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Microglia play an integral role in brain development but are also crucial for repair

and recovery after traumatic brain injury (TBI). TBI induces an intense innate immune

response in the immature, developing brain that is associated with acute and chronic

changes in microglial function. These changes contribute to long-lasting consequences

on development, neurologic function, and behavior. Although alterations in glucose

metabolism are well-described after TBI, the bulk of the data is focused on metabolic

alterations in astrocytes and neurons. To date, the interplay between alterations in

intracellular metabolic pathways in microglia and the innate immune response in the brain

following an injury is not well-studied. In this review, we broadly discuss the microglial

responses after TBI. In addition, we highlight reported metabolic alterations in microglia

and macrophages, and provide perspective on how changes in glucose, fatty acid,

and amino acid metabolism can influence and modulate the microglial phenotype and

response to injury.

Keywords: microglia, metabolism, pediatric, brain trauma, energy

INTRODUCTION

Traumatic brain injury (TBI) is the leading cause of pediatric trauma death and disability, affecting
up to 280 out of 100,000 children worldwide (1). The long-term morbidity of TBI is often difficult
to quantify, as TBI can alter many aspects of a young person’s development. These long-term
morbidities depend heavily on the patient’s age at the time of injury, as well as injury severity, and
can range from arrested development to deficits in memory and attention that are typically detected
in school-age children (2, 3). Sequelae later in life include social and behavioral impairments such
as depression, anxiety, and sleep disorders (4, 5).

Despite the devastating consequences of TBI and increasing pre-clinical and clinical research,
treatment options are very limited. The vast majority of interventions rely on supportive care for
the acute and chronic sequelae of injury. Little has proven to be effective in limiting the tissue and
cellular damage that occurs during the primary mechanical injury, nor in diminishing the induced
secondary injury that results from ongoing inflammation in the brain. While a degree of initial
inflammation in the brain and surrounding tissues is important for immune protection and wound
repair (6, 7), failure to revert to baseline or continued dysregulation can perpetuate inflammation
that further exacerbates cellular damage (8, 9). This change in the immune response is accompanied
by shifts in the metabolic profile that can further perpetuate inflammation in a vicious cycle
(10–12). Understanding how these metabolic changes relate to microglial immune dysregulation
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after pediatric TBI is crucial for identifying cell-specific
therapeutic targets to suppress ongoing secondary inflammatory
injury. However, research addressing this in TBI and in injuries
to the developing brain is limited, and further investigation
is warranted. In this article we review what is known about
microglial and metabolic alterations after injury to the immature
brain, and highlight the need for future research to elucidate
the role of metabolic re-programming in modulating microglial
immune response in pediatric TBI.

MICROGLIA IN PEDIATRIC TBI

Microglia, the primary immune cells of the CNS, are key
instigators of cerebral inflammation and the resultant
secondary injury after TBI. Microglia are considered the
resident macrophages of the brain: they survey their CNS
microenvironment for pathogens, migrate to areas of injury
and release inflammatory mediators when injury or infection
is detected (8, 13). In the developing brain, microglia play an
important role in the brain’s normal maturation by performing
synaptic pruning, and disruption of microglial activity during
development can lead to life-long neurocognitive deficits
(7, 14, 15).

Microglial activation after TBI has been observed in both
children and adults. Holmin et al. (16) analyzed the inflammatory
profiles of human brain tissue biopsies from patients aged 13
to 65 years who underwent surgery for brain contusions after
TBI. Biopsies obtained within 24 h after TBI demonstrated an
early inflammatory response that was mostly perivascular with
margination of neutrophils and expression of pro- and anti-
inflammatory cytokines. However, tissue obtained 3–5 days post-
injury revealed a more parenchymal distribution, with significant
monocyte/macrophage, reactive microglial, neutrophil, and
CD4+ and CD8+ T cell infiltration and predominantly pro-
inflammatory cytokine expression (16, 17). These observations
confirm that although the primary damage after trauma may be
mechanical, secondary injury starts a few days later with intense
inflammatory activation involving both a local and a peripheral
immune response.

