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Abstract

Recent studies have combined multiple neuroimaging modalities to gain further

understanding of the neurobiological substrates of aphasia. Following this line of

work, the current study uses machine learning approaches to predict aphasia severity

and specific language measures based on a multimodal neuroimaging dataset. A total

of 116 individuals with chronic left-hemisphere stroke were included in the study.

Neuroimaging data included task-based functional magnetic resonance imaging

(fMRI), diffusion-based fractional anisotropy (FA)-values, cerebral blood flow (CBF),

and lesion-load data. The Western Aphasia Battery was used to measure aphasia

severity and specific language functions. As a primary analysis, we constructed sup-

port vector regression (SVR) models predicting language measures based on (i) each

neuroimaging modality separately, (ii) lesion volume alone, and (iii) a combination of

all modalities. Prediction accuracy across models was subsequently statistically com-

pared. Prediction accuracy across modalities and language measures varied substan-

tially (predicted vs. empirical correlation range: r = .00–.67). The multimodal

prediction model yielded the most accurate prediction in all cases (r = .53–.67). Sta-

tistical superiority in favor of the multimodal model was achieved in 28/30 model

comparisons (p-value range: <.001–.046). Our results indicate that different neuroim-

aging modalities carry complementary information that can be integrated to more

accurately depict how brain damage and remaining functionality of intact brain tissue

translate into language function in aphasia.
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1 | INTRODUCTION

Current estimates suggest there are over two million individuals living

with aphasia in North America alone (Simmons-Mackie, 2018). This

high prevalence is largely explained by two factors. First, although

stroke rates have declined in older populations, younger populations

have experienced a rise in stroke rates in high-income countries

(Feigin et al., 2014; Feigin et al., 2017; Giroud, Jacquin, & Béjot, 2014;

Kissela et al., 2012; Ramirez et al., 2016). And second, this epidemio-

logical trend is accompanied by increased regional life expectancy

among stroke survivors (Feigin et al., 2015, 2017; Kim, 2014; Lackland

et al., 2014; Swerdel et al., 2016). Given that roughly a third of stroke

survivors are affected by aphasia (Engelter et al., 2006), it follows that

more people are living longer with aphasia than ever before. Consider-

ing these statistics, it is easy to see that the societal, familial, and eco-

nomic burden of aphasia is on the rise. Consequently, it serves as a

highly important and clinically relevant goal to address this develop-

ment by thoroughly investigating the neurobiological mechanisms

underlying aphasia, which may in turn advance efforts to improve per-

sonalized treatment in aphasia.

While our understanding of the neural underpinnings of language

has advanced far past the initial delineations made by Broca's (1965)

and Wernicke's (1874), there is no cure for aphasia. Recent high

impact studies suggest that aphasia treatment is effective in improv-

ing language function at the group level (Brady, Kelly, Godwin, &

Enderby, 2012; Brady, Kelly, Godwin, Enderby, & Campbell, 2016;

Breitenstein et al., 2017). However, treatment response is highly vari-

able across individuals (Brady et al., 2016; Fridriksson, Den Ouden,

et al., 2018; Fridriksson, Rorden, et al., 2018; Price, Hope, &

Seghier, 2016) and less is known about the factors differentiating

those who respond fractionally or not at all, and those who benefit

significantly from treatment (e.g., Fridriksson, 2010). Understanding

manifestations of language impairment following brain damage is an

important first step toward the ultimate goal of maximizing functional

recovery following stroke. Specifically, understanding how lesion size

and location affect and interact with functionally intact brain regions

may prove to be a promising avenue for the development of personal-

ized rehabilitation in aphasia designed to address what we now know

about individual variability in treatment response (Crosson

et al., 2019; Kiran & Thompson, 2019).

Recent efforts have examined how patterns of brain damage and

structurally and functionally intact cortical and subcortical regions cor-

respond to aphasia severity (e.g., Halai, Woollams, & Lambon

Ralph, 2020; Hope, Leff, & Price, 2018; Pustina et al., 2017;

Yourganov, Fridriksson, Rorden, Gleichgerrcht, & Bonilha, 2016). The

rationale behind this line of work lies in the commonly agreed upon

notion that complex higher-order functions, such as language, are rep-

resented in widely distributed cortical networks (Mesulam, 1990;

Sporns, 2015; Ueno, Saito, Rogers, & Lambon Ralph, 2011). Frank

lesion damage may affect one or more nodes of the language net-

work, while leaving the remainder of the network intact. Nonetheless,

the extent to which brain damage impairs functionality within the net-

work remains elusive (Crosson et al., 2019). Some of our prior work

has shown that damage to white matter fibers connecting intact corti-

cal regions can affect language function in much the same way as cor-

tical lesions (Bonilha, Nesland, et al., 2014; Fridriksson, Den Ouden,

et al., 2018; Fridriksson, Rorden, et al., 2018; Marebwa et al., 2017).

Corroborating findings in neurosurgical patients show that electrical

stimulation of white matter pathways can induce aphasia-like disrup-

tions in language processing (Duffau, Peggy Gatignol, Mandonnet,

Capelle, & Taillandier, 2008; Kinoshita et al., 2015). Together, these

findings suggest that in order to understand how brain damage affects

behavior, it may be beneficial to look beyond the effects of cortical

lesion alone. The general idea is that more brain data could improve

prediction of language outcomes. Consequently, a promising new

approach involves examining the contribution of lesion maps, white

matter integrity and functional/cortical activation for prediction of

language outcomes.

Before discussing studies that have embarked on deciphering

whether or not combining neuroimaging modalities leads to enhanced

prediction accuracy of language impairment, it is worth noting that

the idea of examining the manifestation of brain damage in aphasia by

incorporating more than one neuroimaging modality within the same

study design is not, per se, a novelty. Prior studies have incorporated

functional and structural measures for various purposes, including

delineation of neurobiological bases of language (e.g., Fridriksson, Den

Ouden, et al., 2018; Fridriksson, Rorden, et al., 2018; Saur

et al., 2008), examination of language recovery (e.g., Meier, Johnson,

Pan, & Kiran, 2019; Stockert et al., 2020), and to model specific lan-

guage functions (e.g., Halai, Woollams, & Lambon Ralph, 2018; Saur

et al., 2010). While these studies have leveraged the added benefit of

studying language function in aphasia from multiple angles, the pur-

pose has not been to evaluate if combining more than one neuroimag-

ing modality within the same prediction model improves prediction

accuracy compared to single-modality models. Motivated by these

prior studies, the major aim of the current study was to gain under-

standing of the potential value of integrating multiple neuroimaging

modalities for predicting cross-sectional aphasia symptomology.

