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Abstract: In the present overview, we describe the bases of intercalation of small 

molecules (cationic and polar neutral compounds) in DNA. We briefly describe the 

importance of DNA structure and principles of intercalation. Selected syntheses, 

possibilities and applications are shown to exemplify the importance, drawbacks and 

challenges in this pertinent, new, and exciting research area. Additionally, some clinical 

applications (molecular processes, cancer therapy and others) and trends are described.  
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1. Introduction  

DNA is a nucleic acid (biomolecule) that contains the genetic instructions specifying the biological 

development of all cellular forms of life (and many viruses). DNA is often referred to as the molecule 

of heredity, as it is responsible for the genetic propagation of all traits [1-3]. During reproduction, 

DNA is replicated and transmitted to the offspring. Its sequence defines many features ranging from 

organism type through physical traits to disease susceptibility. As it is nowadays well-established, the 

DNA sequence is copied (transcription) onto RNA biomolecules, which are then used in protein 

synthesis to encode a specific protein sequence (translation). For instance, understanding on a 

molecular level how genetic information is expressed and how to stimulate or prevent gene expression 
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is a key step toward the development of new chemotherapeutic strategies. It is of great interest 

considering that several genetic sequences of many organisms are now known (and in particular, the 

human genome is known). Much effort has gone into establishing ways to control specific gene 

expression, as a way to prevent many diseases.  

Without doubt, (bio)chemical sensor technologies that focus on the direct detection of nucleic acids 

(DNA and RNA) are currently an area of tremendous interest, as they play a major role in forensics 

[4], pharmaceutical applications [5], medical diagnosis [6], genetic screening [7], rational drug design 

[8], diagnosis of drug resistance [9], food and agricultural analysis [10], environmental control [11], 

and bioterrorism prevention [12],  among others [13]. In this sense, the understanding of the principles 

that rule this new and exciting field of research is of great importance [14] for the rational design, 

synthesis and applications of new DNA intercalators.  

There are several types of sensors, including organometallic complexes, neutral structures, 

electrochemical sensors, acoustical and optical sensors among others [6,15,16]. DNA photointercalator 

sensors are potentially a very powerful tool for quality-control testing of different kinds of products 

through nucleic acid technology [17]. They might also be used to analyze many products for the 

presence of toxins and pathogens, antibiotics, pesticides and chemicals. The development of novel, 

sensitive and selective sensors for the detection of DNA polynucleotides (PNs) has become a very 

active research field in recent years. For instance, the use of DNA photointercalators can help us to 

gather information on how these biomolecules are involved in the processes within the cells. The 

direct visualization of nucleic acids in vivo can provide information about the location, kinetics and 

function of these biomolecules, playing a major role in the understanding of different inter- and 

intracellular processes [18]. For instance, one of the main characteristics of a photointercalator to be 

used in quantitative real-time polymerase chain reaction assays (qRT-PCR) is that it must not affect 

the DNA-polymerase thermostable enzyme activity. Likewise, techniques such as PCR require probes 

with sufficient sensitivity to detect very small amounts of samples quantitatively [6] and, in some 

cases, selectivity must be adequate to identify a specific PN sequence [19]. In general, 

photointercalators probes function by binding to PNs by hydrophobic or electrostatic interactions that 

are nonspecific. The nonspecific binding means that those probes are capable of binding to PNs 

irrespective of their sequence. Such kinds of probes provide information about the amount of PNs 

available in a sample or cell, and even their position. Nevertheless, they usually are not specific to a 

definite target sequence.  

Fluorescence is widely used because it is by far the most sensitive of the available spectroscopic 

techniques [20]. In view of this, the development of DNA intercalators that display a “light up” effect 

(increase on its fluorescence intensity upon binding) or, in some cases “light off”, is mandatory to the 

progress of this field of knowledge. Typically, fluorescence requires micromolar concentrations of the 

intercalator and DNA, while NMR requires millimolar concentrations. DNA exhibits some intrinsic 

fluorescence, but the emission is too weak, and too deep in the ultra-violet spectrum for practical 

emission applications [21]. Mass and tandem mass spectrometry are also very useful techniques to 

study the intercalation, however, information such as DNA base sequence of intercalation may not be 

so direct. The use of  liquid chromatography-tandem mass spectrometry to the analysis of reactive drug 

metabolites (and fluorescent metabolites) may be a viable alternative of analysis [22]. Electrochemical 
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methods can also be very sensitive and useful technique, mainly because it is possible obtain to 

sequence recognition, as it has been recently reviewed [23]. 

