The pro-apoptotic BCL-2 family proteins BAX and BAK serve as essential gatekeepers of the 

intrinsic apoptotic pathway and, when activated, transform into pore forming homo-oligomers that 

permeabilize the mitochondrial outer membrane. Deletion of Bax and Bak causes marked 

resistance to death stimuli in a variety of cell types. Bax−/−Bak−/− mice are predominantly 

nonviable and survivors exhibit multiple developmental abnormalities characterized by cellular 

excess, including accumulation of neural progenitor cells in the periventricular, hippocampal, 

cerebellar, and olfactory bulb regions of the brain. To explore the long-term pathophysiologic 

consequences of BAX/BAK deficiency in a stem cell niche, we generated Bak−/− mice with 

conditional deletion of Bax in Nestin-positive cells. Aged NestinCreBaxfl/flBak−/− mice manifest 

progressive brain enlargement with a profound accumulation of NeuN- and Sox2-positive neural 

progenitor cells within the subventricular zone. One-third of the mice develop frank masses 

comprised of neural progenitors, and in 20% of these cases, more aggressive, hypercellular tumors 

emerged. Unexpectedly, 60% of NestinCreBaxfl/flBak−/− mice harbored high-grade tumors within 

the testis, a peripheral site of Nestin expression. This in vivo model of severe apoptotic blockade 

highlights the constitutive role of BAX/BAK in long-term regulation of Nestin-positive progenitor 

cell pools, with loss of function predisposing to adult-onset tumorigenesis.
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Introduction

Programmed cell death plays an essential role during development and homeostasis by 

eliminating superfluous or damaged cells. The pro- and anti-apoptotic members of the 

BCL-2 family integrate internal and external stress stimuli to arrive at a life or death 

decision for the cell (1). BAX and BAK are the two key executioner proteins of the 

mitochondrial apoptotic pathway (2). When activated by persistent stress signaling, BAX 

and BAK transform from a monomeric state into homo-oligomers that pierce the 

mitochondrial outer membrane and release apoptogenic factors, which drive the caspase 

cascade (3). Whereas cells and tissues deficient in BAX or BAK preserve apoptotic function 

due to apparent functional redundancy, double deficiency leads to profound apoptotic 

resistance (4). Indeed, only mice deficient in both Bax and Bak are embryonic lethal and the 

minority that do survive exhibit cellular excess in discrete tissues (4). Observed 

abnormalities in Bax−/−Bak−/− mice include (1) retention of interdigital webs, (2) failure to 

develop an external vaginal introitus, (3) lymphoid accumulation as reflected by 

leukocytosis, splenomegaly, lymphadenopathy, and parenchymal infiltrates, and (4) neural 

progenitor cell hypercellularity within the subventricular zone, hippocampus, cerebellum 

and olfactory bulb. This constellation of developmental and homeostatic defects highlights 

the critical roles of BAX/BAK-mediated apoptosis in maintaining the functional integrity of 

cells and tissues.

Deregulation of the BCL-2 family interaction network has emerged as a contributing 

etiology for a host of human diseases characterized by either pathologic cellular excess (e.g. 

cancer) or cellular deficiency (e.g. neurodegeneration). Overexpression of BCL-2 family 

anti-apoptotic proteins is well known to drive the development, maintenance, and 

chemoresistance of human cancer (5). Although less common, genetic deletion or mutation 

of BCL-2 family pro-apoptotic proteins has also been implicated in tumorigenesis. In mice, 

Bax deletion potentiates SV40 T121-induced tumors of the choroid plexus (6), C3(1)/SV40 

large T antigen-induced mammary tumors (7), and Myc-induced pancreatic β cell tumors 

(8). Deletion of Bax and Bak cooperates with E1A and dominant negative p53 to transform 

primary baby mouse kidney epithelial cells into highly invasive carcinomas (9), and with 

mutant KrasG12D to generate sinonasal adenocarcinomas (10). In humans, Bax loss-of-

function mutations occur in 50% of mismatch mutation repair colon adenocarcinomas (11) 

and in 20% of cell lines derived from a broad spectrum of human hematopoietic 

malignancies (12). Interestingly, expression of Baxψ, a more potent inducer of apoptosis 

than Baxα, occurs within 25% of human glioblastomas and both retards tumor growth in 

xenograft models and correlates with longer patient survival (13). Thus, as the essential 

gateway to mitochondrial apoptosis, BAX and BAK appear to directly impact the dynamics 

of murine and human tumorigenesis.
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Given the clinical consequences of severe apoptotic blockade, most notably in oncogenesis, 

chemoresistance, and cancer relapse, we sought to examine the impact of BAX/BAK 

deficiency in aged mice, overcoming the embryonic lethality of Bax/Bak deletion by use of 

conditional Bax deletion in a Bak−/− background. We focused in particular on examining the 

contribution of apoptosis suppression within the neural stem cell niche to adult-onset 

tumorigenesis. Whereas BAX and BAK are known to limit the size of the neural stem cell 

pool (14), the link between a deactivated mitochondrial apoptosis gateway and the 

development of stem cell-driven cancer remain unknown. Here, we find that conditional 

deletion of Bax in the Nestin-positive cells of Bak−/− mice gives rise to progressive neural 

progenitor cell hyperplasia and frank brain tumors, in addition to a highly undifferentiated 

and aggressive neoplasm of the testis, a peripheral site of stem cell-associated Nestin 

expression.