Furthermore, clinical evidence shows that secondary injury
can cause lifelong changes in microglia. Johnson et al. (18)
examined human autopsy brain tissue from patients who had
survived a TBI. Those who survived ≥3 months showed
extensive, densely packed, reactive microglia in the corpus
callosum and adjacent parasagittal cortex, corresponding to areas
with ongoing white matter degeneration. Reactive microglia
were present in 28% of those who survived more than 1
year and were noted up to 18 years post-TBI. Similarly,
Oehmichen et al. (19) examined 305 human brains at the
time of autopsy following traumatic closed brain injury (where
death occurred between 1min to 58 years post-injury) from
patients aged 1 to 85 years, and demonstrated specific, lifelong
changes in microglial (CD68+ stained cells) morphology in
these patients.

Although activation and dysregulation of microglia can
contribute to secondary injury, microglia are essential for

clearing debris and dying neurons during the acute period
after injury to permit tissue repair (6). The inflammatory
signaling after TBI starts with passive and active drivers
of neuroinflammation, provoking microglial activation and
response. Microglia express pathogen recognition receptors
(PRRs) such as Toll-like receptors (TLRs) and NOD-like
receptors (NLRs) that are activated by pathogen-activated
molecular patterns (PAMPs) and danger-associated molecular
patterns (DAMPs), danger signals secreted by other cells in
the CNS (8). Other drivers of neuroinflammation include ATP,
glutamate, high-mobility group box 1 (HMGB1), potassium,
tumor necrosis factor (TNF), interleukin (IL)-1β, IL-6, monocyte
chemoattractant protein 1 (MCP1), and substance P (20). In
concert, these molecules signal microglia to change from a
quiescent or “normal” morphology to an activated one, which
when persistent, contributes to the dysregulated inflammation
of secondary injury in TBI. High levels of inflammatory drivers
are correlated with worse outcomes after pediatric TBI. In two
separate studies that compared children with TBI to age-matched
controls (children without TBI who needed lumbar puncture
for obstructive hydrocephalus treatment or meningitis rule-out),
higher cerebrospinal fluid (CSF) and serum levels of nerve
growth factor (NGF), IL-1β, and IL-6 correlated withmore severe
head injury and worse clinical outcomes (21, 22). Similarly a
younger age group is associated with a greater microglial and
neuroinflammatory response (23).

The characteristics and functions of microglia activated by
an inflammatory milieu have traditionally been described along
a spectrum of M1 “classically activated” and M2 “alternatively
activated” phenotypes. M1-like microglia are broadly considered
pro-inflammatory, perpetuating the inflammatory state; while
M2-like microglia are broadly anti-inflammatory, promoting
tissue remodeling and matrix deposition (8, 20). However,
microglia are not always easily categorized as M1 or M2, as
they exhibit transitional fluidity between inflammation, cell
proliferation, and remodeling for successful wound repair (24).
Nonetheless, the M1/M2 polarization is a good schema for
evaluating detrimental microglial activation after TBI, with M1
being a proxy for pro-inflammatory microglia. Both M1 and
M2 microglia increase early after TBI, but the M1 phenotype
predominates by day 7 post-injury, highlighting dysregulated
microglial activation (13, 25). Immune stimuli can lead to specific
metabolic programming of microglia and macrophages driving
them to an M1 or M2 phenotype. These specific metabolic
signatures and alterations and their potential roles in TBI will be
discussed in the following sections.