A handful of recent high-impact studies have applied a similar

focus, with inconsistent results. A prior study from our group

(Yourganov et al., 2016) used support vector regression (SVR; Smola &

Scholkopf, 2004) to predict speech and language processing based on

lesion data and connectome data acquired with diffusion tensor imag-

ing (DTI). Although the prediction accuracy of the resulting model was

not better than the model based on lesion data alone, a connectome-

based analysis revealed a complementary brain-behavior information

of potential significance (e.g., the connection between the left poste-

rior superior temporal gyrus and the left angular gyrus was predictive

of several language measures). A follow-up study applied a

connectome-dynamic lesion-symptom mapping approach in a compa-

rable manner, finding a significant improvement in prediction accuracy

of aphasia severity (Western Aphasia Battery-Revised Aphasia Quo-

tient, WAB-AQ; Kertesz, 1982) compared to a model based on lesion

maps alone (combined model vs. lesion maps accuracy: r = .76 vs. .72,

p <.05; Del Gaizo et al., 2017). Besides work from our group, Pustina

et al. (2017) constructed a multivariate framework integrating lesion
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data, structural connectivity, and functional connectivity measures

(“stacked multimodal predictions”; STAMP) for estimating aphasia

severity. Prediction accuracy ranged between 0.79 and 0.88 (actual

vs. predicted outcomes correlation) for several measures of speech

and language processing in a training sample of 53 persons with apha-

sia. For out-of-sample prediction of performance on a picture naming

task using the trained model, the observed accuracy was substantially

lower (r = .66). While the out-of-sample prediction accuracy did not

present a significant advantage over the best single-modality model

(structural connectivity; r = .63), the authors argue that the absolute

increase in accuracy (0.03), nonetheless, might have reached statistical

significance in a larger sample.

A subsequent large-scale study by Hope et al. (2018) failed to

replicate the complementarity of using multiple neuroimaging modali-

ties for prediction of language function as shown by Yourganov et al.

and Pustina et al. Specifically, Hope et al. used lesion data and struc-

tural connectivity measures to predict subscores of the Comprehen-

sive Aphasia Test (Swinburn, Porter, & Howard, 2005) via SVR

analysis. A finding of particular interest was that their results were

inducer-dependent, that is, linear and nonlinear kernels yielded differ-

ent results. In effect, the results of Yourganov et al. were replicated

for a naming subtest using an identical approach (SVR with a linear

kernel), but a rerun of the analysis with the authors' preferred inducer

yielded a different result. Results from this study suggest that subjec-

tive choices made by researchers creating predictive models could

have major impacts on experimental findings, effectively “[opening] …
a Pandora's box” (Hope et al., 2018, p. 25). A recent elaborate study

by Halai et al. (2020) specifically examined the effects of critical

parameters on prediction accuracy for four principal component anal-

ysis (PCA)-derived language components, including brain partitions as

predictive features, combination of multimodal neuroimaging, and

type of machine learning algorithms. Prediction accuracy for the best

models, evaluated as the correlation between actual and predicted

values, ranged between r = .51–.73. Importantly, the models varied

with respect to selected parameters and, in line with Hope

et al. (2018), the addition of diffusion-weighted data to lesion-based

models did not significantly improve model performance.

In light of the inconsistent findings discussed above, the current

study describes an effort to elucidate the somewhat murky picture

regarding the benefit of combining neuroimaging modalities for pre-

diction of language function. We extracted behavioral and neuroimag-

ing data from a large sample of participants (n = 202) in our prior

studies. Behavioral data included an estimation of overall aphasia

severity (WAB-AQ) and impairment in specific language functions.

Given that recent investigations have convincingly shown that aphasia

cannot reliably be reduced to a single severity factor (Butler, Lambon

Ralph, & Woollams, 2014; Halai, Woollams, & Lambon Ralph, 2017;

Mirman et al., 2015), we included measures of naming, repetition, flu-

ency, and auditory comprehension from the WAB. Presumably, these

specific language functions are represented in intertwined, albeit dis-

tinguishable, neural networks which may, therefore, relate directly to

whether or not multimodal prediction yields beneficial effects

(Fridriksson, Den Ouden, et al., 2018; Fridriksson, Rorden, et al., 2018;

Hickok & Poeppel, 2007). Neuroimaging data included measures of

functional cortical activation (functional magnetic resonance imaging;

fMRI), integrity of white matter connections (fractional anisotropy;

FA), cerebral blood flow (CBF), and atlas-based lesion-load data. In line

with the recent focus on incorporating multivariate statistical

approaches to examine the neural substrates of aphasia

(e.g., Fridriksson, Den Ouden, et al., 2018; Fridriksson, Rorden,

et al., 2018; Thye & Mirman, 2018; Wilson & Hula, 2019), we con-

structed data-driven multivariate prediction models for language mea-

sures. While a hypothesis-driven approach might reduce the degrees

of freedom associated with the models, we believe that such

endeavors would be premature given the disparate prior findings.

Specifically, we addressed two aims. First, we examined how

accurately language function can be predicted based on each of the

four neuroimaging modalities separately, based on overall lesion vol-

ume alone (for comparison), and based on all modalities combined.

Second, we examined the hypothesis that the combined-modality pre-

diction model would be statistically superior to any single-modality

prediction model and the lesion volume model. We note that as pre-

diction accuracy was of primary interest, we did not undertake the

dubious task of interpreting coefficient weights. However, we

acknowledge that understanding of specific predictive features

(modality and region) for language function may hold substantial

value in terms of advancing knowledge of the neurobiology of lan-

guage and for clinical prognosis, management and treatment para-

digms. Therefore, we also investigated which brain regions and

imaging modalities were most strongly associated with each lan-

guage outcome and report these results in Supporting Information

(online).

2 | METHOD

2.1 | Participants

Participant data were extracted from a data repository consisting of

data gathered in several prior studies conducted in our lab. We

included subjects with aphasia resulting from a single ischemic or

hemorrhagic stroke to the left hemisphere. Participants who had suf-

fered lacunar infarcts, bilateral stroke, or damage only involving the

brainstem or cerebellum were excluded. Behavioral and neuroimaging

data were acquired between 2007 and 2019. After removing subjects

with missing data points (primarily neuroimaging data, for example,

some participants did not have CBF data), a total of 116 participants

were included for data analysis. The mean sample age was

58.5 ± 10.9 years (range: 29–81 years), and 41 participants were

female. The mean lesion volume across participants was 122.61 cm3

(range: 2.09–472.38 cm3; Figure 1 presents the lesion distribution

across participants) and mean time poststroke was 39.4 months

(range: 5.6–237.1 months). All participants gave informed consent for

study participation and the study was approved by the Institutional

Review Boards at the University of South Carolina and Medical Uni-

versity of South Carolina.

1684 KRISTINSSON ET AL.



2.2 | Behavioral data

Aphasia was assessed with the Western Aphasia Battery (WAB;

Kertesz, 1982) and Western Aphasia Battery-Revised (WAB-R;

Kertesz, 2007). Scoring of the WAB was conducted according to

instructions in the testing manual. We focused on five subscores that

evaluate specific domains of speech and language, including Sponta-

neous Speech (range: 0–20), Fluency (range: 0–10), Naming (range:

0–10), Speech Repetition (range: 0–10), Auditory Comprehension

(range: 0–10), and a summary score of overall aphasia severity, termed

Aphasia Quotient (WAB-AQ; range: 0–100). Table 1 shows distribu-

tion of all language measures. Several participants scored at ceiling for

various measures (WAB-AQ ≥93.8, n = 7; Spontaneous Speech, n = 6;

Fluency, n = 6; Naming, n = 2; Speech Repetition, n = 2; Auditory

Comprehension, n = 7).