Results

Progressive megalencephaly in NestinCreBaxfl/flBak−/− mice

While the majority of Bax−/−Bak−/− mice die in utero, rare survivors live long enough to 

develop accumulations of neural progenitor cells within the subventricular zone (SVZ), 

hippocampus, cerebellum and olfactory bulb of the brain (4, 14). To investigate the long-

term consequences of this aberrant stem cell niche expansion, we bred mice with a germline 

deletion of Bak (4) to animals bearing a floxed (fl) conditional allele of Bax (15), which was 

then deleted by Cre recombinase under control of the rat Nestin promoter to yield a central 

nervous system deficient in BAX and BAK (16). Strikingly, Bax/Bak deletion produced an 

overall 34% increase in brain weight compared to wild-type mice (Figure 1A). A 

statistically significant gene dosage effect was observed with step-wise progression in 

severity of megalencephaly from Bak−/−, NestinCreBaxfl/fl, NestinCreBaxfl/flBak+/−, to 

NestinCreBaxfl/flBak−/−. For Bak−/− and NestinCreBaxfl/flBak−/− brains, which represent the 

two ends of the spectrum, brain enlargement was grossly evident when comparing age-

matched mice (Figure 1B). Notably, the megalencephaly of NestinCreBaxfl/flBak−/− mice 

progressed even into old age, as manifested by a statistically significant and stepwise 

increase in brain weights across <8, 8–15, and 15–20 month old age groups (Figure 1C). 

These data highlight that deletion of Bax/Bak in Nestin-positive neural stem cells alters the 

homeostatic set point for brain size, resulting in progressive brain enlargement throughout 

the adult life span.

Subventricular zone and rostral migratory stream are predominant sites of neuronal 
hyperplasia in NestinCreBaxfl/flBak−/− mice

To determine the histologic drivers of megalencephaly in NestinCreBaxfl/flBak−/− mice, we 

examined hematoxylin and eosin (H&E)-stained brain sections across age groups. Like 

globally-deleted Bax−/−Bak−/− mice (4), NestinCreBaxfl/flBak−/− animals exhibited neural 

progenitor cell expansion within the SVZ. However, given the extended life span of 

NestinCreBaxfl/flBak−/− animals, the hypercellularity was observed to progress substantially 

over time, with accumulations along the rostral migratory stream mirroring the natural 

maturation pathway of types B, C, and A neural progenitors from SVZ to olfactory bulb 

(Figure 1D–F, Supplementary Figure 1). Interestingly, the degree of SVZ and rostral 
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migratory stream cellularity corresponded to the severity of megalencephaly observed across 

genetic subtypes (Figure 1A, D–F, Supplementary Figure 1).

The cells occupying this neurogenic migratory path indeed resemble neural progenitor cells, 

manifesting round to oval nuclei, condensed chromatin, indistinct nucleoli, and scant 

cytoplasm. Within the overpopulated regions, cells are Sox2- and NeuN- positive, and 

Olig2- and EGFR-negative, as assessed by immunohistochemistry (Figure 1G–I, 

Supplementary Figure 2). Consistent with the genetic defect in apoptosis, Ki-67 (Mib-1) and 

TUNEL staining are negligible, reflective of low proliferative and apoptotic indices, 

respectively. Higher power inspection revealed that the aberrant cells formed circular 

structures resembling Homer Wright pseudo-rosettes (Figure 1J and 1K). This pattern of 

cellular growth, which ranged from small rosettes formed by relatively few cells to giant 

rosettes composed of concentric cellular sheets, was observed in 85% of 

NestinCreBaxfl/flBak−/− mice (28/33). The prevalence of rosetting increased over time, with 

60% of 8–12 month old, 75% of 12–16 month old, and 100% of 16–20 month old mouse 

brain specimens demonstrating the distinctive growth pattern. The presence of rosettes 

likewise correlated with elevated brain weight (Figure 1L). Immunohistochemical analysis 

confirmed that the pale centers of pseudo-rosettes contain neuropil, which stained positive 

for synaptophysin and MAP2, but negative for GFAP (Supplementary Figure 3).

Brain tumorigenesis in NestinCreBaxfl/flBak−/− mice

One-third of NestinCreBaxfl/flBak−/− mice developed large, round, and well-circumscribed 

masses subjacent to the hippocampus, substantially displacing normal brain tissue (Figure 

2A,B, Supplementary Figure 4). Indeed, brain weights of tumor-bearing mice were 27% 

greater than those of NestinCreBaxfl/flBak−/− mice without brain masses (Supplementary 

Figure 5). The localization of tumors was consistent with an observed aberrant migration of 

neural progenitor cells from the SVZ to the sub-hippocampal region in a subset of mice 

without frank brain tumors (Supplementary Figure 6). No masses were found in any age-

matched, littermate control mice including Bak−/− mice (n=10), NestinCreBaxfl/fl mice (n=7), 

or even NestinCreBaxfl/flBak+/− mice (n=10).