METABOLIC ALTERATIONS IN PEDIATRIC
TBI AND IMMUNOMETABOLISM IN
MICROGLIA

TBI leads to altered metabolism of not only glucose, but
also lipids, ketone bodies, and amino acids. These metabolic
alterations are particularly relevant in pediatric TBI because
the immature brain is especially adept at using alternate
substrates to produce energy for brain development (26).
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Metabolomics studies in rats with TBI have shown changes
in several major subgroups of biochemical pathways, most
significantly: oxidative phosphorylation, lipid metabolism,
the glycolysis, neurotransmitter/neuromodulator metabolism,
and amino acid metabolism (10). Comprehensive metabolic
profiling of serum samples from 144 hospitalized patients
with TBI revealed a handful of metabolite changes that
correlated with increasing severity of TBI, including two
medium-chain fatty acids (decanoic and octanoic acids) and
sugar derivatives including 2,3-bisphosphoglyceric acid (12).
Modulating these changes, many of which connect to microglial
activation, may help to attenuate secondary inflammatory
damage. Here, we review the metabolic perturbations associated
with TBI, alongside the known metabolic reprogramming in
microglia/macrophages seen in neuroinflammatory disorders,
also summarized.

Glucose Metabolism
The brain has a very high energy demand. The adult brain
uses ∼25% of all glucose and 20% of all oxygen consumed
by the body (26, 27). Glucose is the primary substrate for
brain energy and metabolism, but under certain conditions the
brain can utilize alternative substrates (e.g., ketones) for energy
and metabolism (28). Adult pre-clinical and clinical studies
demonstrated that TBI results in up-regulation of glycolysis
and pentose phosphate pathway (29–31). However, to date, PPP
activity has not been assessed in the developing brain after TBI.
Additionally, glycogen storage in the brain may be protective
after TBI because astrocyte-mediated glycolysis breaks glycogen
into glucose to transiently maintain local glucose levels, but
these stores are limited and short-lived (32). Lactate is a product
of glycolysis and another potential post-TBI fuel source (31,
33). The healthy neonatal brain uses lactate as an oxidative
substrate to supplement energy production as the brain matures;
however, controversy remains over whether administering lactate
after TBI is beneficial for maintaining glucose metabolism
(26, 34).

Microglial surveillance and activity are thought to contribute
significantly to the energy demand of the brain (35). Increased
microglial activity and proliferation has been extensively studied
in both adult and immature brains after TBI; however, what fuels
these processes remains unknown. Macrophage and microglial
response to neuroinflammation and other neuroinflammatory
diseases may offer some insights (36). It is well-established
that pro-inflammatory macrophages shift glucose metabolism
toward glycolysis and away from oxidative phosphorylation
to generate ATP, similar to the “Warburg effect” in the
tumor environment. New data support the idea that pro-
inflammatory microglia, which express glucose transporters
GLUT3 and GLUT5, undergo a similar shift (36, 37) (Figure 1).
In vitro studies show that pro-inflammatory microglia alter their
mitochondrial metabolism in a nitric oxide-dependent manner
(37), increasing lactate production, reducing mitochondrial O2

consumption, reducing ATP production, and increasing PPP
induction (38). Blocking the glycolytic pathway of primary
microglia inhibits NF-κB, reduces TNF-α and IL-6 production,
and leads to cell death (37). Conversely, culturing primary

microglia in increased glucose concentrations increases TNF-
α secretion (37). Furthermore, anti-inflammatory stimuli such
as IL-4 decrease glucose consumption and lactate production,
but increase O2 consumption rate, basal respiration, and ATP
production. Pro-inflammatory M1 microglia likely upregulate
glycolysis and downregulate oxidative phosphorylation, similar
to their macrophage counterparts. Although glycolysis is
inherently less efficient in ATP generation than oxidative
phosphorylation, it is very rapidly activated. Immune cells such
as macrophages and microglia that undergo rapid activation
by stimulation of PRRs or TLR4s undergo increased glycolysis
in order to carry out their effector functions of phagocytosis
and inflammatory cytokine production. In macrophages, one
of the glycolytic enzymes, hexoskinase1, is known to activate
NLRP3 inflammasome which is reportedly increased following
TBI in children and infants (39). Increased glycolysis leads to
increased production of the intermediate glucose-6-phosphate
that is redirected to the oxidative part of the pentose phosphate
pathway (PPP) in M1-like microglia/macrophages, leading to
increased ROS formation through production of NADPH and
NADPH oxidases (NOX) (40). After TBI, NOX2 is upregulated
in microglia and macrophages (41, 42). An increase in PPP
flux is seen early in adult brains after TBI and at baseline in
the healthy neonatal brain. It is not clear whether the PPP
is also upregulated in microglia after TBI or whether these
changes (increased glycolysis, PPP) are maladaptive or protective
in the presence of neuronal and astrocytic dysfunction and
cell death.

