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Abstract
Background: Assessment of glomerular lesions and struc-
tures plays an essential role in understanding the patholog-
ical diagnosis of glomerulonephritis and prognostic evalua-
tion of many kidney diseases. Renal pathophysiological as-
sessment requires novel high-throughput tools to conduct 
quantitative, unbiased, and reproducible analyses repre-
senting a central readout. Deep learning may be an effective 
tool for glomerulonephritis pathological analysis. Methods: 
We developed a murine renal pathological system (MRPS) 
model to objectify the pathological evaluation via the deep 
learning method on whole-slide image (WSI) segmentation 
and feature extraction. A convolutional neural network 
model was used for accurate segmentation of glomeruli and 
glomerular cells of periodic acid-Schiff-stained kidney tissue 
from healthy and lupus nephritis mice. To achieve a quanti-
tative evaluation, we subsequently filtered five independent 
predictors as image biomarkers from all features and devel-
oped a formula for the scoring model. Results: Perimeter, 
shape factor, minimum internal diameter, minimum caliper 

diameter, and number of objects were identified as indepen-
dent predictors and were included in the establishment of 
the MRPS. The MRPS showed a positive correlation with renal 
score (r = 0.480, p < 0.001) and obtained great diagnostic 
performance in discriminating different score bands (Obu-
chowski index, 0.842 [95% confidence interval: 0.759, 0.925]), 
with an area under the curve of 0.78–0.98, sensitivity of 58–
93%, specificity of 72–100%, and accuracy of 74–94%. Con-
clusion: Our MRPS for quantitative assessment of renal WSIs 
from MRL/lpr lupus nephritis mice enables accurate histo-
pathological analyses with high reproducibility, which may 
serve as a useful tool for glomerulonephritis diagnosis and 
prognosis evaluation. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Glomerular lesions are a common phenomenon in the 
development and progression of many kidney diseases. 
They play an essential role in lupus nephritis (LN) assess-
ment. LN is a chronic inflammatory kidney disease that 
occurs in 40–60% of patients with systemic lupus erythe-
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matosus (SLE). It is a major cause of morbidity and mor-
tality in SLE [1]. LN is associated with a wide spectrum of 
kidney lesions, characterized mainly by glomerular in-
volvement and interstitial lesions. Up to three out of 10 
individuals with LN develop end-stage kidney disease 
and kidney failure within 15 years of their diagnosis [2]. 
Hence, renal pathology, especially the assessment of glo-
merular lesions and structures, provides an essential ref-
erence for diagnosis, treatment instructions, and prog-
nostic evaluation of SLE.

Renal histopathology is considered the gold-stan-
dard assessment of human kidney disease. In the 2003 
International Society of Nephrology/Renal Pathology 
Society (ISN/RPS) classification [3] – the most widely 
used classification in clinical practice – LN is histolog-
ically classified into six distinct classes representing 
different severities of renal involvement. Analysis of 
data from histology can provide important insights 
into disease pathogenesis and potential treatment 
strategies. However, despite the unequivocal value of 
histopathological findings in the diagnosis of human 
LN, the pathological evaluation requires the participa-
tion of experienced pathologists, is time-consuming, 
and is prone to human error and misjudgment. To di-
minish manual quantitative evaluation, deep learning 
(also known as deep structured learning) technology 
has been applied to digital whole-slide image (WSI) 
segmentation [4–6]. Jayapandian et al. [5] developed 
deep learning networks to segment histological struc-
tures on kidney biopsy and nephrectomy WSIs stained 
with hematoxylin & eosin, periodic acid-Schiff (PAS), 
silver, and trichrome. Ginley et al. [7] applied convolu-
tional neural network (CNN) models in diabetic ne-
phropathy glomeruli, while Zeng et al. [8] identified 
glomerular lesions in patients with immunoglobulin A 
nephropathy. Although deep learning is increasingly 
employed in kidney pathology, there has been no re-
ported application in LN.