The tumors of NestinCreBaxfl/flBak−/− mice contained giant pseudo-rosettes (Figure 2C), 

whose neuropil-filled centers were positive for MAP2 and synaptophysin (Figure 2D, 

Supplementary Figure 7). Interestingly, the tumor cells displayed more differentiated 

features than the progenitor cell expansions of non-tumor bearing mice, as evidenced by 

increased cellular cytoplasm and the occasional presence of terminally differentiated 

neurons (Supplementary Figure 8). Whereas the cells remained positive for NeuN and 

negative for Olig2 and GFAP, with a low Ki-67 proliferation index, Sox2 immunostaining 

was substantially decreased, consistent with the more differentiated histologic appearance of 

the tumors compared to the progenitor cell hyperplasia (Figure 2E–H, Supplementary Figure 

9A).

Twenty percent of NestinCreBaxfl/flBak−/− brain tumors manifested aggressive, 

hypercellular, and infiltrative features, with gross head deformity and notable midline shift 

(Figure 3A–D). The tumors were comprised of dense cellular sheets of small, round- to 

spindle-shaped, blue cells with scant cytoplasm (Figure 3E–G). Infiltrating cells were 
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observed at the tumor edges, within the subarachnoid space, and at non-contiguous distal 

sites. Although small pseudo-rosettes were occasionally observed, the tumor cells 

predominantly grew in an angiocentric pattern with perivascular cuffing and associated 

satellitosis. Whereas the tumor cells were positive for NeuN and Sox2, and negative for 

GFAP, like the neural progenitor cells, a large subset also expressed Olig2 (Figure 3H-J, 

Supplementary Figure 9B), a neural stem cell transcription factor that regulates fate 

specification of motor neurons and oligodendroglia, and is commonly expressed in human 

gliomas (17, 18). In contrast to the benign-appearing tumors (Figure 2H), the aggressive 

masses demonstrated a correspondingly high Ki-67 proliferation index (Figure 3K). 

Consistent with the neuronal deletion of Bax and Bak, the presence of apoptotic bodies was 

strikingly absent from the tumor tissue.

Testicular tumorigenesis in NestinCreBaxfl/flBak−/− mice

In surveying peripheral tissues that express Nestin (19), we surprisingly identified high-

grade testicular masses in 63% (12 of 19) of the NestinCreBaxfl/flBak−/− mice, 20% (1 of 5) 

of age-matched NestinCreBaxfl/flBak+/− mice, and in no (0 of 17) Bak−/− mice 

(Supplementary Figure 10). The tumors exhibited highly undifferentiated and aggressive 

features, with pleomorphic cell morphology, numerous mitoses, and occasional giant cell 

formation (Figure 4A–C). Whereas global Bax−/− mice are infertile due to failed sperm 

maturation as a consequence of Sertoli cell exhaustion from surplus premeitoic germ cells 

(20), NestinCreBaxfl/flBak−/− mice displayed normal spermatogenesis (Figure 4D). Although 

the highly undifferentiated appearance of the interstitial tumor cells was suggestive of an 

immune cell malignancy, the cells were negative for both CD3 and B220 (Supplementary 

Figure 11).

To investigate the cell of origin for the testicular tumors, we generated NestinCreROSALacZ 

mice and conducted a fate-mapping study that revealed selective LacZ staining of inter-

tubular Leydig cells as well as occasional germ cells, but no labeling of control ROSALacZ 

testis (Figure 4E,F). Nestin expression within the testis has previously been localized to 

vascular progenitor cells, which transdifferentiate to produce Leydig cells (21, 22), and 

within the germ cell lineage(23).

Gene expression analysis of NestinCreBaxfl/flBak−/− tumors

To distinguish between a germ and Leydig cell of origin for the observed testicular tumors, 

we performed gene expression analysis on wild-type testes and tumor-bearing 

NestinCreBaxfl/flBak−/− testes, as confirmed histologically. The expression profile of the 

tumor-bearing testes matched that of a germ cell signature, rather than that of a Leydig, 

interstitial, or tubular cell signature, as assessed by gene set enrichment analyses (GSEA) 

(Figure 5A) (24, 25). Of note, despite containing admixed normal cells, the pathologic 

NestinCreBaxfl/flBak−/−specimens demonstrated decreased Bax and Bak expression 

compared to the corresponding wild-type tissue, consistent with deletion of Bax/Bak in the 

tumors.