Microglial glucose metabolism has been better studied in
Alzheimer’s disease (AD) models than in TBI. In a mouse
model of AD, neuroinflammation caused by Aβ amyloid
accumulation directly triggered microglia to decrease oxidative
phosphorylation and increase glycolysis through the mTOR-
HIF-1α pathway (37). Glycolysis can be up-regulated by
IFN-γ, a regulator of the mTOR pathway (37). Similar to
TBI, AD microglia undergo a shift in morphology from
ramified (resting) to amoeboid (active) as the disease progresses
(37). Neuroinflammation during AD may lend insight into
glucose metabolism of inflammatory microglia among patients
with TBI.

M1 and M2 macrophages demonstrate differences in
the tricarboxylic acid (TCA) cycle. M2 macrophages
and microglia have an intact TCA cycle that is coupled
to oxidative phosphorylation (43, 44). However, in M1
microglia/macrophages, the TCA cycle is perturbed at the
level of citrate and succinate. Increased citrate generated
by the M1 microglia/macrophages is transported out and
leads to the formation of fatty acids (44). Excess citrate also
promotes the formation of nitric oxide and prostaglandins
by activated microglia/macrophages (44–46). Accumulated
succinate can lead to stabilization and activation of HIF1α
leading to the sustained production of IL1β thereby perpetuating
the inflammatory cascade.

Lipid and Fatty Acid Metabolism
The brain is a lipid-rich organ and has a high expression of
fatty acid transporters and fatty acid synthase, which enables
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FIGURE 1 | Metabolic pathways in neurons and glia in the normal brain. Glucose is the primary substrate for brain energy and metabolism, and under normal

conditions, glucose is utilized by neurons and glia for energy and neurotransmitter synthesis. It is well-established that fatty acids are readily metabolized by

astrocytes. It remains unclear whether fatty acids are metabolized by microglia, although fatty acid metabolism has been reported in macrophages.

extensive fatty acids uptake from the blood as well as synthesis
de novo in the brain. Brain fatty acids are necessary for
neurogenesis, synaptogenesis, and synaptic activity (34, 47, 48).
The products of fatty acid synthase are important branch points
for biosynthesis and formation of complex lipids or for energy
production. In addition, fatty acid oxidation is carried out by
neural progenitor cells and astrocytes (47, 49, 50). The long chain
acyl-CoAs are shuttled across the mitochondrial membranes
via the carnitine palmitoyl transferases (CPTs), are metabolized
into acetyl-CoA by β-oxidation, which subsequently enters the
TCA cycle (Figure 1). Both the expression of CPTs and enzymes
necessary for mitochondrial fatty acid oxidation appear to be
developmentally regulated (47).

Lipids are essential for structural functions such as myelin
synthesis, and for signaling functions such as lipid raft formation
for neurotransmission. These functions can be disrupted after an
injury. TBI alters lipid and fatty acid metabolism (10, 12, 26, 36)
and increases demand for synthesis of membrane phospholipids
to repair brain structures. Membrane phospholipid degradation
after TBI leads to increased levels of free fatty acids (FFAs)
in the CSF and is thought to contribute to secondary injury.
Indeed, an increase in FFAs after TBI is associated with poor
outcomes (36). FFAs can activate TLR4 receptors on microglia
and macrophages, promoting and propagating inflammation in
the brain. Lysophosphatidic acid (LPA) is another bioactive lipid

that is increased in the circulation following TBI (51). Increased
expression of the LPA receptor in the immature brain (52) may
make it more susceptible to LPA after injury.