Currently, the mechanisms underlying LN pathogen-
esis are unclear. Animal models, used as a tool of choice 
for basic research into exploring the pathogenesis and 
finding effective therapeutic strategies against LN, are 
mainly lupus-prone mice. Multiple SLE murine models 
of different genetic backgrounds, such as (NZB/NZW) 
F1, MRL/lpr, B6/lpr, C3H/gld/gld, and BXSB mice [9, 10], 
have diverse pathological mechanisms. Among them, 
MRL/lpr mice serve as a model to study human LN as 
they exhibit manifestations similar to human disease, in-
cluding glomerulonephritis, vasculitis, and arthritis. Nev-
ertheless, the scoring scale of MRL/lpr mouse renal histo-

pathology has varied among the studies. Despite that, 
most of the studies reported in the literature have used a 
scale of 0–4 according to the scoring system of Passwell 
et al. [11] as previously described. Others have used a 
scale of 0–3 [12–14] or 0–5 [8], and increments were also 
different (0.5 or 1). Hence, there has been no unified 
quantitative assessment for lupus murine renal histopa-
thology to obtain objective data.

The deep learning model for digital WSI analysis could 
eliminate or at least reduce the variations in murine renal 
histopathology assessment results observed among pa-
thologists. Therefore, we aimed to develop a quantitative 
murine renal pathological system (MRPS) based on deep 
learning multiclass segmentation of MRL/lpr mouse kid-
ney PAS-stained histology to provide a more accurate and 
reproducible quantitative renal scoring method.

Materials and Methods

Mouse Models
Female MRL/MpJ-Faslpr (MRL/lpr) mice were purchased from 

Shanghai Slack Laboratory Animal Co., Ltd. (Shanghai, China) at 
4–5 weeks of age. They were raised at the experimental animal cen-
ter of China Pharmaceutical University until 15 weeks after the 
onset of LN. The mice were sacrificed 15–17 weeks after the onset 
of LN. Female BALB/c mice, weighing 25–30 g each, were pur-
chased from the Shanghai Branch of Beijing Vitonglihua Labora-
tory Animal Technology Co., Ltd. All of the mice were housed in 
an individual ventilation cage (IVC) system with an irradiated diet, 
and cages/bedding/environmental enrichment were autoclaved as 
per the standards. The serum and urine biochemical data of MRL/
lpr mice and BALB/c mice are shown in Table 1. All animal ex-
periments were approved by the Committee of Experimental Ani-
mal Administration of the China Pharmaceutical University.

Specimen Preparation
Mouse kidneys were fixed in Bouin solution fixative at room 

temperature, protected from light for 2–3 days, processed by stan-
dard procedures through graded concentrations of alcohol and xy-
lene, and embedded in paraffin and sectioned at 2–3 μm. The sec-
tions were stained with H & E, PAS, and Masson trichrome (MAS-
SON) in accordance with the manufacturer’s instructions. All 
histopathological images were captured with an Olympus VS200 
scanner (Olympus Corporation) at ×40 magnification and 138 
nm/pixel resolution, and then processed using Olympus OlyVIA 
software (version 3.2). Each WSI was assessed by three indepen-
dent researchers using scales of 0–4 in increments of 1, as previ-
ously described [11]. The measurement was graded into four cat-
egories: (1) (a mild increase in mesangial cellularity in the matrix, 
affecting <50% of glomeruli), (2) (a moderate increase in mesan-
gial cellularity in the matrix, affecting >50% of glomeruli, with 
thickening of the glomerular basement membrane), (3) (focal en-
docapillary hypercellularity [affecting <50% of glomeruli], with 
obliteration of capillary lumen including a substantial increase in 
the thickness and irregularity of the glomerular basement mem-
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brane), (4) (diffuse endocapillary hypercellularity [affecting >50% 
of glomeruli], segmental necrosis, crescents and hyalinized end-
stage glomeruli). The healthy BALB/c mice scored 0. Cases of dis-
agreement were carefully reviewed and discussed by three senior 
pathologists to reach a consensus, and this consensus assignment 
was used as the ground truth. We selected slides showing different 
histopathological scores for the deep learning training model, with 
at least three WSIs from each score group. For developing the his-

tological assessment model, the WSIs (n = 199 in total) were split 
into the training set (n = 129) and the validation set (n = 70).