In the present overview, we intend to describe the basis of DNA photointercalator technology, 

recent developments in the molecular architecture and rational design of small organic (and/or 

organometallic) photointercalator probes, their synthesis, applications and possibilities to be applied, 

and perspectives of research in the field of photointercalators.  

 

2. DNA structure: a basic background 

 

Double strand DNA (dsDNA, Figure 1-A) is a structure which displays an antiparallel double helix 

held together by hydrogen-bonding interactions between complementary base-pairs (Figure 1-B): 

adenine (A), thymine (T), guanine (G) and cytidine or cytosine (C), where it is possible to observe CG 

and TA interactions (Figure 1-C). A and G are purine bases, while T and C are pyrimidine bases. 

Although unusual, DNA can also be found as single strands (ssDNA). However, in biological systems, 

DNA is found as dsDNA. 

 

Figure 1. DNA basic 3D structure and bases interactions: (A) DNA and its representative 

form. Note major and minor grooves indication in the DNA structure; (B) Purine (A and 

G) and pyrimidine (T and C) bases; (C) Complementary base-pairs interactions (hydrogen 

bonding). 
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Since Watson and Crick’s three-dimensional model of DNA [24] and related studies [25-30], many 

efforts and progress were made to provide a deeper understanding on its 3D arrangement and 

conformation [31-34]. A double helix formation is quite common in DNA structures. Nevertheless, 

RNA also displays double helix configuration (in its secondary structure) in some circumstances, such 

as in gene silencing. DNA does not exist as a single three-dimensional structure, but rather can adopt 

different conformations which are defined both locally and macroscopically by different structural 

parameters. Basically, DNA is found in three different forms: B-DNA (most common and right-handed 

orientation), A-DNA (right-handed orientation) and Z-DNA (rare and left-handed orientation) [35-37]. 

It is worth noting that chirality is intrinsically present in the DNA structure both at the molecular and 

at the supramolecular level. Stereogenic centers can be found in both ribose (RNA) and 2-deoxyribose 

(DNA) sugar moieties, whose configuration is important in the overall RNA or DNA structure. The 

chirality concerning DNA has been recently reviewed.[38] Phosphate backbone also has an important 

role in DNA structure. Phosphate groups are negatively charged and two diastereotopic oxygen atoms 

of each phosphate group have different chemical and spectroscopic properties (Figure 2). Binding of a 

chiral guest molecule inside the chiral cavity of a specific host can generate enantioselective responses 

from their fluorophores.[39] 

The different properties of the phosphate group depends on its configuration, especially because 

they display a major role in the interaction of DNA with different species. The P=O double bond 

display two heterotopic faces (pro-R and pro-S). For instance, the mechanism of the Escherichia coli 

DNA T:G mismatch endonuclease (Vsr) has been shown to interact with DNA through a specific 

configuration (pro-R face) at its hydrolytic site  40]. In the study it was demonstrated that Vsr carries 

out a hydrolytic reaction with inversion of the configuration at the prochiral face.  

 

Figure 2. Stereochemistry of the phosphate groups in the DNA biomolecule. Note two 

possible configurations (pro-R and pro-S) in the P=O bound and the negatively charged 

oxygen atoms. DNA is a negatively charged biomolecule.  
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Another important study was carried out by Chaires et al., who used both daunorubicin enantiomers 

[41]. The (-)-daunorubicin isomer was a newly synthesized enantiomer of the anticancer drug (+)-

daunorubicin. Both isomers were tested with left- and right-handed DNA. (+)-Daunorubicin bound 

selectively to right-handed DNA, whereas the other enantiomer ligand bound selectively to left-handed 

DNA. Further, binding of the enantiomeric pair to DNA was clearly chirally selective. Moreover, the 

authors found that each of the enantiomers acts as an allosteric effector of DNA conformation.  
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A remarkable feature of the DNA biomacromolecules is that there are several reactive sites 

uniquely displayed on the surface of the double-helix, depending on the sequence. For instance, in the 

minor groove of DNA, the N2 amino group of guanine base is particularly susceptible to drug action. 