Fatty acids and lipids are important drivers of metabolic
changes in inflammation. Importantly, fatty acid transport
proteins, fatty acid binding proteins, and scavenger receptors
necessary for transportation of fatty acids are all expressed
in microglia and regulated during both normal development
and in pathology. M1 and M2 macrophages have distinct
fatty acid and lipid metabolism pathways—whether these are
the cause or the effect of polarization remains a point of
discussion. Pro-inflammatory M1 macrophages have increased
fatty acid synthesis that promotes formation of pro-inflammatory
cytokines while alternatively activated M2 macrophages increase
fatty acid oxidation and oxidative phosphorylation (36, 53).

Omega-3 fatty acids are widely considered to have antioxidant
effects in a variety of metabolic and inflammatory diseases,
including cardiovascular, autoimmune, and neurologic diseases.
Rats that had undergone TBI and treated with intraperitoneal
injections of Omega-3 polyunsaturated fatty acids (ω3-PUFA)
exhibited a decrease in activated microglia and reduced
expression of inflammatory factors TNF-α, IL-1β, IL-5,
and IFN-γ when compared to untreated counterparts (54).
Omega3-PUFA exert their anti-inflammatory effects by multiple
mechanisms including deacetylation of HMGB1 protein,
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FIGURE 2 | Alterations in amino acids and fatty acids following TBI. Brain injury results in elevated levels of arachidonic acid due to plasma membrane degradation.

This results in subsequent cascade of pro-inflammatory metabolites such as leukotrienes, prostaglandins and 20-HETEs, which along with released cytokines lead to

activation of microglia and potential recruitment of macrophages. Activated microglia is characterized by upregulation of tryptophan metabolism, increased oxidative

stress, and may further propagate neurotoxicity and cell death.

decreasing NF-kB expression, activating PPAR-γ receptor,
inhibiting TLRs, activating G-protein-coupled-receptors
(GPCRs), and converting to resolvins and neuroprotectins
(54–59). Emerging evidence suggests that G protein-coupled
receptors GPR40 and GPR120 are activated by ω3-PUFA, which
is upregulated on microglia during cerebral artery occlusion (60).
GPR120 or FFA4 (a GPCR for long chain unsaturated fatty acids
including ω3-PUFA) has been shown to polarize macrophage
phenotype to an M2-like, anti-inflammatory form (61). GPR120
has also shown expression on microglia and is over-expressed in
injury and neuroinflammation. Deficiency of ω3-PUFA in the
immature brain is associated with impaired microglial function
and synaptic pruning (62). Whether ω-3 PUFA exert their
neuroprotective effects by activating microglial GRP120 remains
to be examined.

Docosahexaenoic acid (DHA) comprises 40% of the ω3-
PUFA in the brain. Administration of DHA after TBI can
decrease oxidative stress and pro-inflammatory microglia in
both pediatric and adult rodent CCI models (63–65). Mice with
DHA-sufficient diets had less inflammation and faster motor
function recovery than those that were DHA-depleted before
CCI, although whether these dietary benefits come directly
from changes in microglial activity is controversial (66, 67).
Omega3-PUFA supplementation may also enhance microglia
phagocytosis of myelin, necessary for removal of myelin debris
after TBI.