2.3 | Neuroimaging data

2.3.1 | Data acquisition

All MRI data were acquired on the Siemens 3T MRI scanner

(Siemens Medical Systems, Erlangen, Germany) housed at the

McCausland Center for Brain Imaging located at the Palmetto Rich-

land Heart Hospital in Columbia, South Carolina. Because data col-

lection for this experiment spanned multiple years, certain sequence

parameters were changed when the Siemens scanner was upgraded

from a Trio (using a 12-channel head coil) to a Prisma Fit (20-channel

head coil). Where possible, data acquisition parameters were kept

consistent across scanners. Sequence parameters and deviations are

shown in Table 2.

2.3.2 | Acquisition of structural images

For each participant we acquired a T1-weighted image (MP-RAGE:

1 mm isotropic voxels, matrix = 256 × 256, 9� flip angle). The duration

of T1-weighted image acquisition was 6 min 17 s. We also obtained a

T2-weighted structural image using a 3D TSE (Turbo Spin Echo) scan.

T2 acquisition time was 5 min 6 s. Sequence parameters are described

in Table 2.

2.3.3 | Acquisition of cerebral blood flow (ASL)
images

Cerebral blood flow for the first 77 participants was measured using

the Siemens product Pulsed Arterial Spin Labeling (PASL PICORE

Q2T) sequence which has been shown to have high reliability (Wang

et al., 2011). The selective inversion slab was 120 mm thick; the infe-

rior saturation slab was 100 mm thick and directly below the imaging

slices. The remaining 40 individuals were scanned with a 2D EPI

pseudo-continuous arterial spin labeling (pCASL) sequence (Wu,

Fernandez-Seara, Detre, Wehrli, & Wang, 2007) that has also shown

good reliability (Kilroy et al., 2014).

2.3.4 | Acquisition of functional magnetic
resonance images

All participants were scanned while viewing and naming 40 color

images of high-frequency nouns (which they named) and 20 abstract

pictures (for which they remained silent) that served as contrast in

statistical analyses. Pictures were presented on an MRI-compatible

screen that was viewed through a mirror positioned in the partici-

pant's line of sight. This fMRI sequence consisted of T2* EPI

(echoplanar) imaging with sparse sampling. Each participant's images

were acquired during a single, 10-min functional run. Identical

sequence parameters were used for participants scanned using the

Siemens Trio and the Siemens Prisma Fit scanners.

2.3.5 | Acquisition of DTI

Diffusion weighted images were acquired for each participant. Parame-

ters were kept as constant as reasonably possible throughout the study

period. Unavoidable, subtle changes in sequence details occurred with

the scanner update. These differences are detailed in Table 2.

2.3.6 | Data preprocessing

Preprocessing was conducted using Matlab (R2017b, The

MathWorks, Inc., Natick, MA) by way of nii_preprocess (Rorden,

F IGURE 1 Lesion overlap map for all participants. The figure shows the lesion distribution for the sample with warmer colors representing
more lesion overlap (color scale indicates proportional overlap). Greatest lesion overlap was observed in the superior portion of the insular region
where 69% of the sample had lesion. Overall, lesion distribution covered the extent of the Perisylvian language regions
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McKinnon, Hanayik, Yourganov, & Reddy, 2020), a publicly available

custom image-processing pipeline designed to work with clinical

populations such as stroke (https://github.com/neurolabusc/nii_

preprocess). This pipeline leverages multiple programs (SPM8; Func-

tional Imaging Laboratory, Wellcome Trust Centre for Neuroimaging,

Institute of Neurology, UCL, www.fil.ion.ucl.ac.uk/spm), FSL version

6.0.3 (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012),

ASLtbx (http://www.cnf.upenn.edu/�zewang/ASLtbx.php), and

MRItrix (https://www.mrtrix.org/) to process multiple modalities of

MRI data. This pipeline outputs data in standard space which can then

be queried at the voxel or region-of-interest (ROI) level. The quality of

data preprocessing (i.e., the output of nii_preprocess) for the current

study was confirmed by visual inspection of the output file generated

by this set of scripts. These scripts were used to generate the follow-

ing maps in standard space: lesion load, cerebral blood flow (CBF),

fMRI activation (associated with object naming), and functional anisot-

ropy (FA). For each individual, and for each map (lesion-load, CBF,

fMRI, FA), we computed the average signal intensity in each of

150 areas based on the AALCTS atlas. The AALCTS atlas is a custom-

made atlas unifying the Automated Anatomical Labeling (AAL;

116 ROIs; Tzourio-Mazoyer et al., 2002) and Catani – Thiebaut de

Schotten (CTS; 34 ROIs; Catani & Thiebaut de Schotten, 2008) atlases

(for further description, see Yourganov, Smith, Fridriksson, &

Rorden, 2015). The resulting four matrices (one for each modality) of

the dimensions 116 (subjects) × 150 (brain regions) were used as

input for our analysis.

2.3.7 | Generation of lesion-load maps

Lesions were demarcated on individual T2-weighted images by a

licensed neurologist using the MRIcron software (Rorden, Bonilha,

Fridriksson, Bender, & Karnath, 2012). To begin, the T2-weighted

image on which the lesion was drawn was coregistered to the

T1-weighted image. The transformation matrix generated during this

step was used to transform the lesion to native T1 space. The images

were then converted to standard Montreal Neurological Institute

(MNI) space using enantiomorphic (Nachev, Coulthard, Jager,

Kennard, & Husain, 2008) segmentation–normalization (Ashburner &

Friston, 2005) (https://github.com/rordenlab/spmScripts/blob/

master/nii_enat_norm.m). Enantiomorphic mending exploits the fact

that the brain is left-right symmetrical to fill in damaged or missing

(i.e., lesioned) portions of the T1 image prior to normalization, which

may not perform well in damaged brains. This process involves the

replacement of voxels in the T1 image falling within the lesioned area

of the left hemisphere, with signal extracted from the mirrored area in

the intact (right) hemisphere. Following this process, the modified T1

image can be normalized to standard (MNI) space without error. Fol-

lowing enantiomorphic normalization, linear interpolation was used to

reslice the lesion image into standard space (1 × 1 × 1 mm isotropic

voxels). The tissue segmentation maps generated by the enantiomor-

phic normalization–segmentation routine were used to create brain-

extracted examples of the individuals T1 and T2 scans which were

then used to normalize the DTI, ASL, and fMRI scans discussed below.