Unbiased GSEA was used to further characterize the testicular tumors. Of 404 stem cell 

signatures found within the GeneSigDB database, 278 are significantly (FDR q < 0.25) 
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enriched in tumor-bearing NestinCreBaxfl/flBak−/− testes, whereas only 1 signature was 

significantly enriched in wild-type testes (Figure 5B). The embryonic stem cell signature can 

be subdivided into distinct subsignatures that include Myc-related factors (Myc module), 

core pluripotency factors (Core module), and Polycomb complex factors (PrC module), with 

the Myc module accounting for the predominant similarity of embryonic stem cells to cancer 

cells (26). Interestingly, the tumor-bearing testes are enriched for both the Myc and Core 

modules, while the PrC module is repressed (Figure 5C). Whereas cancers typically 

manifest a Myc up, Core down, and Prc down profile, the added finding of a Core up 

signature is consistent with the progenitor cell origin of the NestinCreBaxfl/flBak−/− testes 

tumors. Likewise, using the classification of Ben-Porath et al. (27), tumor-bearing 

NestinCreBaxfl/flBak−/− testes were enriched for Myc target gene sets, and Nanog, Oct4 and 

Sox2 targets (Core factors), but not for H3K27 bound, suz12, and PRC2 targets (Polycomb 

factors) (Supplementary Figure 12).

Finally, we created a gene signature by barcode analysis of a highly aggressive brain tumor 

that emerged from a NestinCreBaxfl/flBak−/− mouse and for NestinCreBaxfl/flBak−/− brains 

bearing extensive SVZ proliferations. In both cases, the gene signatures were highly 

enriched in tumor-bearing NestinCreBaxfl/flBak−/− testes (Figure 5D). Thus, we find that 

deletion of Bax and Bak in the Nestin-positive progenitor cells of the testis likewise gives 

rise to tumors with stem cell characteristics in adult mice.

Discussion

The adult brain retains a pool of repopulating neural progenitors cells that reside in the 

perivascular niche of the SVZ and migrate along the rostral migratory stream to the 

olfactory bulb and to sites of injury (28). The long-term self-renewal capacity of such cell 

populations within the brain represents a potential vulnerability for oncogenesis should the 

critical balance between progenitor cell life, death, and differentiation become deregulated. 

Although loss of p53 alone within the SVZ is not sufficient for tumor formation, the 

proliferative advantage leads to hypercellularity, rapid differentiation, and increased p53-

independent apoptosis (29), highlighting that p53 restrains the adult neural stem cell pool 

(30). The combined loss of p53 with other neural stem cell regulators, such as PTEN, trigger 

frank neoplastic transformation (31). Like loss of p53, combined Bax/Bak deletion revealed 

a key role for these multidomain pro-apoptotic members of the BCL-2 family in regulating 

the size of the neural stem cell pool (4). However, unlike the capacity of p53−/− cells to 

engage a p53-independent apoptotic pathway, Bax−/−Bak−/− cells sustain a profound block in 

apoptosis (2). Whereas such a severe apoptotic defect in self-renewing neural progenitor 

cells would be expected to predispose to brain tumorigenesis, the embryonic lethality of 

Bax−/−Bak−/− mice and foreshortened lifespan of the limited survivors precluded 

longitudinal analysis. To circumvent this limitation and examine the oncogenic impact of 

deleting Bax/Bak in a stem cell niche, we generated and characterized 

NestinCreBaxfl/flBak−/− mice as a model for progenitor cell-driven tumorigenesis.

We find that preventing Nestin-positive neural progenitor cell apoptosis through targeted 

Bax/Bak deletion gives rise to substantial and progressive hypercellularity both within and 

emerging from the SVZ. In a subset of mice, the progenitor cell hyperplasia and aberrant 
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migratory activity give rise to frank sub-hippocampal tumors. Interestingly, the observed 

rosetting pattern of neurocytic growth is found in several human cancers, yet the emergence 

of this pattern in mice is strikingly rare (32). For example, the constellation of neurocytic 

cells, abundant neoplastic neuropil, and rosette pattern of growth is most similar to 

embryonic neurogenic tumors of childhood, such as cerebral neuroblastoma and embryonal 

tumor with abundant neuropil and true rosettes (ETANTR) (33, 34). Rosette forming 

glioneuronal tumors of the ventricular system (RGNT) shares the features of tumor location 

and presence of rosettes(35). Whereas the hyperplastic progenitor cells in non-tumor bearing 

mice manifest NeuN and Sox2 immunoreactivity, the large tumors that take hold outside of 

the stem cell niche contain more differentiated neurons that lose Sox2 positivity, consistent 

with initiation of a mature neuronal differentiation program upon emigration from the stem 

cell niche (36). The development of highly aggressive brain tumors in a smaller subset of 

NestinCreBaxfl/flBak−/− mice underscores the malignant potential of neural progenitors that 

lack an intact mitochondrial apoptotic pathway. These highly infiltrative tumors retain NeuN 

and Sox2 positivity, and also express Olig2, a transcription factor that is highly expressed in 

brain cancer stem cells, required for neural progenitor cell proliferation, and a potent 

suppressor of p53 activity (17, 18).

In addition to brain tumorigenesis, NestinCreBaxfl/flBak−/− mice manifest a highly penetrant 

cancer of the testis. Like the SVZ, the testis contains a Nestin-positive stem cell niche. 