The binding specificity of many drugs to DNA often involves the recognition of guanine base in the 

minor groove through the hydrogen bonding interactions of the exocyclic N2 amino group. In fact, as 

it has been reviewed, many drugs alkylate to this site[42]. However, the above mentioned amino group 

is often a steric hinderance that decreases the affinity of groove binders to GC-rich grooves. The N3 

atom of both guanine and adenine in the minor groove is also a favorable target for drug action. 

Finally, the N7 atom of guanine in the major groove is the most reactive site in DNA, onto where 

many metal ions and alkylating agents attack [42].  

 

3. Principles of intercalation  

 

Intercalation into DNA (insertion between a pair of base pairs) is a very important process, 

especially with regards to the function of many anticancer drugs. In a very important recent article on 

the subject, Mukherjee et al. have pointed out that: “Despite its importance, a detailed mechanistic 

understanding of this process at the molecular level is lacking” [43]. At this point it is important to 

point out that many chemical species can bind covalently and non-covalently to DNA. Herein, we 

rather focus in non-covalent species. These specific host-guest interactions may have some 

consequences as a result of DNA intercalation by exogeneous molecules, such as a significant 

modification of the DNA structure [44] that may result in a hindered or suppressed function of the 

nucleic acid in physiological processes [45-47]. Furthermore, two common binding modes are 

observed for these small molecules: these are intercalation (Figures 3a and 3b) or groove-binding 

(Figure 3c). Intercalation results from insertion of a planar aromatic substituent between DNA base 

pairs, with concomitant unwinding and lengthening of the DNA helix (this will be discussed later). 

Groove binding, in contrast, does not perturb the duplex structure to any great extent. Groove-binders 

(not covered in the current manuscript) are typically crescent-shaped, and fit into the minor groove 

with little distortion of the DNA structure.  

 

Figure 3. (a) Generic intercalation representation (figure based on a previous report[48]); 

(b) dsDNA and a schematic representation of a general intercalating agent (figure based on 

a previous report[49]). Note the intercalation in the major groove of the dsDNA structure; 

(c) Generic groove binding representation (based on a previous report [48]).  
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Intercalators have been properly defined elsewhere. Barton et al. define intercalators as: “…small 

organic molecules or metal complexes that unwind DNA in order to -stack between two base pairs” 

[49]. The intercalators are oriented parallel to the base pairs, commonly -stacking in the major 

groove, although some bindings seem to occur preferentially in the minor groove of DNA [50]. In a 

dsDNA helix, the nucleic bases are located in an almost coplanar arrangement, which allows planar 

aromatic molecules to intercalate between two base pairs [51]. When intercalated, it is possible to note 

-stack interactions (intercalated moiety), hydrogen-bonding, van der Waals interactions, hydrophobic 

interactions and steric hindrance effects. In a succinct form, a combination of coulombic, hydrophobic, 

steric forces and DNA sequence influence the mode of binding which depends on the structure of the 

agent used [52]. It is important to highlight that upon intercalation, the intercalator causes a distortion 

on DNA structure. In general, the angle of the phosphate groups change (opening) allowing for the 

intercalation. The unwinding of the double strand leads to a lengthening of the helix by approximately 

3.4 Å, which causes a conformational change of some sugar moieties involved [48, 53]. As a 

consequence of the intercalation, the so-called “neighbor exclusion principle” takes place. This 

principle determines that after intercalation of a structure, the access of another intercalator to the 

binding site next to the neighboring intercalation pocket is now hindered, and it does not occur [54]. 

