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This study aims to develop an alternative vortex analysismethod bymeasuring structure ofIntracranial aneurysm (IA) flow vortexes
across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific”
geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known 𝜆

2
and 𝑄-criterion methods

identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was
measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change
in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and
5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of
IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to
determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future
studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal
flow characteristic and help in future risk assessment given more developments.

1. Introduction

A weak or thin spot on cerebral arteries, resulting in the
bulging or ballooning (dilation) of that vessel, is known
as an intracranial aneurysm (IA). Most common forms of
IAs are saccular and fusiform IAs. These irregular dilations
act like cavities around the blood stream and, therefore,
induce flow disturbance and subsequent destructive vascular
remodeling [1] in and around IAs. IAs are a potentially life-
threatening vascular malformation affecting an estimated
3% of the population [2]. According to the US National
Institute of Neurological Disorders and Stroke, the incidence
of reported IA rupture is about 0.001%. In other words, there
are approximately 30,000 people who could suffer a stroke
from ruptured cerebral aneurysms each year in the United
States alone. The severe consequences of aneurysm rupture,
the cost and risk of aneurysm treatment, the low statistical
risk of aneurysm rupture (1% or less per year), and the lack

of reliable parameters predictive of the risk of aneurysm
rupture, all motivate the continued search for a method to
differentiate those aneurysms which are likely to rupture
from those at a low risk of rupture.

Currently, geometrical and morphological parameters of
IAs (e.g., size and irregular shape) have been used as the basis
for clinical predictions of aneurysm rupture, subsequently
directing the course of clinical intervention(s), according to
recommendations by multiple healthcare professional orga-
nizations [3–5]. However, those predictions are not highly
accurate. For instance, based on receiver operating charac-
teristic analysis, the size ratio and aneurysm angle had an
area under the curve values of 0.83 and 0.85, respectively [6].
Recently, attention has been devoted to aneurysmal hemo-
dynamics, since it is well known that the origin and natural
history of IAs are closely associated with disturbed hemody-
namics [7, 8]. Consequently, phase-contrast magnetic reso-
nance imaging (PC-MRI) [9, 10] has been used to measure
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aneurysmal flow and examine factors relevant to the develop-
ment and progression of IAs in vivo. But disturbed flow in and
around IAs makes this task difficult. Recall that individual
protons in complex and disturbed aneurysmal flow have
incoherent velocities (at the subgrid level) and those compo-
nents cannot be resolved by one “averaged” velocity measure-
ment from a relatively large resolution cell (at 1 mm scale).
Therefore, such measurement errors and potential artifacts
can adversely affect the accuracy of PC-MRI results. In paral-
lel to research efforts of PC-MRI flow imaging in and around
IAs, blood flow parameters simulated from “patient-specific”
computational fluid dynamics (CFD) simulations [11] have
also drawn a lot of interest by the clinical and research
community [12, 13]. Hemodynamic factors such as wall shear
stress [14], oscillatory shear index [15], flow impingement
[13], and flow stability [16] have emerged as potential parame-
ters correlating to the risk of IA rupture. Among those efforts,
Byrne et al. [16] found that aneurysmal flow, classified by its
spatial complexity and temporal stability using vortex core
lines, is closely correlated with the risk of aneurysm rupture.
Particularly, they concluded that “ruptured aneurysms had
more complex and more unstable flow patterns than unrup-
tured aneurysms.” In theirwork, Byrne et al. have used proper
orthogonal decomposition [17] of time-resolved velocities to
characterize temporal flow stability. In another study, Kohler
et al. [18] presented another approach to visualizing vortex
flow using line predicates. However, their technique was
primarily for visualization of swirling flow in relatively large
arteries such as the aorta and pulmonary artery.

In this study, we intended to develop an alternate tech-
nique, also based on the flow vortex core analysis, to charac-
terize the presence, destruction, and motion of spatial swirl
flow patterns during the cardiac cycle. More specifically, we
implemented an image processing algorithm to first delineate
the vortex core region(s) and then quantitatively investigate
temporal flow stability by tracking segmented vortex cores
over the cardiac cycle. The vortex extraction method was
based on velocity data on a rectilinear grid; potentially, this
extraction method could be used for PC-MRI measured
velocity fields, as well. Toward this end, the primary purpose
of this work is to explore and analyze the structural charac-
teristics of flow vortexes as a possible means to complement
current assessment methods of temporal flow stability.

The rest of the paper is structured as follows. In Mate-
rials and Methods, using original 3D velocity estimates, the
proposed image processing method is described in detail. To
demonstrate its feasibility, the proposed method is applied
to “patient-specific” CFD simulated velocity data using two
distinct solvers (a commercial CFD solver using unstructured
meshes and a research prototype solver using the Lattice-
Boltzmann Method [LBM]). As part of this preliminary
study, two CFD solvers were selected in order to investigate
whether or not results of the proposed method of vortex
core analysis may be influenced by CFD solvers. Outcomes
of this feasibility study are reported in Results, followed by
Discussions and Conclusions.

2. Materials and Methods

Extraction and tracking of vortex cores are built around
time-resolved velocity fields obtained from “patient-specific”

CFD simulations. Figure 1 shows two major steps: (1)
hemodynamics simulations and (2) vortex core extraction
and analysis. The hemodynamic flow was first simulated in
vascular models reconstructed from 3D-Digital Subtraction
Angiography (DSA) scans and then those time-resolved 3D
velocity fields were used to determine vortex core regions
within the aneurysmal sac. Of note, the identification of
vortex core regionswas derived from two knownmethods:𝜆2
method [19] and the 𝑄-criterion method [20]. All identified
vortex core regions were then segmented out using the classic
marching cube algorithm [21] to form 3D triangulated sur-
faces. Degree of vortex overlap (DVO) among the segmented
vortex cores over the cardiac cycle and variations of the
number of vortex core regions over the cardiac cycle were
used to assess destruction and motion of spatial swirl flow
patterns within the aneurismal sac over the cardiac cycle.