Excision of Baxfl/fl in the germ cell compartment by NestinCre is supported both by prior 

reports of NestinCre activity in germ cells(23) and our LacZ fate mapping experiments. In 

contrast to mice with global Bax deletion, intratubular spermatogenesis appears normal in 

NestinCreBaxfl/flBak−/− testis, consistent with the observed sporadic expression of NestinCre 

within the germ cell compartment. The testicular architecture of tumor-bearing 

NestinCreBaxfl/flBak−/− testis is completely effaced by highly pleomorphic and proliferative 

cells. Although the bulk of tumor cells reside in and infiltrate the interstitium, the cellular 

cytology and gene expression analyses support a germ cell origin. The gene expression 

analyses further revealed that tumor-bearing NestinCreBaxfl/flBak−/− testes manifest robust 

cancer and stem cell signatures, in addition to sharing gene expression features with 

NestinCreBaxfl/flBak−/− neural progenitor hyperplasia and tumors. The commonalities shared 

by Bax−/−Bak−/− progenitors and cancer stem cells, including the capacity for self-renewal 

and profound apoptotic resistance, underscore the utility of this mouse model in delineating 

the additional genetic factors that drive discrete subtypes of cancer and what therapeutic 

modalities will be required to overcome them.

Materials and Methods

Mice

NestinCreBaxfl/flBak−/− mice were generated from Bak−/−, Baxfl/fl and NestinCre animals as 

described (16). NestinCreROSALacZ mice for fate-mapping analysis was generated from 

NestinCre and FVB.129S4(B6)-Gt(ROSA)26Sortm1Sor/J animals (Jackson Laboratories). All 

animal experiments were performed in accordance with NIH guidelines and approved by the 

Dana-Farber Cancer Institute Institutional Animal Care and Use Committee.
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Histology and Immunohistochemistry

Mouse tissues were fixed in either Bouin’s or 10% formalin for greater than 24 hours, 

passed through graded alcohols, and embedded in paraffin. Slides containing 5 µm thick 

sections were used for hematoxylin and eosin staining, or immunohistochemistry. Slides 

were soaked in xylene, passed through graded alcohols, and immersed in distilled water. 

Immunohistochemistry was performed using the following conditions: (1) pressure cooker 

antigen retrieval (0.01 M citrate buffer, pH 6.0) followed by antibodies to GFAP (1:20,000; 

Z0334, DAKO), Olig2 (1:500; AB9610, Millipore), Sox2 (1:100; 3579, Cell Signaling), 

NeuN (1:7,500; MAB377, Chemicon), and MAP2 (1:5000; M4403, Sigma), (2) pressure 

cooker antigen retrieval (EDTA buffer, pH 8.0) followed by Ki-67 immunostaining (1:250; 

VP-RM04, Vector), (3) anti-synaptophysin immunostaining (1:100; 180130, Invitrogen) 

without antigen retrieval, or (4) ten minute proteinase K-based antigen retrieval followed by 

anti-EGFR immunostaining (1:400; M3563, DAKO). For antibodies generated in mice, a 

mouse-on-mouse IgG blocking kit (BMK-2202, Vector labs) was employed according to the 

manufacturer’s instructions. TUNEL staining was performed according to the manufacture’s 

protocol (S7100; Millipore Apoptag).

LacZ staining

Mouse tissues were removed and fixed in 4% paraformaledhyde/PBS, rinsed with Buffer A 

(100 mM sodium phosphate, 2 mM MgCl2, 0.01% sodium deoxycholate and 0.02% NP-40), 

and stained with 5 mM potassium ferricyanide, 5 mM potassium ferrocyonide and 1 mg/ml 

X-gal in Buffer A. Tissues were then post-fixed in 10% formalin, embedded in paraffin, and 

counterstained with neutral fast red (NFR).

Microarray analysis

Brains were cut mid-sagitally and distinct regions removed under a dissection microscope. 

Testes were flash frozen and cut in half for histology and RNA extraction. Total RNA was 

extracted from tissues frozen in Trizol (Invitrogen) using Qiagen RNeasy. RNA was reverse 

transcribed and hybridized to a mouse Gene 1.0 ST chip for the testes samples and to a 

mouse 430 2.0 full chip for the brain samples at the Dana-Farber Cancer Institute 

Microarray Core Facility. Array quality was assessed using R/Bioconductor (37). All arrays 

passed visual inspection and no technical outliers were identified. Transcript level 

summarization and RMA normalization of CEL files was achieved using the Oligo package 

(38). To identify genes correlating with the phenotypic groups, we used limma (39) to fit a 

statistical linear model to the data and then tested for differential gene expression in the 

contrasts of interest. Results were adjusted for multiple testing using the Benjamini and 

Hochberg (BH) method (40). Gene set enrichment analysis (GSEA) was performed with the 

pre-ranked implementation of the GSEA software package(41) using the moderated t-

statistic from limma to determine rank order. Tissue specific gene sets for the four different 

components of the testis were derived from the E-AFFX-5 dataset available at 

ArrayExpress. Briefly, each of the four testis components was first analyzed individually 

using Barcode(24) to determine the subset of genes that are expressed in that tissue, and 

genes that were found to be expressed in all four tissues were excluded. Barcode analysis 

was similarly used in deriving gene signatures for the aggressive brain tumor and brains 
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bearing SVZ proliferations, with additional filtering criteria requiring an absolute fold-

change greater than two relative to wild-type tissue. Stem cell signatures were identified 

from the GeneSigDB database(42) and were tested for significance using the CP (v2.5) gene 

set from MSigDB as background.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank E. Smith for editorial and graphics assistance, R. Segal, R. Folkerth, and C. Stiles for helpful discussions, 
and S. Rodig and the Harvard Rodent Histology and Specialized Histopathology cores for technical support. This 
work was supported by NIH grants 5R01CA050239 and 1P01CA142536 to L.D.W., NIH grant 5K08HL103847 to 
S.G.K., and the Todd J. Schwartz Memorial Fund.