This fact is relatively obvious since an intercalation results in significant local DNA structural changes 

[55], which means that deep alterations in the nucleotide secondary structure occur [56, 57].  

If the probe is a cationic organic dye, normally the propensity of this small (organic or 

organometallic) molecule to bind to DNA is enhance, mostly via interaction of the positive charge with 

the phosphate backbone in the double-strand DNA macromolecules [44]. Actually, cationic species are 

the most used as fluorescent intercalators, despite the fact that some neutral intercalators are also used 

for many different purposes. When using cationic intercalators, one observes a significant electrostatic 

contribution to the binding energy for molecules with a predominantly positive electrostatic potential 

(charged or, in some cases, highly polar intercalators), but this varies significantly with sequence, and 

somewhat with the twist angle, despite the fact that electrostatic binding energy is also unlikely to be a 

major determinant of the twist angle, as its variation with angle is modest for most intercalation 

phenomena [58]. Extensive theoretical studies have indicated that, in fact, the dispersion energy 

contributes mostly to the overall energy of the intercalation complex [59].  

A complete characterization of DNA binding agents requires that their mode of binding to DNA be 

established. Actually, it may be a hard task to be performed [60]. Experiments such as 

spectrophotometric and/or spectrofluorimetric titrations or fluorescence polarization measurements are 

very useful in order to help the scientists to elucidate the general binding interaction between the guest 

molecule and DNA [61]. However, it is important to understand that these techniques can not be used 

for the unambiguous determination of the guest binding mode. Moreover, it was demonstrated that a 

combination of those experiments associated with viscosimetric titrations and the determination of a 

fluorescence resonance energy transfer (FRET) may serve as a reliable tool to determine the binding 

mode of the guest molecule [61]. NMR experiments (1H-, 13C- and 31P-) [62-67], theoretical 

calculations [68-70], calorimetric methods [71-73], circular and linear dichroism [74-78], X-ray 

diffraction [79-81], and other methods [82] are also extremely useful to determine the binding mode 

between the guest molecule and dsDNA and some thermodynamic parameters. Additionally, in order 
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to approach a detailed understanding of the molecular forces that drive these interactions, the 

importance of obtainig thermodynamic information was described[83, 84].  

  

4. Synthesis, intercalation of small fluorescent molecules and possible applications 

 

Efficient synthetic methodologies and the understanding on how fluorescent molecules can be 

intercalated are major drawbacks to be overcome in the development of nucleic acid technology [85]. 

As a matter of fact, the need for a deeper understanding to tune some photophysical properties of small 

fluorescent molecules is a major concern to keep developing light technology [86]. Rational design 

and the synthesis itself may become the worst problems during the research. Many C-C, C-heteroatom 

cross-coupling reactions protocols are available nowadays [87-95]. Nevertheless, sometimes the 

obtained yields are extremely low. This class of reactions constitute a direct, elegant, fundamental and 

mostly used tool to a straight -extension of an appropriate intermediate. On the other hand, efficient 

catalysts are under development by many research groups, mainly to promote cross-coupling reactions 

faster, cleaner and with higher yields. Nevertheless, sometimes it is necessary to perform syntheses 

with many steps to achieve the desired intercalator. In this sense, interesting works are described in the 

literature, and at this point, we intend to overview some selected work. Of course, the subject is far 

from being fully covered, and many other works on the topic are available in the literature.  

One example is a the excellent study of Ihmels et al. using N-aryl-9-amino-substituted acridizinium 

derivatives [96] (Scheme 1). These derivatives were directly synthesized upon treating 1 with aniline 

derivatives (2) at 150 °C. Note that, despite the synthesis being direct, yields are not so high as we 

wished. However, the obtained yields are very good for this specific reaction, which is a hard task to  

accomplish.  