2.1. Modeling of “Patient-Specific” Hemodynamics

2.1.1. Image Segmentation. As shown in Figure 2, 10 cases of
IAs were arbitrarily selected from our internal database: in
five cases, each has one single terminal aneurysm (TA); in the
other five cases, each contains single sidewall aneurysm (SA).
Initial 3D-DSA data files were loaded into a commercially
available image segmentation package (Mimics Innovation
Suite, version 17, Materialise Inc., Leuven, Belgium) where
intensity-based image segmentation was first used to isolate
the regions of interest and create a volumetric surface of
patients’ vascular structures. During this process, a first-order
Laplacian smoothing filter in the 3-Matic Software (version 9,
Materialise Inc., Leuven, Belgium) was used to reduce irregu-
larities caused by imaging artifacts, while preserving surface
shape. Then, manual editing (e.g., removal of kissing vessels)
and visual inspection were performed to ensure the integrity
of all vessel geometries if necessary. Downstream vessels were
shortened in order to reduce computing time. The longest
possible upstream section, proximal to an aneurysm, was left
intact to help reduce the effects of the inlet(s) and plug-flow
alterations [22]. Cylindrical flow extensions (at least 6 times
of the vessel diameter) were added to each model (both inlets
and outlets) to mitigate influences of boundary conditions
using the open-source Vascular Modeling Toolkit (VMTK)
software (version 1.2) [23].

2.1.2. Mesh Generation. Each processed vascular surface
model (see Figure 2) was converted into an unstructured, 3D,
tetrahedralized volumetric mesh using an open-source mesh
generator, Tetgen (version 1.4.2) [24]. The mesh generation
process was done by an in-house Python script derived
from the VMTK program (version 1.2) [23]. Approximately, 1
million computing cells were used per case, with the average
mesh size as 0.0022 mm3. The typical edge length of resultant
tetrahedrons was roughly 0.12mm. Mesh sensitivity tests
were performed to ensure that results were not sensitive to
the mesh size selected.

2.1.3. CFD Simulations. To compute velocity waveforms in
and around an aneurysm using the ANSYS-FLUENT solver
(version 14.0; ANSYS-FLUENT Inc., Lebanon, NH), we



Computational and Mathematical Methods in Medicine 3

(a) DSA image 
reconstruction

(b) CFD
simulation

(c) Aneurysm 
extraction

(d) Voxelization/
resampling

(f) Vortex
analysis(e) Vortex identification: 

𝜆2 and Q-criterion method

Velocity
magnitude

200 400 600

1.05 766

Figure 1: Main steps in the generation and analysis of vortex core structures: (a) arterial geometry generated and segmented from a DSA
scan; (b) volumetricmesh generation andCDF simulation on the segmented structure; (c)manual extraction of an aneurysm surface from the
artery (gray denotes the area of an aneurysm and red denotes the parent artery); (d) extracted aneurysm surface masked over the simulated
data to isolate aneurysm flow velocity and resampled at various voxel sizes (0.1–0.8mm); (e) the 𝜆

2
and𝑄-criterionmethods identify vortexes

for 21 equally spaced data points over the cardiac cycle; (f) analysis of vortex: characteristics and DOV (stability) between each cardiac step’s
vortex core and the cycle-averaged vortex core. In (e), identified vortex core regions are segmented out using the classic marching cube
algorithm. In (e), while the white color denotes streamlines of the aneurysmal flow, the black color is used to indicate vortex structures using
the two above-mentioned methods—𝜆

2
and 𝑄-criterion methods.

solved the time-dependent incompressible, 3DNavier-Stokes
equations [i.e., (1)] for the 3D meshed vessel geometry. The
equations for velocity are written as

∇⃗ ⋅ �⃗� = 0,
𝜌𝜕�⃗�𝜕𝑡 + 𝜌 (�⃗� ⋅ ∇⃗) �⃗� = −∇⃗𝑝 + 𝜇∇2�⃗�,

(1)

where �⃗� is the three-dimensional velocity vector, 𝜌 is the
blood density, 𝑝 is the pressure, and 𝜇 is the viscosity. In the
ANSYS-FLUENT CFD solver, the pressure-velocity coupling
in (1) is obtained using the SIMPLEC algorithm [25]. The
explicit time-marching second-order schemewith a time step

of 1 × 10−3 seconds (approximately 1000 steps per cardiac
cycle) was used for the computations. Although this time step
is still relatively coarse, it seems adequate to capture gross flow
features. The tetrahedralized volumetric meshes described
above were used by the ANSYS-FLUENT solver. More details
can be found in our previous publications [26, 27].