Training, Testing, and Assessment of the Neural Network
The whole procedure is shown in Figure 1. First, a pathologist 

marked glomerular areas by labeling along the outer margin of the 
glomerular capsule and all cell nuclei in the glomeruli (online sup-
pl. Fig. 1; see www.karger.com/doi/10.1159/000524880 for all on-

Training set (n = 129) Validation set (n = 70) p value

Weight, g 37.98±3.31 37.70±4.24 0.18
Urine protein, µg/mL 10,988.24±5,902.34 11,217.78±6,406.31 0.80
Urinary creatinine, µmol/L 1,569.28±563.74 1,560.93±635.05 0.89
Serum anti-dsDNA 20.46±10.84 19.24±11.96 0.47
Albumin/creatinine, mg/µmol 7.54±4.56 6.81±4.44 0.22
Hair loss score 0.93±0.94 0.90±1.01 0.87
Skin scores 1.64±0.75 1.60±0.70 0.68
Histopathology score

S0 9 9

0.23
S1 39 20
S2 18 15
S3 31 10
S4 32 16

Table 1. Characteristics of mice in the two 
sets

Deep-learning model

CNN model

CNN model development

Conclusion Our deep learning-based renal pathological system model may serve as a useful tool for accurate and reproducible
histopathological analyses of glomerulonephritis with high efficiency and clinical application potential.
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Fig. 1. Workflow of all necessary steps in this study. A CNN model was trained on ImageNet dataset for image 
segmentation and quantification of parameters. Features were extracted using the CNN model. Selection of the 
majority of features was conducted by the LASSO regression, and independent factors were presented and inte-
grated into a prediction model. The performance of the established model was evaluated by ROC analysis. LAS-
SO, least absolute shrinkage and selection operator; ROC, receiver operator characteristic.
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line suppl. material). Inspired by the study conducted by Bouteld-
ja et al. [4], renal tissues (only the cortex) were grouped into four 
classes, including Glomeruli (Glom), Background (Back1), Nuclei 
in the glomeruli (Nucl), and Nuclei outside the glomeruli (Back2). 
As shown in online supplementary Figure 1a, the cyan parts are 
the identified glomeruli areas. In online supplementary Figure 1b, 
all renal nuclei were marked in magenta. Perform measurement 
in the region of glomeruli areas for identifying intrinsic glomeru-
lar cells (online suppl. Fig. 1c). These annotations were then 
checked by three experienced senior pathologists. We used Olym-
pus cellSens software (Olympus Corporation, version 3.2) to train 
a neural network of glomerular and nuclear segmentation on a 
desktop workstation with an Nvidia Quadro 16 GB GPU. We em-
ployed deep learning models on the basis of the U-Net architec-
ture using code-free deep learning with the Olympus deep-learn-
ing platform.

Due to the large size of the WSI files, which precluded directly 
inputting entire WSIs into the model, the original WSI was split 
up into a multitude of single images that were subsequently pro-
cessed using the CNN (Fig. 2a). For each single image, we first lo-
cated the positions of glomeruli, marked as regions of interest on 
the image (Fig. 2b). The training was run for a total of 25,000 it-
erations. The total number of glomeruli recognition training ep-
ochs was set as 50,000 to ensure convergence, and the intersection 
over union (IoU) was 0.77. The nuclei recognition training epoch 
was 1,000 times, and its IoU was 0.87. We only retained the model 
at the epoch of overall minimum validation loss. As the epoch of 
training increased, the loss decreased to less than 0.2 (online suppl. 
Fig. 2). The consistency analysis was performed on the evaluation 
set by assessing the concordance between the deep-learning mod-
el and pathologist annotation using the intraclass correlation coef-
ficient (ICC) [15]. The agreement in deep-learning estimation be-

tween the CNN model and pathologist annotation was evaluated 
using the Bland-Altman plot.