 

Scheme 1. Synthesis of N-arylamino-acridizinium derivatives. 
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Their novel fluorescence probes, whose interaction with DNA and proteins could be monitored by 

absorption and emission spectroscopy, offered promising properties for DNA detection. In a further 

work [97] the same group used spectrophotometric titrations and circular dichroism to conclude that 

acridizinium derivatives probes are almost insensitive to the changes in the polarity of the medium, but 

with a pronounced susceptibility to the rigidity of the environment. In some fluorescent probes tested, 

they noted intercalation with a coplanar orientation of the chromophore plane relative to the plane of 

the DNA bases.  
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Other example is the work reported by our group using neutral and polar 2,1,3-benzothiadiazole-

containing chromophores. These fluorescent 2,1,3-benzothiadiazole derivatives proved to be excellent 

light-up probes for selective dsDNA detection acting as intercalating agents (Scheme 2) [98].  

 

Scheme 2. Synthesis of fluorescent BTD derivatives. 
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Compounds 7a-c, 8a,b and 9a-c were synthesized with high overall yields using Sonogashira and 

Suzuki cross-coupling reactions. Suzuki cross-coupling reactions required the use of Dupont’s catalyst 

[99] in order to achieve higher yields in the reaction [100,101]. The use of unsymmetrical dyes 9a-c 

gave better results for the spectroscopic selective detection and quantification of DNA. An 

intercalating model (Scheme 3), explaining the molecular architecture and the principles of 

stabilization in the excited state, was proposed.  

 

Scheme 3. Intercalation model proposed for 2,1,3-BTDs derivatives. The intercalation 

requires the presence of a C≡C spacer at least on one side of the molecule.  
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A benzothienoindole and a benzofuroindole were synthesized with high yields (Scheme 4) and 

studied as intercalating agents [102]. The results of spectroscopic and electrochemical studies revealed 

that benzothienoindole is the more intercalative compound and has higher affinity for DNA.  
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Two new tetracyclic neutral and highly polar compounds were synthesized by an intramolecular C-

N metal-assisted cyclization. The desired dyes were prepared by a bis-Suzuki coupling of a ,-

dibromodehydroalanine derivative and dibenzothien-4-yl and dibenzofur-4-yl boronic acids.  

 

Scheme 4. Synthesis of fluorescent benzothienoindole and a benzofuroindole tested as 

intercalating agents.  
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The binding constants between salmon sperm dsDNA and both benzothienoindole 13 and 

benzofuroindole 14 were determined as (3.8 ± 0.3) x 105 and (1.3 ± 0.1) x 105, respectively. The  

combination of spectroscopic and electrochemical methods was helpful in the understanding of the 

interaction between dsDNA and the tested dyes. Intercalation was the preferred binding mode. 

Additionally, the experiments helped to determine the recognition of DNA sites, and also to promote 

novel rational design of drugs for chemotherapy applications.  
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Chromophore systems consisting of one or two phenothiazine rings covalently attached to a bis-

piperazinexylene chain were synthesized (Scheme 5) and evaluated as DNA intercalating agents [103]. 

In the presence of DNA, these compounds were shown to monointercalate in their deaggregated forms 

and to strongly absorb red light wavelengths (650-700 nm).  

 

Scheme 5. Synthesis of cationic fluorescent derivatives 17 and 18. 
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Fluorescent systems were obtained in good overall yields. Interestingly, the cationic compounds 17 

and 18 acted as DNA photocleavage agents. When bound to DNA, they generate significant levels of 

duplex stabilization and exhibit strong absorbance ranging between 600 and 800 nm, the therapeutic 

window required for photodynamic cancer therapy. Since it was observed that, at micromolar dye 

concentrations, robust levels of DNA photocleavage are produced under near-physiological conditions 

of temperature and pH (22 °C and at pH 7.0), the authors suggest that their systems may serve as a 

good starting point for the development of new phototherapeutic agents.  

A novel family of planar triazinium fluorescent salts were synthesized (Scheme 6) with good yields 

(60-65%) and tested as DNA photointercalators [104]. The synthesis is concise and the methodology 

new. The novel compounds exhibited good water solubility.  