The Siemens research prototype CFD solver (version 4.0,
Prototype: not for diagnostic use, Siemens Medical Solution,
Inc., IL) is based on the Lattice-Boltzmann Method (LBM)
with aMultiple Relaxation Time (MRT-LBM) approximation
[28]. More details can be found in a previously published
paper [28]. In the current implementation, a graphic process-
ing unit (GPU) was used to accelerate the flow simulations.
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Figure 2: Five sidewall aneurysms (SAs) and five terminal aneurysms (TAs) used in this study. All geometries were reconstructed from
high-resolution 3D-Digital Subtraction Angiography (DSA). Arrows point to IAs.
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Prior to CFD simulations using the Siemens solver, IAmodels
defined by water-tight 3D surface triangles were automat-
ically discretized with cubical voxels; a smooth level-set
function was created to differentiate the vessel and nonvessel
regions for each IAmodel. For each IA, its complex geometry
was represented by the zero-crossing of the above-mentioned
smooth level-set function, which was used for the accurate
imposition of the boundary conditions. All subsequent LBM
computations were performed on a Cartesian grid, where
the global resolution and time step size were automatically
adapted by the Siemens LBM solver for ensuring compu-
tational stability. Of note, the exact same vessel geometries
(STL files) were used to generate volumetric meshes (for
the ANSYS-FLUENT solver) and voxel discretization (for
the LBM solver). It is important to note that the Siemens
researchCFD solver is only an investigative prototype andnot
commercially available.

In both solvers, vessel walls were assumed rigid with a
no-slip boundary condition, and blood flow was considered
incompressible and Newtonian. The dynamic viscosity was
0.004 kg/m-s and the mass density of blood was 1050 kg/m3.
The inlet boundaries of all models were located in the
internal carotid artery or the basilar artery.The zero-pressure
condition was used for all outlets. Two pulsatile flow rate
waveforms, at a heart rate of 60 bpm, derived from magnetic
resonance measurements and taken from Gwilliam et al.
[29] were used since patient-specific waveforms were not
available. Of note, one waveform was adopted to represent
the pulsatile flow at the BA (TA1 and TA2; see Figure 2) and
the other waveform was selected to represent the pulsatile
flow at the ICA (all other cases; see Figure 2). Each case had
one velocity waveform scaled according to the vessel’s inlet
cross-sectional area, standardizing the mean volumetric flow
rate of 280mL/min (ICA) or 180mL/min (BA). Our choice
of mean flow rates is consistent with physiological flow rates
available in the MR literature [30, 31]. Four cardiac cycles
were simulated per case as a means to reduce initial transient
conditions, and only the final cycle was saved. Twenty-one
equally spaced data points across the final cardiac cycle were
saved for subsequent data analysis detailed below.

2.2. Vortex Core Extraction and Analysis. All computational
methods for extraction of vortex core regions and analysis
of those vortex cores were performed using in-house scripts
(C++ and Python) that were derived from the open-source
VTK/VMTK (version 1.2) software package [23]. Statistical
and correlation analysis was performed using MATLAB
scripts.

2.2.1. Aneurysm Extraction and Voxelization of Aneurismal
Velocity Data. A published method [32] was used to semi-
automatically isolate and extract the aneurysm sac (see white
colored surface in Figure 1(c)). The isolated aneurysm sac
was sealed at the orifice and converted to a binary mask
that is spatially registered with volumetric velocity data. The
mask allowed us to analyze intra-aneurysmal velocity data
only. To verify the intrarater reliability of proper sectioning of
aneurysm masks, two separate users (Kevin Sunderland and

Christopher Haferman) sectioned all aneurysms, and Bland-
Altman plots [33] were performed on the mask volumes and
ostium areas to determine the similarity between chosen
masks. Once no significant difference was ensured between
sectioned masks, one user was chosen at random and all
masks from that user were implemented in the rest of the
study.

Simulated ANSYS-FLUENT velocity data are typically
located on an unstructured grid. Therefore, resampling of
the simulated velocity data was transformed onto a (3D)
rectilinear grid, while the velocity data obtained from the
Siemens research CFD solver was already on a rectilinear
grid. Both data sets were resampled onto a rectilinear grid of
0.2 mm voxel size using the vtkProbeFilter function provided
by the open-source VTK package (Kitware Inc., NY, USA), as
a means to standardize the resolution of each data set.

In addition, two cases of simulated velocity data using
ANSYS-FLUENT were resampled at varying voxel sizes (0.1–
0.8mm) to determine how spatial resolution of velocity data
may impact the characteristic structure of generated vortex
cores and stability over the cardiac cycle. Determining the
changes that voxel size could have on vortex structure char-
acteristics would help to establish proper analysis parameters
for this technique.

2.2.2. Vortex Identification. Multiple algorithms exist to
locate and extract vortexes in the CFD literature [34]. This
study employed two classic methods: 𝜆2 method developed
by Jeong and Hussain [19] and the 𝑄-criterion by Hunt et al.
[20]. More specifically, given a CFD-simulation velocity field�⃗�(𝑥, 𝑡), the velocity gradient can be decomposed as follows
[35]:

∇�⃗� = 𝑆 + Ω, (2)

where 𝑆 = (1/2)[(∇�⃗�) + (∇�⃗�)𝑇] is the rate of strain tensor andΩ = [(1/2)(∇�⃗�) − (∇�⃗�)𝑇] is the vorticity tensor.
Hunt et al. [20] defined a vortex as a spatial region where

𝑄 = 12 [|Ω|2 − |𝑆|2] > 0. (3)

The vortex core defined by Hunt et al. (i.e., (3)) essentially
denotes locations where the Euclidean norm of the vorticity
tensor dominates.

Jeong andHussain suggested that the vortexes are regions
where

𝜆2 (𝑆2 + Ω2) < 0. (4)

In (4), 𝜆2(𝐴) means the second intermediate eigenvalue of
the 3 × 3 tensor 𝐴. The tensor is symmetric, and therefore all
three eigenvalues are real.