Histological Feature Extraction and Selection
According to the manufacturer’s instructions, we applied the 

deep-learning model on WSIs of MRL/lpr renal PAS staining for 
extraction of histopathological features. A two-step procedure was 
followed to select significant features. First, the correlation be-
tween each feature and the pathological score was evaluated by 
using the Kendall correlation coefficient to remove weakly corre-
lated features. Features with correlation coefficients of less than 
0.15 were eliminated. Then, feature selection was performed by 
using the least absolute shrinkage and selection operator (LASSO) 
logistic regression algorithm and random forest (RF) [16]. LASSO 
logistic regression was performed with penalty parameter tuning 
conducted by 10-fold cross-validation between S0–S2 and S3–S4. 
RF selected the most significant features according to the mean 
decrease accuracy (MDA) and the mean decrease Gini (MDG). 
Features with nonzero coefficients in LASSO logistic regression, 
whose importance was evaluated as being within the top 15 both 
by MDA and MDG, were identified as independently related to 
pathological score.

Statistical Analysis
Categorical and continuous variables were compared by using 

the χ2 test and Student’s t test, respectively. Performance of the 
models for renal pathology score was evaluated by receiver operat-
ing characteristics (ROC) curve analysis [17], area under the curve 
(AUC) value, and the Obuchowski index – a multinomial version 
of ROC curve analysis adapted for ordinal references such as his-
tological renal score. The Obuchowski index is a weighted average 
of the AUCs obtained for all possible pairs of score bands to be 

Glom + back1 Nucl + back2
1 mm 50 µm

a b

c

Fig. 2. Deep learning-based model for rec-
ognition and segmentation on WSIs of mu-
rine kidney PAS staining. a The original 
WSI was split up into a multitude of single 
images. b Representative PAS pictures and 
corresponding segmentation predictions 
generated by the CNN, marked as regions 
of interest. c The mask of CNN produced 
annotations.
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differentiated. It estimates the probability that a test will correctly 
rank two randomly chosen patients with different renal scores. The 
optimal thresholds of the models were determined using the ROC 
analysis by maximizing the Youden index. A Delong nonparamet-
ric approach was used to compare the AUC values [18]. Statistical 
analysis was performed using R statistical software (version 4.1.1, 
www.r-project.org). A two-sided p value <0.05 was indicative of a 
statistically significant difference.

Results

Sample Characteristics
The baseline characteristics of all of the mice are shown 

in Table 1. A total of 199 mouse kidney WSIs were ran-
domized into two sets. Both the training and the valida-
tion sets were composed of the MRL/lpr mice and BALB/c 
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mice. There were no differences in terms of serum and 
urine biochemical parameters between the two sets. In 
the training set, the hair loss score was 0.93 ± 0.94, and 
the skin score was 1.64 ± 0.75; in the validation set, the 
hair loss score was 0.90 ± 1.01, and the skin score was 1.60 
± 0.70. No significant difference was found in any of these 
measurements. The rates of LN were 93.0% (120 of 129) 
and 87.1% (61 of 70) in the training and the validation 
sets, respectively. No significant difference was found be-
tween the two cohorts (χ2, p = 0.23).

Feature Extraction with the CNN Model
The newly trained deep-learning model was then uti-

lized to develop a novel method to access the glomeruli 
and identify intrinsic glomerular cells (Fig. 2c). To evalu-
ate the consistency and the output of our CNN model, we 
selected two features out of 79 features in total to conduct 
manual measurements (online suppl. Fig. 3). Strong con-
cordance was observed in the perimeter and counted val-
ues between the CNN model and the pathologist’s mea-

surements (online suppl. Fig. 3a, c). A high agreement 
occurred between the pathologist and the CNN perimeter 
(ICC = 0.937; 95% CI, 0.957–0.98) or the count value 
(ICC = 0.994; 95% CI, 0.991–0.996). The Bland-Altman 
plot showed good agreement between the CNN model 
and the pathologist’s measurements (online suppl. Fig. 
3b, d). The mean difference between CNN and patholo-
gist readouts was −0.01 in parameters (95% CI, −0.29 to 
0.26; online suppl. Fig. 2b) and 0 in counts (95% CI, −0.16 
to 0.16; online suppl. Fig. 2d). We applied the CNN mod-
el on renal PAS-stained WSIs and achieved 79 features on 
each slide for further analysis, including 38 glomerular 
features and 41 cellular features.