This work was supported by 5R01CA050239 and 1P01CA142536 (L.D.W.) and 5K08HL103847 (S.G.K.)

References

1. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat 
Rev Mol Cell Biol. 2008; 9(1):47–59. Epub 2007/12/22. [PubMed: 18097445] 

2. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, et al. Proapoptotic 
BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001; 
292(5517):727–730. Epub 2001/04/28. [PubMed: 11326099] 

3. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. 
Nat Rev Mol Cell Biol. 2010; 11(9):621–632. Epub 2010/08/05. [PubMed: 20683470] 

4. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, et al. The combined functions of 
proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple 
tissues. Mol Cell. 2000; 6(6):1389–1399. Epub 2001/02/13. [PubMed: 11163212] 

5. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008; 27(50):6398–6406. Epub 
2008/10/29. [PubMed: 18955968] 

6. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis and stimulates 
apoptosis in vivo. Nature. 1997; 385(6617):637–640. Epub 1997/02/13. [PubMed: 9024662] 

7. Shibata MA, Liu ML, Knudson MC, Shibata E, Yoshidome K, Bandey T, et al. Haploid loss of bax 
leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction 
in protective apoptotic response at the preneoplastic stage. EMBO J. 1999; 18(10):2692–2701. Epub 
1999/05/18. [PubMed: 10329616] 

8. Dansen TB, Whitfield J, Rostker F, Brown-Swigart L, Evan GI. Specific requirement for Bax, not 
Bak, in Myc-induced apoptosis and tumor suppression in vivo. J Biol Chem. 2006; 281(16):10890–
10895. Epub 2006/02/09. [PubMed: 16464852] 

9. Degenhardt K, Chen G, Lindsten T, White E. BAX and BAK mediate p53-independent suppression 
of tumorigenesis. Cancer Cell. 2002; 2(3):193–203. Epub 2002/09/21. [PubMed: 12242152] 

10. Kirsch DG, Dinulescu DM, Miller JB, Grimm J, Santiago PM, Young NP, et al. A spatially and 
temporally restricted mouse model of soft tissue sarcoma. Nat Med. 2007; 13(8):992–997. Epub 
2007/08/07. [PubMed: 17676052] 

11. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, et al. Somatic frameshift mutations 
in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997; 
275(5302):967–969. Epub 1997/02/14. [PubMed: 9020077] 

12. Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T, et al. Hematopoietic 
malignancies demonstrate loss-of-function mutations of BAX. Blood. 1998; 91(8):2991–2997. 
Epub 1998/05/16. [PubMed: 9531611] 

13. Cartron PF, Oliver L, Martin S, Moreau C, LeCabellec MT, Jezequel P, et al. The expression of a 
new variant of the pro-apoptotic molecule Bax, Baxpsi, is correlated with an increased survival of 

Katz et al. Page 9

Oncogene. Author manuscript; available in PMC 2014 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glioblastoma multiforme patients. Hum Mol Genet. 2002; 11(6):675–687. Epub 2002/03/26. 
[PubMed: 11912183] 

14. Lindsten T, Golden JA, Zong WX, Minarcik J, Harris MH, Thompson CB. The proapoptotic 
activities of Bax and Bak limit the size of the neural stem cell pool. J Neurosci. 2003; 23(35):
11112–11119. Epub 2003/12/06. [PubMed: 14657169] 

15. Takeuchi O, Fisher J, Suh H, Harada H, Malynn BA, Korsmeyer SJ. Essential role of BAX, BAK 
in B cell homeostasis and prevention of autoimmune disease. Proc Natl Acad Sci U S A. 2005; 
102(32):11272–11277. Epub 2005/08/02. [PubMed: 16055554] 

16. Reyes NA, Fisher JK, Austgen K, VandenBerg S, Huang EJ, Oakes SA. Blocking the 
mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model 
of amyotrophic lateral sclerosis. J Clin Invest. 2010; 120(10):3673–3679. Epub 2010/10/05. 
[PubMed: 20890041] 

17. Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA, et al. Olig2-regulated lineage-
restricted pathway controls replication competence in neural stem cells and malignant glioma. 
Neuron. 2007; 53(4):503–517. Epub 2007/02/14. [PubMed: 17296553] 

18. Mehta S, Huillard E, Kesari S, Maire CL, Golebiowski D, Harrington EP, et al. The central 
nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in 
neural progenitors and malignant glioma. Cancer Cell. 2011; 19(3):359–371. Epub 2011/03/15. 
[PubMed: 21397859] 