In this study, we attempted to use [normalized] 𝑄 and𝜆2 values to condense the distributions of original 𝑄 and 𝜆2
values so that the subsequent extraction of vortex cores could
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Figure 3: Example of variations to vortex core structure across 5 data points along the cardiac cycle: marked waveforms represent a point in
the cardiac cycle for each data point. The black structure is the extracted vortex core(s) while gray is an aneurysm. The top row is for SA2
which had a lower DVO (less stable) than the bottom row from TA2 which had a higher DVO (more stable). All cores were extracted using
the [normalized] 𝑄-criterion method. The mean [normalized] 𝑄 threshold values were used to extract the vortex core and only vortex cores
with a volume ≥ 0.5mm3 were saved.

be reliably performed. Mathematically, this normalization
process can be written as follows:

𝑄 (𝑥, 𝑡) = 𝑄 (𝑥, 𝑡)|�⃗� (𝑥, 𝑡)|2 ,
𝜆2 (𝑥, 𝑡) = 𝜆2 (𝑥, 𝑡)|�⃗� (𝑥, 𝑡)|2 ,

(5)

where |�⃗�(𝑥, 𝑡)| is the amplitude velocity value.
Once all 𝑄 and 𝜆2 values, including [normalized] 𝑄 and𝜆2 values, were determinedwithin the dome of the aneurysm,

the classic marching cube algorithm [36] was used to extract
the vortex core regions and convert them to surface meshes
(see Figure 1(e)). In order to extract a vortex core region, the
mean value of interest (𝑄 [positive] or 𝜆2 [negative]) for each
case was used as a threshold value.

To determine the ideal vortex identificationmethodology
and desired range of analysis parameters, each methodology
(standard 𝜆2, [normalized] 𝜆2,𝑄-criterion, and [normalized]𝑄-criterion) was run with 5 different threshold values and
their resultant vortex structure was analyzed.The 5 threshold
values were selected from the following respective ranges: (1)
[0.1,maximum] for𝑄-criterion and [normalized]𝑄-criterion
and (2) [minimum,−0.1] for standard𝜆2 and [normalized]𝜆2
methods in each case. In other words, in an ascending order,
selected five (5) threshold values were [mean − STD, mean− (STD/2), mean, mean/2, and mean/4] for the standard 𝜆2

and [normalized] 𝜆2 methods and [mean/4, mean/2, mean,
mean + (STD/2), and mean + STD] for the 𝑄-criterion and
[normalized] 𝑄-criterion methods.

In order to reduce the appearance of small, isolated
areas being mistaken for the dominant vortex structure, only
extracted vortex core regions which have a greater volume
than 0.5mm3 were counted.

2.3. Data Analysis
2.3.1. Vortex Stability over the Cardiac Cycle. For each CFD
simulation, the vortex structure was generated for all 21
data points along the cardiac cycle, as well as a structure
based on the cycle-averaged vorticity.TheDVObetween each
data point’s vortex structure and the cycle-averaged vortex
structure were calculated. The mean and standard deviation
(STD) of the DVO across all data points for the cardiac cycle
were calculated to quantify the average temporal stability of
the vortex structure. “Stability” is referring to the tendency
of a vortex structure to shift or change over the course of a
cardiac cycle. A visual representation of variations in vortex
structure (temporal and spatial) over a cardiac cycle can be
seen in Figure 3.

2.3.2. Geometric and Hemodynamic Parameters of IAs. To
discern the independence of this method in comparison to
established methods for aneurysm analysis, it was explored
whether these findings correlated with a number of geo-
metrical [6] and hemodynamic [37] characteristics used to
predict IA rupture. Six geometrical characteristics and two
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hemodynamic characteristics were calculated for each IA
using in-house VMTK scripts.

Geometric Characteristics
(1) Aneurysm volume (mm3)
(2) Ostium (neck) area (mm2): surface area of the open-

ing of an aneurysm
(3) Ostium circumference (mm)
(4) Aneurysm height (mm): midpoint of ostium to fur-

thest point on aneurysm wall
(5) Aspect ratio: aneurysm height/ostium diameter

(widest distance across ostium)
(6) Aneurysm volume/ostium area (mm) [38]

Hemodynamic Characteristics
(1) Spatially Averaged Oscillatory Shear Index (SA-OSI)
(2) Spatially and Temporally Averaged Wall Shear Stress

(STA-WSS)

The calculated geometric values were verified by perform-
ing a secondary measurement on the removed aneurysm
surface in the 3-Matic Software package. The geometric
parameters were collected for all aneurysm masks that were
originally segmented from two users (Kevin Sunderland and
Christopher Haferman). Once no significant differences were
detected between those two users’ masks, their averaged
geometrical values were used for this study.

Wall shear stresses [WSSs] obtained from the ANSYS-
FLUENT solver were first collected from each aneurysm wall
for each data point along the cardiac cycle. Then, the WSSs
of each spatial location on the aneurysm wall, for each data
point along the cardiac cycle, were temporally averaged to
obtain the time-averaged wall shear stress for the spatial loca-
tion. Spatial averaging of all TA-WSSs on the aneurysm wall
was performed to obtain the STA-WSS for each aneurysm. To
measure theWSS directional oscillations over a cardiac cycle,
the quantitative metric known as oscillatory shear index
(OSI) was calculated using the following equation [37]:

OSI = 12 (1 −
∫𝑇0 𝜏𝑤𝑑𝑡∫𝑇
0

𝜏𝑤 𝑑𝑡) , (6)

where 𝑇 is the number of data points along the cardiac
cycle and 𝜏𝑤 is the instantaneous wall shear stress vector.
Spatial averaging of OSI (i.e., SA-OSI) for each aneurysmwas
calculated.

Pearson’s linear correlation was performed to compare
themeanDVOand change of the number of vortex cores over
the entire cardiac cycle to the aforementioned geometrical
and hemodynamic parameters. Only the cases sampled at a
resolution of 0.2mm (voxel) were used for this analysis.