Feature Selection
Among all of the features, 35 features with significant 

correlations to the renal score were identified. All abbre-
viation of these 35 features used throughout the paper can 
be found in online supplementary Table 1. As illustrated 
in Figure 3a, 20 features with nonzero coefficients were 
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Fig. 4. Independent variables histogram and diagnostic perfor-
mance of MRPS in the validation cohort. a Histograms of indepen-
dent variables demonstrate significant correlations between the 
variables and the renal score (p < 0.01 for all). Coefficients of pe-
rimeter, SF, MINID, MINDEC, and NO were 0.465, −0.352, 

−0.209, 0.205, and 0.200, respectively. b The results calculated by 
MRPS in the validation cohort. Significant correlation between the 
results and the renal score was found (r = 0.480, p < 0.001). c ROC 
curves of MRPS for the discrimination of S0 versus S1–S4, S0–S1 
versus S2–S4, S0–S2 versus S3–S4, and S0–S3 versus S4.
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selected by the LASSO logistic regression. Perimeter, 
shape factor (SF), minimum internal diameter (MINID), 
minimum diameter (with an external caliper) (MIND-
EC), and number of objects (NO) were finally considered 
as independent predictors by MDA and MDG in the RF 
model. All of the independent predictors significantly 
correlated with the scoring system (p < 0.001 for all, 
Fig. 3c).

Development and Validation of the Scoring Model
A prediction model (MRPS) integrated the perimeter, 

SF, MINID, MINDEC, and NO. The equation for MRPS 
derived from the training cohort was as follows:

MRPS ,
1

a

a

e
e

=
+

  

where ɑ = 0.103 × Perimeter − 2.254 × SF − 0.460 × 
MINID + 1.350 × MINDEC + 1.354 × NO, in which ea is 
the exponential function, and ɑ is the exponent.

The MRPS showed a positive correlation with the re-
nal score (r = 0.480, p < 0.001; Fig. 4b). In the training 
cohort (Table 2), AUCs of MRPS for discriminating S0 
versus S1–S4, S0–S1 versus S2–S4, S0–S2 versus S3–S4, 
and S0–S3 versus S4 were 0.979 (95% CI, 0.956–0.999), 
0.794 (95% CI, 0.715–0.874), 0.811 (95% CI, 0.739–0.884), 
and 0.858 (95% CI, 0.778–0.938), respectively (Fig. 4c). 
The Obuchowski index was 0.841 (95% CI, 0.759–0.923).

Table  3 summarizes the diagnostic performance of 
MRPS in the validation cohort. MRPS had great diagnos-
tic performance for aiding in diagnosis of S0 versus S1–S4 
(0.978; 95% CI, 0.949–0.999), S0–S1 versus S2–S4 (0.864; 
95% CI, 0.772–0.956), S0–S2 versus S3–S4 (0.781; 95% CI, 
0.667–0.895), and S0–S3 versus S4 (0.831; 95% CI, 0.706–
0.956). By using threshold values for MRPS determined 
in the training cohort, MRPS had a sensitivity range of 
58–93%, a specificity range of 72–100%, and an accuracy 
range of 74–94% in discriminating S0 versus S1–S4, S0–
S1 versus S2–S4, S0–S2 versus S3–S4, and S0–S3 versus 
S4 in the validation cohort (Table 4).

Discussion

Glomerular lesions are frequent in the pathogenesis of 
renal disease. They play an essential role in LN assuagement. 
In the 2003 ISN/RPS system for classifying patients with LN, 
glomerular lesions are vital for the classification. Our mu-
rine lupus model simulates human SLE, with all kinds of 
glomerular lesions. Thus, our MRPS model supports the 
possibility of generalizing to other glomerular diseases.