19. Amoh Y, Yang M, Li L, Reynoso J, Bouvet M, Moossa AR, et al. Nestin-linked green fluorescent 
protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res. 2005; 65(12):
5352–5357. Epub 2005/06/17. [PubMed: 15958583] 

20. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax-deficient mice with 
lymphoid hyperplasia and male germ cell death. Science. 1995; 270(5233):96–99. Epub 
1995/10/06. [PubMed: 7569956] 

21. Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Muller D. Progenitor 
cells of the testosterone-producing Leydig cells revealed. J Cell Biol. 2004; 167(5):935–944. Epub 
2004/12/01. [PubMed: 15569711] 

22. Lobo MV, Arenas MI, Alonso FJ, Gomez G, Bazan E, Paino CL, et al. Nestin, a neuroectodermal 
stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific 
cell types from human testicular tumours. Cell Tissue Res. 2004; 316(3):369–376. Epub 
2004/05/06. [PubMed: 15127288] 

23. Dubois NC, Hofmann D, Kaloulis K, Bishop JM, Trumpp A. Nestin-Cre transgenic mouse line 
Nes-Cre1 mediates highly efficient Cre/loxP mediated recombination in the nervous system, 
kidney, and somite-derived tissues. Genesis. 2006; 44(8):355–360. Epub 2006/07/19. [PubMed: 
16847871] 

24. McCall MN, Uppal K, Jaffee HA, Zilliox MJ, Irizarry RA. The Gene Expression Barcode: 
leveraging public data repositories to begin cataloging the human and murine transcriptomes. 
Nucleic Acids Res. 2011; 39(Database issue):D1011–D1015. Epub 2011/01/05. [PubMed: 
21177656] 

25. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and 
human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004; 101(16):6062–6067. 
Epub 2004/04/13. [PubMed: 15075390] 

26. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, et al. A Myc network accounts for 
similarities between embryonic stem and cancer cell transcription programs. Cell. 2010; 143(2):
313–324. Epub 2010/10/16. [PubMed: 20946988] 

27. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-
like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008; 
40(5):499–507. Epub 2008/04/30. [PubMed: 18443585] 

28. Sauvageot CM, Kesari S, Stiles CD. Molecular pathogenesis of adult brain tumors and the role of 
stem cells. Neurol Clin. 2007; 25(4):891–924. vii. Epub 2007/10/30. [PubMed: 17964020] 

29. Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, et al. Loss of 
p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of 
glial tumors. J Neurosci. 2006; 26(4):1107–1116. Epub 2006/01/27. [PubMed: 16436596] 

Katz et al. Page 10

Oncogene. Author manuscript; available in PMC 2014 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J. p53 suppresses the self-renewal of 
adult neural stem cells. Development. 2006; 133(2):363–369. Epub 2005/12/22. [PubMed: 
16368933] 

31. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, et al. p53 and Pten control neural 
and glioma stem/progenitor cell renewal and differentiation. Nature. 2008; 455(7216):1129–1133. 
Epub 2008/10/25. [PubMed: 18948956] 

32. al-Ubaidi MR, Font RL, Quiambao AB, Keener MJ, Liou GI, Overbeek PA, et al. Bilateral retinal 
and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of 
the human interphotoreceptor retinoid-binding protein promoter. J Cell Biol. 1992; 119(6):1681–
1687. Epub 1992/12/01. [PubMed: 1334963] 

33. Eberhart CG, Brat DJ, Cohen KJ, Burger PC. Pediatric neuroblastic brain tumors containing 
abundant neuropil and true rosettes. Pediatr Dev Pathol. 2000; 3(4):346–352. Epub 2000/07/13. 
[PubMed: 10890250] 

34. Gessi M, Giangaspero F, Lauriola L, Gardiman M, Scheithauer BW, Halliday W, et al. Embryonal 
tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal 
tumor. Am J Surg Pathol. 2009; 33(2):211–217. Epub 2008/11/07. [PubMed: 18987548] 

35. Preusser M, Dietrich W, Czech T, Prayer D, Budka H, Hainfellner JA. Rosette-forming 
glioneuronal tumor of the fourth ventricle. Acta Neuropathol. 2003; 106(5):506–508. Epub 
2003/08/14. [PubMed: 12915951] 

36. Burness ML, Sipkins DA. The stem cell niche in health and malignancy. Semin Cancer Biol. 2010; 
20(2):107–115. Epub 2010/06/01. [PubMed: 20510363] 

37. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open 
software development for computational biology and bioinformatics. Genome Biol. 2004; 
5(10):R80. Epub 2004/10/06. [PubMed: 15461798] 

38. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. 
Bioinformatics. 26(19):2363–2367. Epub 2010/08/07. [PubMed: 20688976] 

39. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in 
microarray experiments. Stat Appl Genet Mol Biol. 2004; 3 Article3. Epub 2006/05/02. 

40. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practival and Powerful 
Approach to Multiple Testing. J R Stat Soc. 1995; 57(1):289–300.

41. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set 
enrichment analysis: a knowledge-based approach for interpreting genome-wide expression 
profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545–15550. Epub 2005/10/04. [PubMed: 
16199517] 

42. Culhane AC, Schroder MS, Sultana R, Picard SC, Martinelli EN, Kelly C, et al. GeneSigDB: a 
manually curated database and resource for analysis of gene expression signatures. Nucleic Acids 
Res. 2012; 40(Database issue):D1060–D1066. Epub 2011/11/24. [PubMed: 22110038] 

Katz et al. Page 11

Oncogene. Author manuscript; available in PMC 2014 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Progressive megalencephaly with SVZ hyperplasia and Homer-Wright pseudo-rosetting in 

NestinCreBaxfl/flBak−/− mice. (A) Adult NestinCreBaxfl/flBak−/− mice manifest the heaviest 

brains among littermate controls, with an observed gene dosage effect 

(NestinCreBaxfl/flBak−/− [n=46] vs.: WT [n=5], p=0.002; Bak−/−[n=44], p<0.0001; 

NestinCreBaxfl/fl [n=8], p=0.037; NestinCreBaxfl/flBak+/− [n=17], p=0.03). Data are mean ± 

s.d. (B) Representative brains of two age-matched Bak−/− and NestinCreBaxfl/flBak−/− mice. 

(C) Megalencephaly of NestinCreBaxfl/flBak−/− mice progresses with age (15–20 month old 
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cohort vs. <8 month old cohort, p=0.016). Data are mean ± s.d. (D–F) H&E-stained sagittal 

brain sections demonstrate progressive expansion of the SVZ progenitor cell population, the 

size of which correlates with the number of Bax and Bak alleles deleted. (G–I) 

Immunohistochemical analysis of the NestinCreBaxfl/flBak−/− SVZ region revealed abundant 

expression of NeuN and Sox2, but little to no staining for Olig2. (J–L) H&E-stained sections 

demonstrate both giant (J) and small (K) rosettes within the SVZ of NestinCreBaxfl/flBak−/− 

mice. (L) The presence of rosetting correlates with elevated brain weight (p=0.04). Data are 

mean ± s.d.
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Figure 2. 
Brain tumors of NestinCreBaxfl/flBak−/− mice. (A and B) The majority of tumors were large, 

round, and well-circumscribed masses that extended from the SVZ to the sub-hippocampal 

region. (C) Tumor tissue contained rosetting neurocytes, neoplastic neuropil, and occasional 

neurons with differentiated features, including increased cytoplasm. (D) Tumor rosettes 

contain MAP2-positive neuropil. (E-H) Tumor cells are positive for NeuN (E) but negative 

for Sox2 (F) and Olig2 (G), and exhibit a low Ki-67 proliferation index (H).
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Figure 3. 
A subset of NestinCreBaxfl/flBak−/− brain tumors exhibit high grade features. An exemplary 

aggressive brain tumor was associated with gross head deformity (A) and pronounced 

compression with midline shift (B and C). Arrow, central sulcus (D–G) H&E-stained 

sections revealed malignant-appearing cells streaming from the SVZ, with a fasicular 

growth pattern, perivascular cuffing, mitotic cells, and satellitosis. (H–K) Tumor cells were 

NeuN- (H), Sox2- (I), and Olig2-positive (J), and exhibited a high Ki-67 proliferation index 

(K).
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Figure 4. 
Testicular tumors of NestinCreBaxfl/flBak−/− mice. (A) Testicular enlargement was evident 

on necropsy of affected NestinCreBaxfl/flBak−/− mice. (B and C) H&E stained sections 

demonstrated effacement of testicular architecture by a striking inter-tubular neoplasia. (D) 

In contrast to Bax−/− mice, NestinCreBaxfl/flBak−/− animals displayed normal 

spermatogenesis. Magnification, 600X (E and F) The intertubular Leydig cells marked 

positive in NestinCreROSALacZ reporter mice (E), but not in ROSALacZ control animals (F).
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Figure 5. 
Gene expression analysis of NestinCreBaxfl/flBak−/− tumors. (A) Gene expression profiling 

was performed on wild-type (n=2) and tumor-bearing NestinCreBaxfl/flBak−/− (n=4) testes. 

The testes tumors of NestinCreBaxfl/flBak−/− mice manifested a germ cell signature rather 

than a Leydig, interstitial, or seminiferous expression profile, as assessed by Gene Set 

Enrichment Analysis (GSEA). (B) Fraction of total and significant (FDR q <0.25) stem cell 

signatures enriched in either the wild-type or tumor-bearing NestinCreBaxfl/flBak−/− testes. 

(C) GSEA of wild-type vs. tumor-bearing NestinCreBaxfl/flBak−/− testes for the Myc, Core 
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and PrC signatures (26). (D) GSEA of wild-type vs. tumor-bearing NestinCreBaxfl/flBak−/− 

testes for the gene signatures derived from the NestinCreBaxfl/flBak−/− aggressive brain 

tumor or NestinCreBaxfl/flBak−/− brains bearing SVZ proliferations.
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