Activated microglia also interact with the arachidonic acid
pathway, which makes leukotrienes and prostaglandins—lipids
involved in inflammation and tissue repair. TBI induces
arachidonic acid release from cell membranes and increases
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20-hydroxyeicosatetraenoic acid (20-HETE), a metabolite of
the arachidonic acid pathway (Figure 2). Inhibiting 20-HETE
synthesis in a ratmodel of pediatric TBI led to neuroprotection by
reducing microglial activation and attenuating proinflammatory
cytokines (68). Furthermore, cyclooxygenase (COX) enzymes
that catalyze arachidonic acid into prostaglandins are strongly
expressed on microglia during neuroinflammation and are
upregulated during pathologic conditions such as infection,
ischemia, and TBI both in pre-clinical models and in the clinical
setting and remain elevated for a prolonged period after the
injury (69–71). Additionally, certain polymorphisms of COX-
1 and COX-2 have been linked to increased susceptibility to
cerebral palsy—a pediatric neurodevelopmental disorder thought
to be induced by perinatal neuroinflammation—pointing to the
importance of COX enzymes in neuroinflammatory pathogenesis
and neurodevelopment (69).

Cholesterol, an important component of myelin, is
synthesized de novo in the brain primarily by astrocytes.
Synthesis is high in the developing brain but decreases with age
and has a slow turn-over under physiologic conditions (72, 73).
Cholesterol is converted to 24-(S)-hydroxycholesterol by
CYP46A1, which, in the healthy brain, is expressed in neurons.
However, in the presence of neuroinflammation, microglia
overexpress CYP46A1, indicating that microglia contribute to
cholesterol elimination (74). M1 microglia are known to be
associated with the formation of cholesterol-rich lipid droplets
(LDs) (75). LDs contain neutral lipids such as cholesterol esters
(CE), triacylglycerols (TG), diacylglycerols, phospholipids, and
cholesteryl esters. In the brain, LDs are mainly composed of CE
and TG. The formation of LDs is regulated by multiple factors
including cholesterol synthesis, elimination, and cholesterol
efflux from LDs (76). LDs are formed through the uptake
of lipids from plasma lipoproteins by specialized endocytic
receptors, including scavenger receptors (SR) and low density
lipoprotein receptor (LDLR). Both SR CD36 (a fatty acid
translocase) and LDLR are upregulated in activated microglia
(77–79). Cholesterol efflux from LDs is also important for lipid
metabolism in activated microglia. Cholesterol efflux from LDs
is mediated by ATP-binding cassette transporter A1 (ABCA1)
and ABCG1 (80). The expression of these transporters can be
induced by inflammatory cytokines such as IL-6 and TNFα,
suggesting that cholesterol efflux from LDs may be enhanced
during the activation process. The cholesterol-breakdown
product 7-ketocholesterol (7KC) is upregulated in the brains
and CSF of patients with multiple sclerosis and propagates a
maladaptive pro-inflammatory microglial phenotype through
PARP-1 (36, 81). Buildup of 7KC is likely associated with
ineffective microglial cholesterol metabolism (36). The balance
between cholesterol intake and efflux may play a major role in
the pathogenesis and progression of neuroinflammation.

Other lipid-derived metabolites important for secondary
injury in TBI may include the endocannabinoids, which
activate cannabinoid receptors (82). Cannabinoid receptor
1 is expressed in the brain whereas cannabinoid receptor
2 is expressed mainly on immune cells and tissues. The
two main endocannabinoids are 2-arachidonylglycerol (2-AG)
and N-arachidonoyl-ethanolamine (AEA), which have locally

neuroprotective effects. However, this neuroprotection is short-
lived, as both 2-AG and AEA are quickly enzymatically degraded
into other modulators of inflammation, including arachidonic
acid (82). Katz et al. (82) studied inhibitors of 2-AG and
AEA degradation in a rat fluid percussion model of TBI and
found that a selective inhibitor of 2-AG degradation improved
neurologic and behavioral function and decreased microglial
activation. Rats treated with an AEA degradation inhibitor
also had decreased microglial activation but did not display
significant functional benefits (82). Similarly, the Y. Zhang group
has shown anti-inflammatory and neuroprotective benefits of
WWL70, an inhibitor of microglial 2-AG hydrolysis, in animal
models of TBI, multiple sclerosis, and neuropathic pain (83–85).
WWL70 treatment in a mouse model of TBI improved motor
coordination and working memory performance, reduced lesion
volume, and decreased expression of COX-2 (84). Modulation of
the endocannabinoid system and other lipid-derivatives may be
useful in treating neuroinflammation.