3. Results

Results presented in Sections 3.1–3.4 were based on the
ANSYS-FLUENT solver. In Section 3.5, the ANSYS-FLUENT

results were quantitatively compared to those obtained from
the Siemens LBM research CFD solver.

3.1. Comparison of Analysis Methods. As shown in Figure 4,
choosing high 𝑄 (or [normalized] 𝑄) values or low 𝜆2 (or
[normalized] 𝜆2) values significantly reduced the sizes of
identified vortex core regions. Across all 10 cases studied,
setting the threshold larger than mean ± 0.5 ∗ STD resulted
in a breakdown in the overall identified vortex volume, with
no areas of vortex being identified in some cases using the
normalizedmethods (see Figure 4(b)). Extending the thresh-
old past mean/2 (increasing the range of values) resulted in
a significant increase in identified vortex volume, as regions
corresponding to weaker swirling flow were included as part
of the vortex core. A visual representation of these changes
can be seen in Figure 5.

It is worth noting that, in terms of the absolute vol-
ume change, the [normalized] 𝑄-criterion and [normalized]𝜆2 method provided more consistent results (i.e., smaller
changes due to the threshold variation), as shown in Figures
4(a) and 4(b). This is because the standard 𝑄-criterion and
standard 𝜆2 methods resulted in a broader area of swirling
flow identified as vortex core in relation to their normalized
counterparts.

Comparison of the extracted vortexes with velocity
streamlines in TA1 and SA2 showed that the normalized
methods better identified the central region of swirling
flow as part of the vortex without including large portions
of the weaker, outer swirling flow, as shown in Figure 6.
For subsequent data analysis, the [normalized] 𝑄-criterion
method was chosen using each case’s mean [normalized] 𝑄
value as the threshold value to identify the vortex core while
excluding weaker flow patterns from analysis.

3.2. Voxel Size on Vortex Characteristics. Two aneurysm
cases studied in the previous subsection (i.e., SA2 and TA1)
were resampled at varying voxel sizes and analyzed with the
[normalized] 𝑄-criterion method to determine how spatial
resolution of velocity data impacts vortex core analysis.
In order to reduce the appearance of small, isolated areas
being mistaken for the dominant vortex structure, only
connected vortex core regions which have a greater volume
than 0.5mm3 were counted. Through a visual inspection, we
found that as voxel size changed, structural characteristics
of the vortex core(s) were altered, which could lead to a
misinterpretation of the temporal flow stability within an
aneurysm. As shown in Figure 7, a high resolution (<0.2mm)
causes the vortex structure to become more fragmented,
which may subsequently cause areas of vortex core to be
overlooked as their total structural volume may now be
smaller than 0.5mm3. By contrast, in lower resolutions
(≥0.6mm), the overall broad structure of extracted core(s)
may dwarf subtle changes that could occur in flow patterns
leading to a seemingly more stable vortex structure. Figure 8
shows how changes to voxel sizes impact the mean DVO and
the mean number of cores over the cardiac cycle.
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Figure 4: Plots representing variations of identified vortex volumes due to the selection of 5 different threshold values in (a) TA1 and (b) SA1.
Threshold values were tested for four vortex extraction methods: standard 𝑄-criterion, standard 𝜆

2
method, [normalized] 𝑄-criterion, and

[normalized] 𝜆
2
method. Geometries of SA2 and TA1 are displayed in Figure 2. Selected threshold values were mean/4, mean/2, mean, mean± (STD/2), and mean ± STD (positive sign for𝑄-criterion and [normalized] 𝑄-criterion methods and negative sign for 𝜆

2
and [normalized]𝜆

2
methods).

Figure 5: Plots illustrating the impact on extracted vortex cores (i.e., the black surface in each plot) due to changes of isosurface threshold
values. From left to right: mean/4, mean/2, mean, mean + (std/2), and mean + std. All images were from TA case 1, [normalized] 𝑄 with a
voxel resolution of 0.2mm.At increased threshold values (≥mean+ std/2) a reduction of identified vortex core structures occurred, sometimes
not identifying any areas of vortex. All images came from the [normalized] 𝑄-criterion methodology, case TA1 (see Figure 2), and cardiac
cycle-averaged vorticity data.

For the purposes of a concise presentation of the rest of
study, only the datawith a resolution of 0.2mmwere analyzed
in an attempt to analyze the finer details of the hemodynamic
flow patterns, all while still identifying the dominant areas of
vorticity.

3.3. Vortex Core Parameters in 10 IA Cases. Table 1 shows a
summary of the numbers of vortex cores and DVO values
among 10 IA cases investigated. Overall, the mean DVO
values were similar in TAs (0.50±0.15), as compared to those
in SAs (0.41 ± 0.15) with no statistical difference (𝑝 = 0.37
using a 𝑡-test) between aneurysm types. The mean numbers
of vortex cores seemed slightly higher in SAs (2.35 ± 1.89) as

compared to those in TAs (1.88 ± 1.26) but lacked statistical
significance (𝑝 = 0.68 using a 𝑡-test).
3.4. Vortex Correlation with (Aneurysm) Geometrical Param-
eters. Pearson’s linear correlation was used to determine the
connection between vortex characteristics (number of vortex
cores andDVO) and aneurysmgeometric parameters. Table 2
shows that there are high positive correlations between the
number of vortex cores within the aneurysm sac and the
volume (𝜌 = 0.995, 𝑝 ≤ 0.001), height (𝜌 = 0.906, 𝑝 =0.0334), and volume to ostium ratio (𝜌 = 0.998, 𝑝 < 0.001)
of SA, whereas no statistically significant correlation exists
in TAs between the number of cores and any geometrical
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(a) (b) (c) (d)

Figure 6: Comparison of identified vortex cores from the four mentioned methods: (a) standard 𝜆
2
, (b) [normalized] 𝜆

2
, (c) standard 𝑄-

criterion, and (d) [normalized]𝑄-criterion. Top row is from SA2 case, and bottom row is from the TA1 case. Velocity streamlines were added
to represent simulated flow patterns. Geometries of SA2 and TA1 can be found in Figure 2. Threshold values for each case were the mean
(for their representative value), and only extracted vortex cores with a volume > 0.5mm3 are shown. Figures are from each method’s vorticity
averaged data.