TABLE 2 Scanning parameters and deviations across scanners

Modality

Scanner

Siemens 3T scanner (n = 77) Prisma fit scanner (n = 40)

Structural

images

T1: 160 slices; TR = 2,250 ms, TI = 900 ms, TE = 4.52 ms

T2: 192 slices; TR = 2,800, TE = 402 ms

T1: 192 slices; TR = 2,250, TI = 925, TE = 4.15

T2: 192 slices; TR = 2,800, TE = 402 ms

CBF FOV = 210 mm, matrix = 70 × 70, TR = 2,500 ms, TE = 13 ms, ×2
GRAPPA, 14 axial slices (6 mm thick with 1.5 mm gap), bolus

duration: 800 ms inversion time: 1,800 ms, with a total of 60

(n = 4), 74 (n = 29) or 101 volumes (n = 44; a proton density

volume followed by 50 control label pairs)

FOV = 208–224 mm, matrix = 64 × 64, TR = 3,500–4,580 ms,

TE = 12 ms, ×2 GRAPPA, 16–17 axial slices (5 mm thick with

1 mm gap), postlabeling delay (PLD) = 1,200 ms, with a total

of 60 (n = 4), 74 (n = 29), or 80 volumes (n = 7)

fMRI 60 full-brain volumes (matrix = 64 × 64, in-plane

resolution = 3.25 × 3.25 mm, slice thickness = 3.2 mm [no gap],

and 33 axial slices, 90� flip angle, TR = 10,000 ms, acquisition

time = 2,000 ms, TE = 30 ms)

60 full-brain volumes (matrix = 64 × 64, in-plane

resolution = 3.25 × 3.25 mm, slice thickness = 3.2 mm [no

gap], and 33 axial slices, 90� flip angle, TR = 10,000 ms,

acquisition time = 2,000 ms, TE = 30 ms)

DTI (FA) n = 13: Sequence: bipolar; 65 volumes (2.0 mm isotropic voxel, 1×
B0 s/mm2, 64× B1000 s/mm2, TR = 7,300 ms, TE = 87 ms,

matrix = 96 × 96, 6/8 partial Fourier, 60 contiguous slices)

n = 39: Sequence: monopolar; 82 volumes (2.3 mm isotropic

voxels, 10× B0 s/mm2, 72× B1000 s/mm2, TR = 4,987 ms,

TE = 79.2 ms, matrix = 90 × 90, ×2 GRAPPA, 50 contiguous

slices)

n = 25: Sequence: Bipolar; 131 volumes (2.7 mm isotropic voxels,

11× B0 s/mm2, 60x B1000 s/mm2, 60× B2000 s/mm2,

TR = 6,100 ms, TE = 101 ms, matrix = 82 × 82, ×2 GRAPPA, 45

contiguous slices)

n = 4: Sequence: bipolar; 131 volumes (2.7 mm isotropic voxels,

11× B0 s/mm2, 60× B1000 s/mm2, 60x B2000 s/mm2,

TR = 6,100 ms, TE = 101 ms, matrix = 82 × 82, ×2 GRAPPA,

45 contiguous slices)

n = 36: Sequence: split into two series with equal numbers of

volumes. The series were identical except the phase encoding

polarity for spatial undistortion using FSL's TOPUP (see

description) (1.5 mm isotropic voxels, 14× B0 s/mm2, 72×
B1000 s/mm2, TR = 5,250 ms, TE = 80 ms,

matrix = 140 × 140, ×2 multi-band, 80 contiguous slices)
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2.3.8 | Generation of cerebral blood flow maps

The ASL images were processed using the ASLtbx (Wang et al., 2008).

Lesions drawn on the 1 mm isotropic T2-weighted image were cor-

egistered to T1-weighted image. The clinical toolbox (Rorden

et al., 2012) was used to enantiomorphically (Nachev, Coulthard,

Jäger, Kennard, & Husain, 2007) normalize the T1-weighted image to

standard space using SPM12's unified segmentation-normalization.

The segmentation stage was used to create a scalp-stripped image in

the patient's native space. The first volume of the ASL data was line-

arly coregistered to this scalp-stripped T1-weighted image, with the

linear transform applied to all the processed ASL images. Finally, the

nonlinear normalization transforms were applied to the ASL data,

warping these images to standard space.

2.3.9 | Generation of fMRI activation maps

Motion correction was completed using SPM12's default realign and

unwarp settings and the resulting images were spatially realigned with

the brain-extracted T2-weighted image due to the similarity in con-

trast between the two T2-weighted scans. Following slice time cor-

rection, stimulus onsets for the two main conditions (high-frequency

noun and abstract images) were convolved with the canonical hemo-

dynamic response function (HRF) and its temporal derivative. We

obtained a mean fMRI image by averaging all 60 volumes acquired

during the fMRI session for each participant. This mean image was

scalp stripped using FSL's BET normalized to the scalp-stripped

T2-weighted scan (note this T2-weighted image had already under-

gone entantiomorphic unified segmentation normalization and so was

in standard space as described in the final lines of Section 2.3.7, with

segmentation providing robust scalp stripping). Note the T2* fMRI

image and high-resolution, low-disotrtion T2-weighted image have

very similar image contrast, including at the location of the lesion. The

resulting normalization deformation was applied to the original (non-

scalp-stripped) fMRI series. Nonbrain tissue was ignored for the final

normalization. The resulting data were smoothed with a Gaussian ker-

nel (FWHM = 6 mm). Voxelwise data were detrended using mean sig-

nal from the white matter, and subject and independent component

analysis was used to automatically identify and remove lesion-driven

artifacts in the data (Yourganov, Fridriksson, Stark, & Rorden, 2018).

We then estimated the main effects of our two conditions of interest

(overt naming of high-frequency nouns and silent viewing of abstract

images) using SPM12's GLM and calculated difference maps in stan-

dard space. These difference maps represented areas of greater signal

during picture naming than viewing of abstract pictures (Ashburner

et al., 2012).

2.3.10 | Generation of FA maps

We used FSL's TOPUP tool to estimate and correct for susceptibility-

induced distortions and FSL's Eddy tool to estimate and remove eddy

current induced distortions (Andersson, Skare, & Ashburner, 2003;

Andersson & Sotiropoulos, 2016). FA, a value that describes direc-

tional water diffusion and may serve as a proxy for brain integrity, and

is sensitive to changes in myelination, axon diameter, fiber density,

and fiber organization (Beaulieu, 2002), was calculated using FSL's

dtifit tool. Because we prefer to keep diffusion weighted images in

native space (as we often deal with fiber tractography which does not

behave well when warped), we did not normalize the resulting FA

maps. Rather, we determined the nonlinear transforms necessary to

warp the T1-weighted image to match the undistorted DTI image

(which both share similar image intensity), and then used this to

“warp” AALCTS atlas into native DTI space. We were then able to cal-

culate mean FA within each region of this atlas as discussed above.

2.4 | Data analysis

We took several steps in constructing and comparing the prediction

models (primary aims). These included an examination of the data

structure (including correlations across neuroimaging modalities), pre-

selection of predictive features for model construction, SVR to predict

language measures, 5-fold cross-validation (CV) for parameter tuning

and 10-fold CV for evaluating prediction accuracy, prediction of lan-

guage function based on lesion volume alone, and model comparison.

Each step is described in detail below. Finally, as a supplementary

analysis, we performed a LASSO regression analysis and a multivari-

able regression for prediction of WAB-AQ and WAB subscores.

Results of these final analyses are presented in online Supporting

Information.