MRL/lpr mice are the most commonly used animal 
model in LN basic research, which shows a full spectrum 
of glomerulonephritis, closely resembling the pathologi-
cal manifestations of human SLE. Since the change of 
MRL/lpr mouse glomeruli and intrinsic glomerular cells 
highly correlates with the basic lesion in LN, we designed 

Table 2. Diagnostic performance of MRPS in the development 
cohort

Parameter Model

S0 versus S1–S4
AUC 0.979 (0.956, 0.999)
Threshold 0.322
Sensitivity, % 95.0 (89.4, 98.1)
Specificity, % 99.9 (66.4, 99.9)
Accuracy, % 95.3 (91.7, 99.0)

S0–S1 versus S2–S4
AUC 0.794 (0.715, 0.874)
Threshold 0.509
Sensitivity, % 60.5 (49.0, 71.2)
Specificity, % 83.3 (69.8, 92.5)
Accuracy, % 69.0 (60.9, 77.1)

S0–S2 versus S3–S4
AUC 0.811 (0.739, 0.884)
Threshold 0.612
Sensitivity, % 71.4 (58.7, 82.1)
Specificity, % 81.8 (70.4, 90.2)
Accuracy, % 76.7 (69.4, 84.1)

S0–S3 versus S4
AUC 0.858 (0.778, 0.938)
Threshold 0.665
Sensitivity, % 78.1 (60.0, 90.7)
Specificity, % 82.5 (73.4, 89.4)
Accuracy, % 81.4 (74.6, 88.2)

Obuchowski index 0.841 (0.759, 0.923)

Data in parenthesis are 95% confidence intervals. AUC, area 
under the curve.

Table 3. Diagnostic performance of MRPS in the validation cohort

Parameter Model

AUC
S0 versus S1–S4 0.978 (0.949, 0.999)
S0–S1 versus S2–S4 0.864 (0.772, 0.956)
S0–S2 versus S3–S4 0.781 (0.667, 0.895)
S0–S3 versus S4 0.831 (0.706, 0.956)

Obuchowski index 0.842 (0.759, 0.925)

Data in parenthesis are 95% confidence intervals. AUC, area 
under the curve.
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MRPS to make the scoring process more objective. We 
chose the following five parameters as the evaluation in-
dicators of our model: perimeter, SF, MINID, MINDEC, 
and NO. Perimeter, MINID, and MINDEC are used to 
describe the glomerular size, while SF measures the glo-
merular shape. The number of objects refers to the counts 
of intrinsic glomerular cell numbers. All these glomerular 
morphometric values are associated with the severity of 
nephritis [19]. Lupus glomerular lesions involve patho-
logical changes such as thickening of the glomerular base-
ment membrane, expansion of the mesangial area, prolif-
eration of mesangial cells, and sclerosis in focal segmental 
glomeruli. An alteration in any of these pathological signs 
could show abnormalities in the five indicators. For in-
stance, hyperplasia and inflammatory cell infiltration 
would increase the number of intrinsic glomerular cells. 
The increased collagen deposition and collapsing glomer-
ulopathy have been associated with glomerular shape. In 
brief, the five variables integrated into the MRPS model 
could be image biomarkers of glomerulonephritis.

Renal pathology of LN involves proliferation of endo-
thelial and mesangial cells, the basement membrane with 
wire-loop capillaries reminiscent, glomerular crescent, 
renal interstitial nephritis, as well as vasculitis. Due to the 
complexity, it is difficult to identify, label, and accurately 
measure each value. To solve the fatiguing manual analy-
sis, we employed deep learning methods to identify glo-
merular features. Deep learning is a subset of intelligence 
that applies computer algorithms to meaningful repre-
sentations of raw data through multiple layers of abstrac-
tion. It enabled the effective process of WSI segmenta-
tion. With success in recent studies that applied CNNs to 
reveal prognostic biomarkers directly from digitalized 
WSIs [4, 8], our work further efficiently facilitated the ex-
traction of pathological information for unambiguous 
outcome indicators of renal scores.