(a) (b) (c)

(d) (e) (f)

Figure 7: Visual comparison of the impact of voxel size on extracted vortex core structures for case SA2. Voxel sizes: (a) 0.1mm, (b) 0.2mm,
(c) 0.3mm, (d) 0.4mm, (e) 0.6mm, and (f) 0.8mm. All structures were extracted using the [normalized] 𝑄-criterion method, a threshold
value of the mean [normalized]𝑄 value per case, and only cores with a volume > 0.5mm3 were saved. The marked waveform shows the data
point in the cardiac cycle used for extracting the structures.
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Table 1: A summary of three vortex core parameters in all 10 IA cases: average vortex volume, mean and standard deviation of the number
of vortex cores across the cardiac cycle, and mean and standard deviation of DVO across the cardiac cycle. The data are presented as mean ±
one STD.

Aneurysm Mean vortex volume (mm3) Mean number of cores Mean DVO
TA1 2.015 1.05 ± 0.22 0.30 ± 0.08
TA2 8.83 3.67 ± 0.58 0.59 ± 0.15
TA3 2.02 1.19 ± 0.40 0.65 ± 0.15
TA4 3.04 2.71 ± 0.64 0.57 ± 0.12
TA5 0.50 0.76 ± 0.77 0.38 ± 0.39
SA1 0.84 1.09 ± 0.44 0.51 ± 0.19
SA2 4.78 2.90 ± 1.22 0.42 ± 0.18
SA3 0.69 0.90 ± 0.77 0.23 ± 0.22
SA4 2.57 1.43 ± 0.51 0.59 ± 0.14
SA5 55.46 5.43 ± 1.66 0.30 ± 0.068
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Figure 8: Alterations to vortex core characteristics over different voxel sizes ranged from 0.1mm to 0.8mm: (a) changes to the number of
vortex cores and (b) changes to DVO. Error bars stand for ±one STD of respective measurements over a cardiac cycle.

parameters. In contrast, no statistically significant correlation
exists in SAs or TAs between the DVO values and any
geometrical parameters.

To account for the possibility (or lack thereof) of cor-
relations between vortex characteristics and geometrical
parameters being attributed to the lownumber of cases for TA
and SA, the datawas combined and correlationswere recalcu-
lated. When data from both aneurysm types were combined,
correlationswere found between themeannumber of cores in
relation to 3 geometrical parameters: volume (𝜌 = 0.81, 𝑝 =0.0042), height (𝜌 = 0.83, 𝑝 = 0.0029), and volume/ostium
ratio (𝜌 = 0.83, 𝑝 = 0.0032). Slight negative correlations were
also found between the mean DVO of the combined data and
aneurysm ostium area (𝜌 = −0.63, 𝑝 = 0.049) and the ostium
circumference (𝜌 = −0.64, 𝑝 = 0.046).

Due to the significant volume difference between individ-
ual aneurysms (and number of vortex cores), the coefficient
of variation (STD/mean) ∗ 100 was calculated for each case
to normalize their relative change of cores over the cardiac

cycle (Figure 9). The large spike of the above-mentioned
variation in SA3 and TA5 is due to the fact that no coherent
cores (>0.5mm3) were detected for a number of data points
during the cardiac cycle, thereby causing a reduced mean
and increased standard deviation, resulting in a coefficient
of variation near or above 100. As shown in Table 3 there
only exists a correlation between SAs and their aspect ratio
(𝜌 = −0.94, 𝑝 = 0.016) when dealing with the coefficient
of variations (vortex cores). All other geometrical parameters
held no significant correlation with stability in number of
cores across the cardiac cycle. The lack of significant correla-
tions indicates that using the aneurysmgeometric parameters
(outside of possibly using aspect ratio when dealing with SA)
to infer the construction or destruction of vortex cores over
the cardiac cycle may not be an ideal methodology.

3.5. Comparison with Hemodynamic Parameters. Pearson’s
linear correlation was also performed to compare the vor-
tex core characteristics to the hemodynamic properties of
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Table 2: Pearson’s linear correlation between geometrical parameters of IAs and characteristics of their vortex structures.

Terminal aneurysm Sidewall aneurysm Combined data
Correlation coefficient 𝑝 value Correlation coefficient 𝑝 value Correlation coefficient 𝑝 value

Mean number of vortex cores versus
Aneurysm volume 0.14 0.82 0.99 <0.001 0.81 0.004
Ostium area 0.15 0.81 0.82 0.086 0.62 0.055
Ostium circumference 0.12 0.84 0.77 0.12 0.56 0.092
Aneurysm height 0.73 0.16 0.91 0.034 0.83 0.003
Aspect ratio 0.60 0.29 0.66 0.23 0.62 0.058
Volume/ostium 0.23 0.71 0.99 <0.001 0.83 0.003

Mean DVO versus
Aneurysm volume −0.52 0.37 −0.42 0.49 −0.42 0.23
Ostium area −0.43 0.47 −0.69 0.20 −0.63 0.049
Ostium circumference −0.42 0.49 −0.74 0.15 −0.64 0.046
Aneurysm height 0.036 0.95 −0.20 0.75 −0.23 0.53
Aspect ratio 0.44 0.46 0.42 0.48 0.42 0.22
Volume/ostium −0.64 0.25 −0.35 0.56 −0.37 0.29

Table 3: Tabulated results showing Pearson’s linear correlation between the coefficient of variations of the number of cores and geometrical
parameters of IAs.