2.4.1 | Preliminary data analysis

Pearson's correlation coefficients were calculated across each pair of

neuroimaging modalities (CBF, FA, fMRI, and lesion-load) to examine

the relationship between brain function carried within different

modalities. Specifically, we calculated the mean, minimum value, and

maximal value of the correlation coefficient estimates across modali-

ties within each brain region of interest. Table 3 presents absolute

mean correlation and correlation ranges across neuroimaging modal-

ities. Based on prior findings suggesting that age (Ellis &

Urban, 2016; Kertesz & McCabe, 1977; Pedersen, Jorgensen,

Nakayama, Raaschou, & Olsen, 1995; Plowman, Hentz, &

Ellis, 2012), time poststroke (Hope et al., 2017; Hope, Seghier,

Leff, & Price, 2013; Ramsey et al., 2017), and overall lesion volume

(Hope et al., 2013; Plowman et al., 2012) may affect language mea-

sures, we examined the relationship between these variables and

language scores (WAB-AQ, Fluency, Spontaneous Speech, Naming,

Speech Repetition, and Auditory Comprehension; Table 4) using a

univariate linear regression analysis. Furthermore, as an exploratory

data analysis, we computed the correlation between age and overall

lesion volume and performed a two-sample t-test to examine sex

differences in lesion volume.

1688 KRISTINSSON ET AL.



2.4.2 | Preselection of predictive features

In order to reduce the number of potential features (represented as

modality-specific numerical values for each ROI) introduced into our

predictive models, we performed a univariate regression analysis

predicting language scores using data from all neuroimaging modali-

ties. The purpose of the preselection procedure was to exclude noisy

or uninformative predictors from being fed into our prediction models,

which reduces the chance of model overfitting. Partial R2 values were

calculated to evaluate the proportion of variability explained by each

feature adjusting for the contribution of other included covariates. As

our preliminary data analysis (see Section 2.4.1. and Results) found

that lesion volume differed depending on sex, we included sex as a

covariate in the preselection analyses (for a discussion on sex differ-

ences in aphasia, see Wallentin, 2018). Age and time poststroke were

also included as covariates given their potential contribution in

predicting aphasia symptomology based on prior findings discussed in

Section 2.4.1. Features were retained if they had a p-value <.05 after

applying the Benjamini–Hochberg correction for multiple comparisons

(Benjamini & Hochberg, 1995). The model can be delineated as shown

below:

yi = β0 + β1xlocationj i + β2sexi + β3agei + β4time_post_strokei

where yi represents the language measure and xi represents the mea-

sure of one modality given location j for the i-th patient. The analysis

was repeated for all 150 ROIs and four modalities for a total of

600 analyses in order to select modality-specific ROIs (i.e., features).

This procedure was performed separately for each language mea-

sure for a total of six sets of preselected features. It should be noted

that this procedure allows for selection of different modalities in the

same ROI (as an illustration, lesion-load and CBF in the arcuate fascic-

ulus for WAB-AQ—see Table 5), which is precisely the proposed

strength of a multimodal as opposed to a single-modality prediction in

the current study design.

2.4.3 | Support vector regression for prediction of
WAB scores

The relationship between language measures and brain damage/func-

tion was modeled using SVR with a radial kernel. Given that selection

of the wrong type of kernel function may result in nonrobust

prediction models (Üstün, Melssen, & Buydens, 2006), we determined

the appropriate kernel experimentally by applying various kernel func-

tions to select the most robust parameters (Table S1). Comparison of

linear and radial kernels showed a substantial benefit of implementing

a radial kernel (results not shown herein). This result is in line with the

theoretical notion that a linear kernel is a degenerate and less accu-

rate version of a properly tuned radial kernel (Hsu, Chang, &

Lin, 2003). Thus, our SVR models incorporated a radial kernel. We

assumed the nonlinear SVR model shown below:

f x,ωð Þ=
XN

i=1

ωigi xð Þ+ b

Here, f(x, ω) represents the WAB score and each x represents a

given feature, which was either the proportion of damaged voxels in

the gray-matter region (for lesion-based mapping); degree of cerebral

blood flow; fractional anisotropy, or functional activity in a brain

region. N was the number of features; gi(x) denoted a set of nonlinear

transformations and b was the “bias” term. It is well known that the

SVR generalization performance (estimation accuracy) depends on the

setting the meta-parameter C and kernel parameters (Smola &

Scholkopf, 2004). We applied a 10-fold CV to evaluate the perfor-

mance of the prediction model and a 5-fold CV was used to find the

best meta-parameter C from the training dataset (see Section 2.4.4.

below). Since the coefficients from the SVR with nonlinear kernel are

not easily interpretable, we used SVR only for the purpose of predic-

tion. We used the R package caret() for SVR analyses.

As previously noted, 116 subjects were included in this part of

analysis after filtering missing data. Each predictor variable (identified

in the feature preselection) was centered and standardized before

being entered into the SVR models. We evaluated the prediction per-

formance of four single-modality models (one for each imaging modal-

ity) and one multimodal model (including all four imaging modalities).

This procedure yielded a total of 30 prediction models (6 language

measures * 5 prediction models). Sex, age, and time poststroke were

included as features in all of these prediction models.

2.4.4 | 10-fold CV

In constructing and evaluate the fitness of the SVR prediction models,

we applied 10-fold CV procedure. The general idea behind the

10-fold CV is to divide the dataset into a training (nine folds) and a

TABLE 3 Summary of correlation
across the four neuroimaging modalities
(CBF, FA, fMRI, lesion-load) in all brain
regions

Modality CBF FA fMRI Lesion-load

CBF 1 .185 (−.235, .535) .088 (−.274, .220) .205 (−.479, .128)

FA .185 (−.235, .535) 1 .090 (−.243, .317) .370 (−.902, .118)

fMRI .088 (−.274, .220) .090 (−.243, .317) 1 .084 (−.316, .219)

Lesion-load .205 (−.479, .128) .370 (−.902, .118) .084 (−.316, .219) 1

Note: Pearson's correlation coefficients were calculated from the sample and summarized below. The

values represented in the table refers to the absolute mean value of the correlation (r) and the range of

the correlation coefficients (minimum, maximum).

KRISTINSSON ET AL. 1689



testing dataset (one fold), leaving only 1 in 10 participants in the

testing dataset and the rest of the participants in the training

dataset. The information from the training data were used to esti-

mate the parameters in the model (i.e., the coefficients ωi and the

offset b in f(x, ω)) and then the model will be applied to the testing

dataset to predict each language outcome. The same procedure was

repeated with each one-fold of subjects serving as the left-out par-

ticipants for a total of 10 iterations. Each subject received a

predicted value of the language outcome and the prediction accu-

racy was therefore calculated as the Pearson's correlation coefficient

between the predicted and observed values. This method of CV was

applied in predicting all six language measures.

2.4.5 | Prediction based on lesion volume

In addition to predictions based on specific neuroimaging modalities,

we predicted the behavioral scores from lesion volume. In order to

enable a fair comparison across all models, an SVR was similarly used

to predict language scores based on lesion volume. Lesion volume

(i.e., the number of lesioned voxels within the lesion map) served as

the only main predictor variable in separate analyses for each lan-

guage measure while adjusting for sex, age, and time poststroke. The

predictor variable was centered and standardized before being

entered into the SVR model.