Given that the MRPS model has the potential to be ap-
plied to various glomerular diseases, as well as provide a 
standard morphometric analysis on renal tissues, it is a 

good tool for preclinical and clinical studies. In both pre-
clinical and clinical practice, histopathologic evaluations 
are often performed manually, which is both time-con-
suming and not seldom poorly reproducible, particularly 
if not performed by experienced senior researchers and 
experts. When applying our model, pathologists are no 
longer needed.

Our method also showed simplicity and specificity for 
clinical application. It is possible to achieve promising 
recognition accuracy in different renal lesions with rela-
tively low additional annotation effort by experts. This 
might allow rapid adaptation of the method to samples 
from various laboratories and translation to additional 
models and pathologies. It is an important prerequisite 
for high-throughput and reproducible pathology analy-
ses and will be essential to reduce the workload while at 
the same time increasing the quantitative precision in ex-
perimental and potentially also clinical histopathology. 
For both basic research and clinical-pathological assess-
ment, there is also a strong demand for the analysis of 
high-throughput WSI analysis. Our study provided a new 
idea for renal pathology based on deep learning and is 
beneficial to preclinical nephritis models that also might 
have the potential to be used on other sample types, such 
as clinical FFPE samples, which also might be clinically 
applied in the future.

Nowadays, there are an increasing number of tools to 
generate the segmentation of the entire WSIs [20], such 
as HALO software [21] and the PyTorch platform [22, 
23]. However, they require either GPU-based hardware 
or programming skills for researchers, which limits the 
promotion and application. Furthermore, with so many 
ways to assess, extract, and compute a large number of 
image features, the pathology reports are still too descrip-
tive to quantify lesions even precisely scored. Our MRPS 
system combined the code-free platform and scoring for-
mula to address these challenges. The CNN model solved 
the segmentation of WSIs, and it was able to be easily used 
on a personal computer. The scoring part quantified glo-

Table 4. Diagnostic performance of MRPS in the validation cohort

Parameter S0 versus S1–S4 S0–S1 versus S2–S4 S0–S2 versus S3–S4 S0–S3 versus S4

Threshold value 0.322 0.509 0.612 0.665
Sensitivity, % 93.4 (57/61) [87.1, 99.8] 78.0 (32/41) [64.8, 91.3] 57.7 (15/26) [37.3, 78.0] 62.5 (10/16) [35.9, 89.1]
Specificity, % 100 (9/9) [100, 100] 72.4 (21/29) [55.1, 89.7] 84.1 (37/44) [72.8, 95.3] 90.7 (49/54) [82.8, 98.7]
Accuracy, % 94.3 (66/70) [88.7, 99.9] 75.7 (53/70) [65.4, 86.0] 74.3 (52/70) [63.8, 84.8] 84.3 (59/70) [75.5, 93.0]

Data in parenthesis are numerator/denominator and data in brackets are 95% confidence intervals.
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merular lesions to contribute to overcoming the observ-
er’s potential bias.

Our study should be considered in light of some im-
plicit limitations. First, we carried out a single mouse 
model. It needs to be generalized and extended to other 
murine models of lupus in the future. Besides, our WSI 
data set was collected at different times with different 
batches but not from different laboratories. We hope to 
conduct the cross-laboratory validation in the future. 
Furthermore, we only focused on glomerulonephritis/
glomeruli lesions and did not further discriminate some 
glomerular morphometric evaluations, such as endocap-
illary hypercellularity, mesangial matrix expansion, and 
tubulointerstitial lesions. In addition, we did not conduct 
a comprehensive assessment of all renal lesions. Finally, 
our MRPS cannot be automated. It requires two steps that 
involve WSI’s quantitative segmentation and scoring 
model. This performance still needs to be improved to be 
more time-saving.

In conclusion, this study presents MRPS, which pro-
vides a digital indicator for murine renal pathology. Our 
system can provide a computational approach for the lu-
pus mouse histopathology scoring based on the deep 
learning recognition of glomeruli and intrinsic glomeru-
lar cells. It has an excellent universality and high applica-
bility for basic scientists and could be used directly for 
assisting the pathological diagnosis of LN.
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