Molecules 2009, 14              

 

 

1735

The authors concentrated their tests using compound 20a and showed that the fluorescent intensity 

decreased steadily nearly by 25% upon DNA addition. The relative binding constant was determined 

and the value was K = 2.6 x 104 M-1). Studies in vitro and ex vivo have confirmed that compound 20a 

binds to DNA strongly even in the nanogram range. The authors suggested that their compounds might 

be relevant to the biomimetric approach of in vitro DNA damaging using chemical nucleases, which is 

a topic of interest for elucidating the genetic mechanisms of the natural enzymes involved in DNA 

scission, repair and signal transduction.  

 

Scheme 6. Synthesis of a novel family of planar triazinium fluorescent salts. 
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5. Clinical applications  

 

Yang and Wang precisely wrote that: “it is worth mentioning that while DNA is considered the 

ultimate cellular target of many anticancer drugs, other cellular targets are also possible” [42]. This 

means that DNA is a very promising target, but not the only one. The discovery and development of 

novel therapeutic intercalators agents for the treatment of malignancy are some of the most important 

goals in modern medicinal chemistry. A very interesting group in cancer therapy comprises molecules 

that target directly dsDNA. A very good (mini-)review on DNA intercalators in cancer therapy has 

been recently published [21]. However, the topic is far from being exhausted. Clinical applications are 

a topic of high importance for many different purposes, specially in life sciences. Based on some 

recently published results, new drugs can be developed, new therapies applied, new process 

discovered. For all these reasons, the understanding on how different intercalators are interacting with 

dsDNA is a challenging task of paramount importance. Once more, the drawback of an appropriate 

synthetic methodology to achieve the molecular target is a problem that we still need to deal with. 

However, many groups have made much progress in the synthesis and application of some 

intercalators. It is also important to point out that many intercalators do not display therapeutic 

properties, but may cause some damages to DNA and/or to the organism. These structural 

modifications upon binding may lead to the retardation or inhibition of transcription and replication, 

and DNA intercalators may be mutagenic. The genotoxicity of non-covalent interactions have been 

already reviewed [105, 106]. In spite of this, many researches are promising. In addition, controlled 

mutation may be desirable. At this point, we disclose some selected works to highlight the challenges 

and progress already made.  

Some imidazopyridine derivatives were synthesized (Scheme 7) and evaluated for their antitumor 

activity in the NCIs in vitro human tumor cell line screening panel [107]. It should be noted that, 
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although the synthesis was not direct, the authors achieved the desired compounds with reasonable 

yields. Actually the methodology allowed them to obtain 20 different angular imidazonaphthyridinic 

derivatives. 

They accessed the antiproliferative activities on four different cell lines along with their DNA-

intercalating properties and their topoisomerase inhibition power. Interestingly, they highlighted the 

direct intercalation of the drugs into DNA strands by electrophoresis on agarose gel. Their compounds 

are a new class of DNA-recognizing derivatives. 

 

Scheme 7. Synthesis of a novel family of planar triazinium fluorescent derivatives. 

NaIO4

THF

H2O

24a

N

N

NO2

O
Fe / HCl

EtOh / H2O

25a

N

NHOC

NH2

N

NH2

O2N

21b
Same procedure

25b

N

N

CHO

H2N

N

NH2O2N

21a
22a

N

N

NO2
O

H
Cl

EtOH

DMF / DMA

23a

N

N

NO2

N

26a

N

N

N

27a

N

N

N +

25b

N

N

CHO

H2N

butanone

KOH

EtOH

AcOH

O

O

28a

N

N

N

O

 

 Other recently published and important work was conducted by J. Bergman and co-workers [108]. 

The authors performed the synthesis of quinoxalines derivatives (Scheme 8) and tested their antiviral 

activity.  
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The new systems were easily prepared by condensation of the isatin derivative 29 and the 

appropriate 1,2-phenylenediamine 30 in glacial acetic acid. Isatin derivatives can be directly prepared, 

as discussed in previous reports [109, 110]. It is worth noting that the synthetic methodology used by 

the authors was very efficient and straightforward with very good yields.  