2.4.6 | Model comparison

The accuracy of our prediction models was evaluated by computing

Pearson's correlations between actual WAB scores and predicted

WAB scores. A one-sided Hotelling–Williams test was used to test

whether the multimodal prediction model was significantly more

accurate than any of the single-modality prediction models for each

language measure (Steiger, 1980; Williams, 1959). Hotelling–

Williams test was used for dependent correlations and thus serves

as an ideal test for our hypotheses. p-Values <.05 were considered

indicative of statistically significant differences across models.

3 | RESULTS

3.1 | Aim 1: accuracy of single-modality and
multimodal prediction models

Our preliminary data analysis yielded several interesting results that

are highly relevant for the prediction models. First, correlations

across modality-specific data matrices are shown in Table 3. In terms

of specific modality-pairs, the strongest absolute correlation for CBF

was with lesion-load data (r = .205); the strongest correlation for FA

was with lesion-load data (r = .370); the strongest correlation for

fMRI was with FA data (r = .090); and, the strongest correlation for

lesion-load data was with FA data (r = .370), which was also theT
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strongest correlation found in the analysis. Overall, fMRI had the

weakest average correlation across all modalities.

As for demographic and biographical variables, our linear regres-

sion models tested the association between language measures and

sex, age, time poststroke, and lesion volume (Table 4). The only signifi-

cant association was found between lesion volume and all language

measures (all p-values <.001). A two-sample t-test revealed that mean

lesion volume differed significantly by sex (females vs. males:

96.10 cm3 vs. 131.27 cm3, p = .0087). Given this confounding rela-

tionship between sex and lesion volume, we included sex as a covari-

ate in the feature selection analysis step as noted above

(Section 2.4.2). Age and time poststroke were also included as

covariates in the feature selection.

These prior analysis steps were considered for preselection of

features. The univariate regression analysis yielded 89 features signifi-

cantly associated with WAB-AQ (Table 5), including 19 CBF ROIs,

35 lesion-load ROIs, 33 FA ROIs, and 2 fMRI ROIs. A total of 91, 85,

85, 75, and 78 features were selected for Fluency, Spontaneous

Speech, Naming, Speech Repetition, and Auditory Comprehension,

respectively (Tables S2–S6). Overall, most features were identified for

lesion-load and diffusion-based measures across all language mea-

sures, with the fewest features being identified for fMRI.

Prediction accuracy (correlation between actual and predicted

scores) for all models is shown in Table 6 and plotted in Figure 2. In

addition to the 30 models using single and multimodal prediction of

language measures, the table includes a prediction based on lesion

volume alone. The number of predictors differs depending on modal-

ity and language measure. For example, the CBF model predicting

WAB-AQ incorporated 19 predictors, whereas the multimodal model

incorporated all 89 preselected features found to be significantly

associated with WAB-AQ scores for the same prediction. For clarifica-

tion on this distinction, we refer to the results from our preselection

analysis shown in Table 5 (WAB-AQ) and Tables S2–S6 (other lan-

guage measures).

TABLE 5 Features significantly associated with WAB-AQ

ROI for CBF ROI for FA ROI for fMRI ROI for lesion-load

LH caudate nucleus

LH postcentral gyrus

LH precentral gyrus

LH arcuate fasciculus

LH middle temporal gyrus

LH pole of middle temporal

gyrus

LH thalamus

LH posterior segment of AF

LH inferior parietal gyrus

LH inferior temporal gyrus

LH supramarginal gyrus

LH fornix

LH putamen

LH angular gyrus

LH long segment of AF

LH rolandic operculum

LH anterior segment of AF

LH superior temporal gyrus

LH inferior frontal gyrus

opercular

LH arcuate fasciculus

LH long segment of AF

LH inferior occipito frontal fasciculus

LH inferior longitudinal fasciculus

LH optic radiations

LH anterior segment of AF

LH posterior segment of AF

LH internal capsule

LH uncinate

LH superior temporal gyrus

LH inferior frontal gyrus opercular

LH cortico spinal

LH middle temporal gyrus

LH fornix

LH Rolandic operculum

LH inferior frontal gyrus triangular

LH corpus callosum

LH inferior parietal gyrus

LH supramarginal gyrus

LH caudate nucleus

LH insula

LH thalamusLH pole of superior temporal

gyrus

LH precentral gyrus

LH angular gyrus

LH putamen

LH inferior temporal lobe

LH Heschl's gyrus

LH anterior commissure

LH postcentral gyrus

LH middle frontal gyrus

LH middle occipital gyrus

LH inferior frontal orbital

RH anterior cingulate

gyrus

RH Heschl's gyrus

LH arcuate fasciculus

LH inferior occipito frontal

fasciculus

LH long segment of AF

LH anterior segment of AF

LH Heschl's gyrus

LH superior temporal gyrus

LH optic radiations

LH rolandic operculum

LH inferior longitudinal fasciculus

LH uncinate

LH insula

LH posterior segment of AF

LH cortico spinal

LH internal capsule

LH cortico ponto cerebellum

LH supramarginal

LH putamen

LH inferior frontal gyrus opercular

LH middle temporal gyrus

LH anterior commissure

LH angular gyrus

LH pole of superior temporal gyrus

LH postcentral gyrus

LH inferior frontal gyrus triangular

LH inferior parietal gyrus

LH pallidum

LH pole of middle temporal gyrus

LH precentral gyrus

LH fornix

LH inferior temporal gyrus

LH inferior frontal gyrus orbital

LH middle occipital gyrus

LH Corpus callosum

LH middle frontal gyrus

LH cingulum

Note: Features refer to modality-specific ROIs. Features were retained if adjusted p-value < .05 after Benjamini & Hochberg correction for multiple

comparisons.
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The multimodal prediction model was more accurate than any

single-modality model in predicting all six language measures

(Figure 2): WAB-AQ (r = .67; single-modality models: .20–.58;

Figure 3), Fluency (r = .61, single-modality models: .31–.56), Spon-

taneous Speech (r = .66; single-modality models: .21–.52), Naming

(r = .53; single-modality models: .07–.48), Speech Repetition

(r = .65; single-modality models: .00–.61), and Auditory Compre-

hension (r = .61; single-modality models: .22–.52). Overall, the cor-

relation between actual and predicted scores was .04–.65 higher

for the multimodal over any single-modality model. The multi-

modal model predicting WAB-AQ similarly explained a greater

amount of variance in performance compared to any single-

modality model (range: .03–.36).