Variation of vortex core number Terminal aneurysm Sidewall aneurysm Combined data
Correlation coefficient 𝑝 value Correlation coefficient 𝑝 value Correlation coefficient 𝑝 value

Aneurysm volume −0.54 0.34 −0.47 0.43 −0.20 0.58
Ostium area −0.65 0.24 −0.06 0.92 −0.21 0.55
Ostium circumference −0.68 0.21 0.038 0.95 −0.26 0.46
Aneurysm height −063 0.26 −0.58 0.31 −0.36 0.31
Aspect ratio 0.28 0.65 −0.94 0.016 −0.26 0.46
Volume/ostium −0.11 0.86 −0.53 0.36 −0.20 0.57
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Figure 9: Relative variation for the change in the number of cores
over the cardiac cycle or all 10 IA cases.

STA-WS S and SA-OSI present in the aneurysms for this
study. Upon initial analysis, no statistically significant corre-
lation was seen in either aneurysm type when comparing the
mean OSI across a whole aneurysm, to both the coefficient

of variation (number of cores) and the mean DVO. When
comparing the STA-WSS values, a significant correlation was
only seen with the coefficient of variation for SAs (𝜌 = 0.90,𝑝 = 0.04). Yet when all data from both IAs were combined,
no statistically significant correlative values could be seen for
WSSwhen dealing with coefficient of variations (cores) or the
mean DVO across the cardiac cycle. Calculated values for all
correlations can be seen in Table 4.

3.6. Comparison of Two Different CFD Solvers. Vortex core
results generated from the ANSYS-FLUENT and Siemens
CFD solvers are summarized below. Only results from the
[normalized] 𝑄-criterion method at a resolution of 0.2 mm
were used. A visual comparison between the vortex cores
generated from those two solvers was performed to ensure
both their spatial position and quality. It was seen that
both solvers generated results that led to the identification
of the main vortex structure in a similar location. Two
representative examples are provided in Figure 10. Visual
inspection of the surface quality of identified vortex cores
showed that cores from the Siemens LBM simulation had a
smoother, less nebulous structure than that of the ANSYS-
FLUENT simulation data.

Analyses of Bland-Altman method [33] were performed
as a means to identify the difference between the two CFD
platforms (Figure 11). In each plot of Figure 11, solid and
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Table 4: Tabulated results showing Pearson’s linear correlation between the coefficients of variations of the number of cores and mean DVO
to the hemodynamic characteristics of IAs.

Terminal aneurysm Sidewall aneurysm Combined data
Correlation coefficient 𝑝 value Correlation coefficient 𝑝 value Correlation coefficient 𝑝 value

Coefficient of variation
STA-WSS −0.69 0.20 0.90 0.04 −0.059 0.87
SA-OSI −0.34 0.57 0.18 0.77 −0.017 0.96
Mean DVO
STA-WSS 0.49 0.41 −0.18 0.77 0.11 0.75
SA-OSI 0.44 0.46 −0.30 0.63 −0.15 0.68

(a) (b)

(c) (d)

Figure 10: Vortex cores identified from two (SA4 and TA2) ANSYS-FLUENT-simulated cases (a and c) and the same cases using the Siemens
LBM-simulated velocity fields from the Siemens CFD solver (b and d) under the same boundary conditions. Visual inspection ensured that
main vortex core structures occurred in the same generalized locationwhile Siemens CFD solver (b and d) resulted in a smoother core surface.
Both cases had cores extracted using the same parameters: [normalized] 𝑄-criterion; threshold is their mean of [normalized] 𝑄, and only
vortex cores with a volume > 0.5mm3 were saved. Each vortex core was extracted from the cycle-averaged vorticity data (per respective case).
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Figure 11: Bland-Altman plots showing the relation between two CFD platform results: (a) a mean number of cores and (b) mean DVO.The
directionality of the BA plots is the Siemens CFD values minus the ANSYS-FLUENT CFD values.

dashed horizontal lines represent the limits of agreement
(95% confidence interval) and the biases, respectively.Middle
(black) lines in Figures 11(a) and 11(b) calculated by the Bland-
Altman method indicate there were minimal biases found
between the two above-mentioned CFD solvers in terms of
the number of vortex cores and the DVO.

4. Discussions

Recently, using “image-based” CFD simulations to charac-
terize intra-aneurysmal blood flow, with the primary goal
of searching for correlations between local hemodynamics
and the risk of aneurysm rupture, has drawn significant
interests. In order to impact the clinical management of IAs,
aneurysmal hemodynamics have to be processed in a clinical
workflow. However, visual assessment of 4D hemodynamic
characteristics, through pattern recognition using hundreds
of cross-sectional images from multiple cardiac phases, may
impose an extensive burden on reviewing physicians. For
instance, spatiotemporal characteristics of vorticity patterns,
which are the primary objective of this study, are difficult to
assess through visual inspection of time-resolved 3D velocity
vector fields. Having a computational methodology that can
isolate and assess characteristics of vortex cores as a means
to understand hemodynamic patterns within an IA may
lead to valuable insight toward aneurysm risk assessment
and is advantageous as compared to visual assessments of
aneurysmal hemodynamics.