 

Scheme 8. Synthesis of a novel family of quinoxalines derivatives. 
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Compound 31b was virtually nonfluorescent, both in the presence and absence of DNA. However, 

in the presence of dsDNA, the light-up effect was pronounced for all other compounds (31a and 31c-

e). All max (emission wavelengths) were above 450 nm. Using fluorescence and circular dichroism, it 

was possible to conclude that the new compounds bind strongly but noncovalently to DNA in an  
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intercalative mode. Furthermore, they are found to have equally high binding constants as already 

established DNA drugs and dyes. It is interesting to highlight that the molecular guests also displayed 

AT-specificity, which is a property shared with some of the DNA drugs and dyes. This fact is 

potentially useful for targeting viral genomes that are especially AT-rich.  

A quercetin zinc(II) complex derivative (Scheme 9) has been tested in vitro using three tumor cell 

lines (HepG2, SMMC7721 and A549), and showed significant cytotoxicity against three tumor cell 

lines.[111] Moreover, Hoechst33258 staining showed that HepG2 cells underwent the typical 

morphologic changes of apoptosis after exposure to the complex.  

 

Scheme 9. Quercetin zinc(II) complex derivative. 
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Quercetin is a bioflavonoid widely found in fruits and vegetables and has been reported to exert 

multiple biological effects as antioxidant and antitumor agent [112]. The synthesis of the zinc complex 

is direct and easy to be performed.  

In the study it was concluded that complex 33 could interact with DNA via intercalation mode. 

Equally, compound 33 displayed a significant inhibition to growth and proliferation of tumor cells 

(HepG2, SMMC7721 and A549) in a dose- and time-dependent manner. Also, IC50 values provided by 

the complex are much lower than that of quercetin 32 alone. The complex is probably inducing 

apoptosis of tumor cells. Interestingly, molecular modeling was performed revealing that the system 

33 probably binds preferentially in a GC region. On the basis of those results, a model of DNA 

cleavage induced by complex 33 was proposed, as shown in Scheme 10. The mechanism of action of 

the zinc complex during the cleavage process can be clearly depicted from the scheme.  

 

6. Conclusions and Trends 

 

There are still many drawbacks to be overcome and progress to be made in the chemistry of DNA 

photointercalators. Considering the increasing contribution of cancer to the overall mortality rate, a 

more rational design and application of novel DNA intercalators, with both higher efficiency and 

selectivity, constitutes an urgent task in medicinal chemistry. It is more than likely that DNA-binding 

properties of an intercalator new drug may play a key role in different chemotherapies. As a natural 

consequence, the understanding of the association of a photointercalator and dsDNA is among the 
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most significant contributions to the overall struggle against many diseases. The spectroscopic 

techniques cited in this review may provide all data necessary to a better comprehension of the 

intercalation mode of small guest molecules and dsDNA.  

 

Scheme 10. Proposed intermediate of DNA binding with quercetin zinc(II) complex 33 

and proposed DNA cleavage mechanism. The fluorescent complex helps in the hydrolysis 

process on the phosphate group.  
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In a general way, chemical modifications are made to the core structure of traditional intercalators, 

but a more rational design is still challenging many research groups. This is mainly due to their vast 

structural diversity and the problems associated with the complete characterization of the binding 

mode of new structures. In the case of small molecular fluorophores, this association may not be very 

clear, mainly because of the great diversity of the possible resulting structures. Higher selectivity, 

sensitivity, shorter assay times and greater simplicity in performing the assay are trends that must be 

taken into account in the design of new photointercalators that may be commercially viable. Perhaps, 

appropriate synthetic methodologies and good overall yields are some of the major problems to be 

solved. A case where the synthesis is performed in multi-step reactions and the yields are not so high is 

not rare.  
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For clinical proposes, before interacting with DNA, the intercalating agents must overcome many 

barriers, including metabolic pathways and the cytoplasmic and nuclear membranes. As such, clinical 

failure of most intercalator drugs can be attributed more to pharmacokinetics than to 

pharmacodynamics [113]. However, despite many possible problems such as toxicity, nonselectivity, 

and costs, at the present time, DNA intercalators are among the most important and promising 

therapeutic agents to treat many diseases such as cancer.  
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