Amino Acid Metabolism
Amino acids are an alternative source of energy for certain
cells with gluconeogenesis capabilities. Metabolism of amino
acids is especially important in the brain because many
amino acids act as neurotransmitters. Glutamate is the
principal excitatory neurotransmitter of the brain. At high
concentrations, glutamate causes neurotoxicity by excessive
stimulation of its receptors, including NMDA and kainate
receptors. Under normal conditions, astrocytes and microglia
strictly regulate glutamate homeostasis, but after TBI, massive
glutamate efflux and significant decrease in astrocyte glutamate
transporter-1 (GLT-1/EAAT2) cause excitatory cell death (86).
Proinflammatory microglia also contribute to releasing large
amounts of glutamate as a result of dysregulated oxidative burst
and lipid peroxidation (87, 88).

The glutamate-glutamine cycle is well-described (89) but how
glutamine metabolism impacts microglial phenotype expression
is a much newer concept (Figure 1). Microglia consume
glutamine as alternative fuel in the absence of glucose (27).
Studies of hypoglycemic mice and brain slices maintained
in a completely aglycemic environment have shown that
microglial morphology and motility remain unaffected by
reduced extracellular glucose for up to 90 minutes (27, 35).
Microglia are able to maintain normal function by carrying out
oxidative phosphorylation with glutamine. Glutamine enters the
microglia through transporters SLC1A5 and SLC38A1 and is
converted into glutamate in the mitochondria via glutaminase
(Figure 1). The glutamate is metabolized to α-ketoglutarate,
which enters the TCA cycle (27). Blocking glutaminolysis in
microglia with epigallocatechin gallate or R162 (inhibitors of
glutamate-to-α-ketoglutarate metabolism) leads to a decrease in
NAD(P)H (35). Blocking glutaminolysis, even without removing
glucose, also causes microglia to adopt an amoeboidmorphology,
reduces motility, and reduces microglial damage response (35).

Microglia play an important role in glutamate metabolism
after TBI by ameliorating glutamate-induced neurotoxicity.
Microglia clear excess glutamate via glial glutamate transporters
such as GLAST/EAAT1, GLT-1/EAAT2 and EAAC1 (90–92),
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thereby protecting neurons from excitotoxicity. Loss of GLAST
and GLT-1 expression on microglia and astrocytes worsens
secondary inflammatory damage (90, 91). Another receptor of
interest is metabotropic glutamate receptor 5 (mGluR5). A G-
protein-coupled receptor expressed in the brain cortex (93),
mGluR5, responds to glutamate by modulating microglia to a
predominantly anti-inflammatory phenotype (94, 95). mGluR5
agonists have been shown to reduce secondary brain injury after
TBI in rats (96). Even delayed activation of mGluR5 1 month
after injury helps to attenuate ongoing neuroinflammation and
degeneration (97). Increased levels of extracellular glutamate
after TBI also have been observed to correlate directly with
microglial activation (98). Large amounts of extracellular
glutamate activate microglia through NMDA receptors, causing
microglia to secrete more glutamate, and eventually impairing
mitochondrial respiration. D-cycloserine—an NMDA receptor
antagonist, and melatonin—a kainate receptor antagonist, have
shown benefit in decreasing microglial activation and enhancing
recovery in rodent models of TBI (88, 99).