3.2 | Aim 2: comparison of prediction accuracy
across models

In terms of statistical comparison of model accuracy, the multimodal

prediction model was significantly more accurate than any single-

modality and the lesion-volume model in predicting WAB-AQ (p-value

range: <.001–.022), Spontaneous Speech (p-value range: <.001–.003),

Speech Repetition (p-value range: <.001–.046), and Auditory Compre-

hension (p-value range: <.001–.034). Furthermore, the multimodal

model yielded a prediction accuracy that was significantly superior to

all predictions based on the CBF, fMRI, and lesion-load modalities

alone and the lesion volume model (all p-values <.05). However, statis-

tical superiority was not obtained for prediction of Fluency and

TABLE 6 Accuracy of prediction models (SVR) for all language measures

WAB score CBF FA fMRI Lesion-load Lesion volume Multimodal

AQ 0.45 (445.91) 0.58 (377.7) 0.20 (549.48) 0.5 (440.47) 0.44 (469.36) 0.67 (308.49)

Fluency 0.44 (7.36) 0.56 (6.14) 0.31 (8.15) 0.52 (6.63) 0.45 (7.2) 0.61 (5.64)

Spontaneous speech 0.47 (20.77) 0.52 (19.25) 0.21 (25.5) 0.49(20.05) 0.42 (22.02) 0.66 (15.12)

Naming 0.31 (8.04) 0.48 (6.99) 0.07 (9.15) 0.38(7.66) 0.35 (7.76) 0.53(6.27)

Repetition 0.48 (8.89) 0.61 (7.27) 0 (0) 0.61(7.26) 0.46 (9.29) 0.65(6.64)

Auditory comprehension 0.43 (2.48) 0.39 (2.62) 0.3 (2.83) 0.52(2.25) 0.22 (3.06) 0.61(1.87)

Note: The accuracy was measured by the Pearson's correlation estimate between actual and predicted scores. Mean Square Error (MSE) is shown in

brackets. CBF, cerebral blood flow; FA, fractional anisotropy; fMRI, functional magnetic resonance imaging. The multimodal prediction model incorporated

all neuroimaging modalities simultaneously.

F IGURE 2 Predictive
performance of the multimodal
prediction model and single-modality
models for all language measures.
Model prediction performance was
compared for each outcome score.
The multimodal prediction model
incorporated all neuroimaging
modalities. All other models are based
on single modalities. cbf: cerebral

blood flow; fa: fractional anisotropy;
fMRI: functional magnetic resonance
imaging
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Naming compared to the FA modality. Although the multimodal pre-

diction model was not statistically more accurate in these instances, a

trend was always observed in favor of the multimodal. Table 7 pre-

sents the p-values comparing the multimodal prediction accuracy to

any single-modality and lesion-volume prediction models based on

the one-sided Hotelling–Williams test.

4 | DISCUSSION

The current study demonstrates that a prediction model incorporating

several different neuroimaging modalities yields, in most cases, a

significantly more accurate prediction of aphasia severity and specific

language measures compared to any single-modality prediction model

and a model based on lesion volume alone. Our findings, therefore,

are consistent with the notion that different neuroimaging modalities

carry, at least to a certain extent, unique information that can comple-

ment other measures and be harnessed to further our understanding

of the relationship between brain damage and language function in

individuals with chronic stroke-induced aphasia (Del Gaizo

et al., 2017; Pustina et al., 2017; Yourganov et al., 2016). Considering

findings to the contrary (Halai et al., 2020; Hope et al., 2018), our data

suggest that prediction accuracy not only depends on the construc-

tion of robust computational models, but also on the specific

F IGURE 3 Predicted WAB-AQ scores based on the multimodal, single modality, and lesion volume prediction models. Each dot represents a
patient. The multimodal prediction model yielded significantly more accurate prediction of WAB-AQ than any single modality or lesion volume
model (predicted vs. actual scores: r = .67 and MSE = 308.49)

TABLE 7 Hotelling–Williams test
comparing the prediction accuracy of the
multimodal prediction model to single
modality and lesion volume models

WAB score CBF FA fMRI Lesion-load Lesion volume

AQ .0014 .0216 <.001 <.001 <.001

Fluency .0098 .1441 <.001 .0291 .0045

Spontaneous speech .003 <.001 <.001 <.001 <.001

Naming .0046 .2949 <.001 .0055 .0155

Repetition <.001 .0353 <.001 .0455 <.001

Auditory comprehension .0135 <.001 <.001 .0338 <.001

Note: The table presents p-values comparing each modality-specific model to the multimodal prediction

model using a one-sided Hotelling–Williams test. CBF, cerebral blood flow; FA, fractional anisotropy;

fMRI, functional magnetic resonance imaging.
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modalities implemented in the prediction models. Further, supplemen-

tary analyses revealed separable neural correlates associated with

measures of each specific language outcome.

Our first aim examined the accuracy with which overall aphasia

severity and specific language measures could be predicted based on

separate SVR models for each of four different neuroimaging modali-

ties (CBF, FA, fMRI, and lesion-load) and from an SVR model incorpo-

rating lesion volume as a single independent predictor. Aphasia

severity, measured as the Western Aphasia Battery “aphasia quotient”
(WAB-AQ), was predicted with similar accuracy across all models

except the fMRI model (actual vs. predicted r = .44–.58; fMRI: r = .20).

This finding is perhaps not surprising in light of prior work indicating

that WAB-AQ is associated with extensive cortical network damage

(Fridriksson, Den Ouden, et al., 2018; Fridriksson, Rorden,

et al., 2018). As such, white matter integrity (FA), perfusion (CBF),

lesion-load, and lesion volume may represent different means of char-

acterizing the manifestation of brain damage in this respect. Fluency

and Spontaneous Speech scores tended to be most accurately

predicted by the FA- and lesion-load models. Both of these measures

can reasonably be thought of as multidimensional in nature,

encompassing distinct aspects of speech, such as grammar, articula-

tion, and semantic and phonological processing, and weigh heavily on

the dorsal stream of speech processing (Fridriksson et al., 2016;

Hickok & Poeppel, 2007). To this end, both models may be thought of

as representing overall network integrity. Greater variability was

observed in predicting Naming score (actual vs. predicted r = .07–.48

across models). The FA-model was most accurate (r = .48), whereas

no other single-modality model obtained a prediction accuracy >.40.

Anomia, that is, a problem with word finding, is generally considered a

hallmark symptom affecting virtually all individuals with aphasia

(Goodglass & Wingfield, 1997). Consistent with the commonly agreed

upon view that anomia may be caused by impairment at several differ-

ent processing levels, for example, phonology, lexical, or semantic,

anomic aphasia has no specific lesion location (Fridriksson, Den

Ouden, et al., 2018; Fridriksson, Rorden, et al., 2018; Yourganov

et al., 2015). Thus, the FA-model may be thought of as representing

overall network integrity over and above the other models in this

case. Speech Repetition and Auditory Comprehension scores, both

weighing heavily on the ventral stream of speech processing

(Fridriksson et al., 2016; Fridriksson, Den Ouden, et al., 2018;

Fridriksson, Rorden, et al., 2018; Hickok & Poeppel, 2007), were most

accurately predicted by leveraging lesion-load data (r = .61 and .52,

respectively) and the FA-model was as accurate for predicting Speech

Repetition only (r = .061). One potential reason for this may be that

more focal neurobiological substrates underly these language func-

tions (Baldo, Katseff, & Dronkers, 2012; Bates et al., 2003; Bonilha

et al., 2017; Kristinsson et al., 2020; Kummerer et al., 2013; Pillay,

Binder, Humphries, Gross, & Book, 2017; Rogalsky et al., 2015), and,

thus, that lesions to or integrity of particular ROIs have more pro-

found implications within the prediction models compared to the

information captured in other neuroimaging modalities.