For this study, as inspired by an early work by Byrne et
al. [16], we proposed an alternate method to identify vortex
cores. In the original study by Byrne et al. [16], vortex core
lines were extracted from tetrahedral meshes as discrete line
segments. They used the length change of vortex core lines

during a cardiac cycle as a surrogate for “flow complexity.”
However, in the current study, vortex core patterns were
derived based on isosurface extraction of the [normalized]𝑄 values (see (3)). Overall, the initial results (Tables 1
and 2) showed that DVO had no significant correlation
with several known geometrical parameters for individual
aneurysm types (TA and SA), while the normalized variation
(coefficient of variation) of the number of vortex cores only
correlated with the aspect ratio of SA. This shows that the
two vortex characteristic parameters do not lead to redundant
information when compared to geometrical parameters. In
addition, limited correlation could be found between the
vortex core characteristics and the hemodynamic parameters
of STA-WSS and SA-OSI. Therefore, our work introduced
two additional parameters, which potentially contribute to a
fuller feature space toward assessing swirling aneurismal flow
patterns. More work is planned to further test the correlation
between the proposed vortex parameters and other important
hemodynamic parameters suggested by Chung and Cebral
[39].

Our preliminary results (see Table 1) indicated that the
mean DVO values were lower (not statistically significant,
possibly due to the low number of cases) in SAs as compared
to those in TAs.That is consistent with an anecdotal observa-
tion that (temporal) swirling flow patterns are more versatile
among sidewall aneurysms over a cardiac cycle.

In Section 3.5, we compared results between two different
solvers. The primary goal was to demonstrate that the pro-
posedmethod canworkwell with velocity data in a rectilinear
grid. Our initial visual inspection (Figure 10) showed that
the placement and relative shape of vortex cores identified
by both solvers were fairly consistent. While a bias toward an
increased number of identified cores existed in the Siemens
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CFD solver over the ANSYS-FLUENT solver, the degree
of difference remained minimal (Figure 11(a)). However,
comparisons of DVO values showed larger discrepancies
(Figure 11(b)) which were not surprising. Recall that vortex
core region in this study was derived from the local velocity
gradientmatrices. Small differences in a 3D velocity fieldmay
be amplified during the process of calculations of𝑄 and [nor-
malized]𝑄 values (see (3)). Nevertheless, these discrepancies
require more careful investigations in future studies.

Although the proposed method could theoretically work
with PC-MRI data, which are in rectilinear grids, more work
is needed in order to explore whether or not the proposed
method is directly applicable. This is because measurement
noise in PC-MRI-measured velocity fields could be amplified
when the velocity gradient matrices are being evaluated
(see (2)). Furthermore, the spatial resolution of PC-MRI is
still limited and is typically between 0.5mm and 1.0mm
voxel size. The relatively large voxel size may compromise
our ability to accurately extract clinically relevant vortex
core regions (see Figure 7) as this method is susceptible to
variations in voxel sizes. Additional studies will be needed
to understand the proposed characteristics of the vortex,
in which whether a broader view (larger voxel size) of the
vortex structure is still able to help identify clinically relevant
information toward aneurysm rupture risk.

Our results in Section 3 indicate that both the threshold
values used for vortex identification and the resolution of
velocity data impact the DVO and number of identified cores
in an IA. This limitation is similar to what is known in image
segmentation. For this feasibility study, in order to mitigate
this shortcoming posed by threshold selection, we adopted
the [normalized] 𝑄-criterion method for two reasons. First,
we found that the adaptation of [normalized] 𝑄-criterion
condensed the overall range of the 𝑄 or [normalized] 𝑄
values. This condensing of threshold values helps determine
an acceptable range, while mitigating some of the large-scale
vortex changes (less change in terms of the absolute volume
change as shown in Figures 4(a) and 4(b)) that occur with
the standard 𝑄-criterion. Second, our preliminary results
suggested that using the [normalized] 𝑄-criterion method
helped identify the central structures of vortex patterns
(see Figure 6), while limiting the identification of outlying
weaker vortex patterns unless very low threshold values are
used (Figure 5). Inclusion of weak boundaries of the vortex
structure may indeed result in large, improper variations
in estimated DVO values. In future studies, we intend to
developmore automatedmethods based onmachine learning
[40]. The integrated machine learning approach will directly
connect how the choices of vortex threshold value(s) and the
resolution of velocity data impact the extraction of clinically
relevant information. Nevertheless, the above-mentioned
limitations have to be addressed through additional studies,
particularly, through clinical studies, to determine clinical
values of the proposed method of vortex core analysis.

Other limitations of our study include the small sample
size and the use of standardized flow blood waveforms.
However, our study design is still appropriate study design

because our primary objective was to evaluate the proposed
method of vortex core analysis using velocity data obtained
from “patient-specific” CFD simulations. To keep this study
concise, we limited the scope of the current study.

5. Conclusions
A vortex core analysis algorithm for time-resolved 4D veloc-
ity fields was presented as a means to gain novel insight
into aneurysmal hemodynamic characteristics.The proposed
method was designed to extract vortex characteristics from
velocity data in a rectilinear grid and therefore could be
used for both CFD simulated data and, in theory, PC-MRI
measured velocity field. Although this technique probably
only represents an alternative to other plausible approaches, it
does, in our opinion, represent a feasible path to make intra-
aneurysmal hemodynamic assessments more quantitative,
thereby enabling studies and comparisons of large popula-
tions both initially and over time. While this current method
gives no additional direct insight toward risk of aneurysm
rupture and is susceptible to variations in threshold values
and resolution of velocity data, the preliminary results are
encouraging in that our findings do not have a high degree
of correlationwith commonly used geometrical and hemody-
namic variables.We believe that themethod warrants further
studies to explore its full clinical utility and significance.
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