Tryptophan metabolites also contribute to excitotoxicity.
Levels of quinolinic acid, a tryptophan-derived NMDA agonist,
rise in the CSF after TBI and correlate directly with mortality
in humans (100–102). Tryptophan is metabolized to kynurenine

by indoleamine 2,3 dioxygenase 1 (IDO1) in neurons, astrocytes,
microglia, and infiltrating macrophages (Figure 2). Kynurenine
is, in turn, metabolized into neuroprotective kynurenic acid by
kynurenine aminotransferase or into neurotoxic quinolinic acid
by kynurenine 3-monooxygenase (103). Modulating the relative
activity of neuroprotective kynurenine aminotransferase vs.
neurotoxic kynurenine 3-monooxygenase may be beneficial for
attenuating inflammation. Tryptophan is also the precursor for
neurotransmitters serotonin andmelatonin, which are important
in regulating mood and sleep (104). Our group has shown
that CCI in infant rabbits upregulates IDO1 in microglia,
acutely increases kynurenine levels, and decreases serotonin and
melatonin at later time points (104). These findings point to a
link between microglial activation, tryptophan metabolism, and
the long-term sequelae of mood and sleep dysregulation after
pediatric TBI.

Arginine metabolism has also been shown to play a key
role in the immune function of macrophages and microglia.
Arginine is metabolized either through the nitric oxide
synthase pathway (seen in M1 macrophages/microglia) to
form NO or through the arginase pathway (upregulated in
M2 macrophages/microglia). Patients with severe TBI were
found to have decreased circulating L-arginine (105) and

FIGURE 3 | Potential metabolic pathways involved in re-programming of activated microglia. Summary of pathways that have been implicated in microglial

re-programming after TBI. (?) indicates potential pathways/mechanisms which have not been elucidated in microglia to date.
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supplementation with arginine-rich peptides has been shown to
have neuroprotective effects in animal models after TBI (106).

DISCUSSION

Microglial metabolism is a relatively understudied area that can
influence both normal development and response to injury. The
microglial response, activation, and dysregulation that ensue
after pediatric TBI causes inflammatory damage and metabolic
changes that can impact brain recovery and maturation
thereafter. Understanding the interaction between the metabolic
changes that take place in activated microglia, and how these
changes affect neighboring astrocytes and neurons, is crucial
for limiting inflammation-induced secondary injury (Box 1).
If we can understand mechanistically how metabolic changes
within microglia affect overall brain energy and metabolism,
we can potentially fine-tune metabolic support to diminish
the dysregulated cycle of inflammatory damage and improve
neurologic outcome.

This review highlights the vast scope of metabolic pathways
that influence microglial function and are influenced by
microglial activation after TBI (Figure 3). Manipulating
microglial metabolism as a treatment option to modulate
the inflammatory response would be a novel mechanism of
promoting recovery. Targeted delivery of drugs to manipulate
microglial metabolism at a subcellular level using drug-
conjugated dendrimer nanoparticles is one such emerging
cell-specific therapy. A better understanding of the metabolic
pathways that modulate microglial function during normal brain
development and following injury is crucial for development of
targeted therapies.

BOX 1 | Future Questions and Areas of Research

– Do microglia have metabolic plasticity after injury and how do they adapt

based on developmental age and pathology?

– What are metabolic pathways that support active functions of microglia

(e.g., phagocytosis, mobility, etc.) especially when conventional glucose

metabolism in astrocytes and neurons is dysfunctional?

– How does glucose metabolism in microglia relative to other brain cells

(astrocytes and neurons) change over time after injury in the immature

brain?

– Do infiltrating immune cells have distinct metabolic characteristics that

differ from brain microglial cells?

– Dometabolic shifts in brain infiltrating immune cells contribute toward repair

or propagate injury after TBI?

– Can we manipulate microglial metabolism and influence microglial

phenotype?

– Canmicroglial metabolism bemanipulated as a therapeutic target to enable

repair and recovery after pediatric TBI?
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