Our second primary aim tested the hypothesis that a model incor-

porating all modalities would outperform each single-modality model.

Our hypothesis was supported in 28/30 model comparisons. Predic-

tion accuracy of the multimodal model ranged from .53 (Naming) to

.67 (WAB-AQ). The accuracy in predicting WAB-AQ is comparable to

that obtained by Yourganov et al. (2016; r = .69) and Pustina

et al. (2017) in their out-of-sample prediction model (r = .66), albeit

substantially lower than the prediction accuracy obtained by Del

Gaizo et al. (2017; r = .76). We similarly obtained a lower accuracy in

predicting Fluency score compared to Yourganov et al. (r = .61 vs. .75)

and Del Gaizo et al. (r = .73), but our model was more accurate in

predicting Auditory Comprehension score compared to Yourganov

et al. (r = .61 vs. .48), and similar for other measures. It should be

noted in this context that obtaining the highest possible prediction

accuracy was not our primary goal. Rather, we aimed to examine the

added benefit of incorporating multiple neuroimaging modalities ver-

sus single-modality prediction models when the models were con-

structed from the same pool of preselected features and adjusting for

variance explained by covariates of interest (in this case, sex, age, and

TPS). Therefore, our results are directly comparable to those of

Pustina et al. (2017) and Del Gaizo et al. (2017) in revealing statistical

superiority of multimodal as compared to single-modality prediction

models.

However, our results seem to contradict the findings of Hope

et al. (2018) and Halai et al. (2020), where the authors noted no added

benefit of combining lesion-load data and connectome disruption

data. There are several potential reasons for this apparent discrepancy

in findings. First, the key element driving these differences might lie in

the precise neuroimaging modalities incorporated across these stud-

ies. We incorporated several different modalities, whereas the prior

studies specifically investigated whether including connectome dis-

ruption data enhanced prediction accuracy compared to modeling

based only on T1/T2-extracted lesion-load data. While numerous

prior studies have established that disruptions in connectivity are

associated with aphasia deficits (Bonilha, Rorden, et al., 2014; Forkel

et al., 2014; Fridriksson, Guo, Fillmore, Holland, & Rorden, 2013;

Mirman et al., 2015) and effective elicitation of aphasic features via

direct electoral stimulation to white matter fasciculi (Duffau

et al., 2008; Kinoshita et al., 2015), connectome and lesion data are,

nonetheless, strongly correlated (Hope et al., 2018; Yourganov

et al., 2016). In our analysis, we additionally incorporated modalities

that are less strongly correlated (see Table 3). We intentionally lever-

aged imaging data that capture both the extent of lesion damage and

data that reveal remaining functionality within white matter and corti-

cal regions. The idea behind this is rather simple. Language impair-

ment following stroke depends on multiple factors beyond lesion

location (Bonilha, Nesland, et al., 2014; Corbetta et al., 2015; Ramsey

et al., 2017; Thye & Mirman, 2018), such as the extent to which net-

works remain functional, integrity of structural networks, and dynamic

reorganization of the language networks. In this context, while the

predictive power of each modality is important, it is the interaction

between modalities that presumably yields enhanced prediction accu-

racy in multimodal prediction models.

Second, our region of interest analysis utilized a brain parcellation

of cortical, subcortical, and white matter tracts (AALCTS; Catani &
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Thiebaut de Schotten, 2008; Tzourio-Mazoyer et al., 2002; see

Yourganov et al. (2015) for a further description). This enabled us to

more accurately examine the impact of both lesion to, and functional-

ity within, major white matter tracts, such as the arcuate fasciculus

and inferior frontal occipital fasciculus, and, more importantly, to

account for functionality and lesions at the same time. Hope et al.

implemented the same cortical parcellation template (AAL), albeit

without consideration of subcortical regions, whereas Halai et al.

examined the effect of various different parcellations. Indeed, Halai

et al. found that prediction accuracy for PCA-derived language func-

tions was at least partially dependent on the brain parcellation. This

finding may suggest that close consideration of how the brain is

divided into parcels is necessary for predicting language processing in

aphasia. While these noted analysis differences might be considered

substantial, other less significant differences may similarly explain dis-

crepant findings. These include, but are not limited to, our use of the

WAB as our primary aphasia test batteries; relatively large average

lesion volume in our sample (122.61 cm3; note, neither Halai and col-

leagues nor Hope and colleagues report average lesion volume); the

fact that we derived connectivity data from subject-specific diffusion

data as opposed to deriving it from individual T1-weighted MRI (Hope

et al., 2018); and, the inter-individual variability in the behavioral pre-

sentation of aphasia (e.g., Price et al., 2016).

There are several limitations to the present study. First, we per-

formed feature-selection to reduce the dimensionality of our dataset.

It is certainly possible that features eliminated based on their weak

correlation with language measures could potentially have improved

our prediction models by interacting with other variables in the

models. Similarly, features were retained based on their linear rela-

tionship with the outcome variables, which introduces the possibility

of nonlinear relationships being removed. Finally, since preselection

was performed on the entire sample, it is possible that the accuracy of

the subsequent CV was slightly skewed. Second, our fMRI data was

collected using a naming task unrelated to the dependent variables in

our study. While our intention was to identify task-based activation in

the language network, we cannot reliably state that the activation is

equivalent to functional recruitment of intact brain tissue in our

behavioral tasks outside the scanner. This caveat may be represented

in the few preselected fMRI features and the predictive value (or lack

thereof) of these features. Last, we did not validate the prediction

accuracy of our models in an independent sample of persons with

aphasia. As noted above, the ecological value of multimodal prediction

lies in predicting language function and treatment response in “new”
cases. Future studies might undertake the task of constructing predic-

tion models for treatment response—which undoubtedly will further

improve our understanding of the neurobiology of treated aphasia

recovery.

In conclusion, the current study reports a successful effort to

improve single-modality prediction accuracy of language measures in

chronic aphasia by including multiple imaging modalities in the predic-

tive models. As such, we consider our results to hold substantial

promise for the ultimate goal of improving prediction of behavioral

treatment response in aphasia. This line of research, as has been

argued here, is based on the idea that poststroke brain damage can be

understood as a combination of frank vascular injury and disconnec-

tion (see Bonilha, Nesland, et al., 2014; Bonilha, Rorden, et al., 2014;

Marchina et al., 2011). As an illustration of this point, white matter

tracts may be subject to lesion damage at various segments of the

tract, which may lead to similar manifestations of aphasia symptoms,

albeit stemming from seemingly spatially distant lesions.

Corresponding findings include studies showing more accurate predic-

tion of behavioral outcomes from structural disconnection compared

to lesion location (Hope, Seghier, Prejawa, Leff, & Price, 2016;

Kuceyeski et al., 2015, 2016). Even though convincing contradictory

findings have been reported on this matter (Halai et al., 2020; Hope

et al., 2018), we suggest that successfully harnessing the unique infor-

mation carried within each distinct imaging modalities remains a valu-

able goal for researchers seeking to fully understand the

neurobiological underpinnings of aphasia and personalize aphasia

treatment.
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