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Sulfur is essential for biological processes such as amino acid
biogenesis, iron–sulfur cluster formation, and redox homeosta-
sis. To acquire sulfur-containing compounds from the environ-
ment, bacteria have evolved high-affinity uptake systems, pre-
dominant among which is the ABC transporter family. Theses
membrane-embedded enzymes use the energy of ATP hydroly-
sis for transmembrane transport of a wide range of biomolecules
against concentration gradients. Three distinct bacterial ABC
import systems of sulfur-containing compounds have been
identified, but the molecular details of their transport mecha-
nism remain poorly characterized. Here we provide results from
a biochemical analysis of the purified Escherichia coli YecSC-
FliY cysteine/cystine import system. We found that the sub-
strate-binding protein FliY binds L-cystine, L-cysteine, and
D-cysteine with micromolar affinities. However, binding of the
L- and D-enantiomers induced different conformational changes
of FliY, where the L- enantiomer–substrate-binding protein
complex interacted more efficiently with the YecSC transporter.
YecSC had low basal ATPase activity that was moderately stim-
ulated by apo FliY, more strongly by D-cysteine– bound FliY, and
maximally by L-cysteine– or L-cystine– bound FliY. However, at
high FliY concentrations, YecSC reached maximal ATPase rates
independent of the presence or nature of the substrate. These
results suggest that FliY exists in a conformational equilibrium
between an open, unliganded form that does not bind to the
YecSC transporter and closed, unliganded and closed, liganded
forms that bind this transporter with variable affinities but equally
stimulate its ATPase activity. These findings differ from previous
observations for similar ABC transporters, highlighting the extent
of mechanistic diversity in this large protein family.

ABC transporters comprise one of the largest protein fami-
lies of any proteome and play diverse and vital roles in all king-
doms of life (1–3). These membrane-embedded enzymes use
the energy of ATP hydrolysis to transport a wide range of

biomolecules against their concentration gradients (4 –6). In
humans, genetic defects in ABC transporters lead to diseases
such as Tangier disease, adrenoleukodystrophy, and cystic
fibrosis (7–9), and their elevated expression underlies the phe-
nomenon of tumor multidrug resistance (10, 11).

It is therefore of no surprise that decades of research have
been dedicated to understanding ABC transporter structure
and function. Despite the diversity of their physiological roles
and substrate recognition profiles (12–17), ABC transporters
share a common basic architecture, minimally comprising two
intracellular nucleotide-binding domains (NBDs)2 that bind
and hydrolyze ATP and two transmembrane domains (TMDs)
that form a substrate translocation pathway (18 –21). ATP is
bound at two composite sites formed at the interface of the
NBDs, and proper formation of the ATP-binding sites requires
that the NBDs close into a tight head-to-tail sandwich (22).
Binding and hydrolysis of ATP drives transition of the TMDs
between inward- and outward-facing conformations with con-
comitant changes of substrate-binding affinities (23–25). Thus,
for an exporter, the inward-facing conformation has the higher
substrate-binding affinity, which is lowered upon transition to
the outward-facing conformation, and vice versa in an
importer. Binding of the substrate generally promotes closure
of the NBDs and subsequent ATP hydrolysis (26 –28), and this
allosteric communication provides a positive feedback mecha-
nism for substrate translocation.

ABC transporters that function as importers are found
almost exclusively in prokaryotes (6, 29). The importers do not
bind their substrates directly but, rather, work in concert with a
substrate-binding protein (SBP). The SBP binds the substrate
with high affinity, delivers it to the transporter, and largely dic-
tates the transport specificity (20, 29, 30). Although there are
exceptions (31, 32), each SBP is specific for one transporter, and
together they form the functional transport unit. In bacteria,
ABC importers are major determinants of high-affinity acqui-
sition of essential nutrients (33–36). Their function becomes
essential in nutrient-depleted environments; therefore, many
bacterial ABC import systems are directly linked to bacterial
virulence and pathogenesis (37–39).
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Sulfur is an essential element for all life forms, and bacteria
are no exception. It is used for synthesis of amino acids, in
iron–sulfur clusters, as a redox reactant, and in coordination of
transition metals such as zinc and copper (40, 41). Because of
the unique chemical properties of sulfur, it cannot be readily
substituted by other elements; therefore, to satisfy their sulfur
quota, bacteria evolved elaborate mechanisms for sensing,
acquiring, and assimilating sulfur atoms (42–45). Sulfur-con-
taining organic compounds, such as cysteine and its oxidized
dimeric form cystine, GSH, and aliphatic sulfonates, provide
important sulfur sources for bacteria (42, 46). Under conditions
of sulfur limitation, CysB, a LysR-type transcriptional regula-
tor, up-regulates the expression of various uptake systems that
are specific for importing sulfur-containing organic com-
pounds (47). Among these are the ABC transport systems
tauABC, ssuABC, and yecSC-fliY, which import taurine, ali-
phatic sulfonates, and cysteine/cystine, respectively (48 –50).
The importance of the three systems in acquiring sulfur under
cysteine/sulfur starvation conditions and in redox homeostasis
have been demonstrated by determining the growth phenotype
of deletion strains and by uptake of a radiotracer by whole cells
(49). However, our understanding of their molecular-level bio-
chemistry remains limited, likely because of the technical chal-
lenges often associated with working with membrane proteins.

Here we describe overexpression and purification of the
components of the yecSC-fliY ABC cysteine/cystine importer
(50). Using purified components, we investigated the substrate
recognition profile of FliY (the SBP) with an emphasis on dis-
crimination between the L- and D-enantiomers of cysteine and
cystine. We characterized the ATPase activity of the trans-
porter and its modulation by the SBP and the L- and D-enantio-
mers. We describe a mechanism of tight coupling between ATP
hydrolysis and the presence of the SBP and selective stimula-
tion of ATP hydrolysis by the L-enantiomers.

Results

Recognition profile of FliY, the SBP of the system

In ABC importers, transport specificity is almost exclusively
determined by the binding specificity of the SBP. The SBP binds
the substrate with high affinity and delivers it to the membrane-
embedded transporter (4, 5). In Gram-positive bacteria, the
SBP is tethered to the membrane via a lipid anchor or fused
directly to the transporter. In Gram-negative bacteria, the SBP
is a soluble periplasmic protein (15, 51, 52). To study the rec-
ognition spectrum of the YecSC-FliY import system, we first
overexpressed and isolated the FliY SBP. Following induction
with isopropyl 1-thio-�-D-galactopyranoside (IPTG), whole-
cell lysates showed dramatic enrichment of two protein bands
(Fig. S1A). The higher band is presumably the immature form
of the SBP, which includes an intact N-terminal signaling
sequence. The lower band is most likely the mature SBP, in
which the signal sequence is cleaved upon secretion to the
periplasm. The presence of both species in whole-cell lysates
suggests that the high levels of overexpression lead to overflow
of the protein export machinery and accumulation of cytosolic
immature FliY. Indeed, the higher molecular band was absent
from the periplasmic extract, and the mature protein was sub-

sequently purified to homogeneity by Ni-NTA chromatogra-
phy (Fig. S1B). The purified protein was highly monodisperse in
size exclusion chromatography, indicting a single molecular
species that approximately corresponds in size to the mono-
meric form of FliY (Fig. S1C).

We then used two independent methods to measure sub-
strate binding by FliY: nano differential scanning fluorimetry
(nanoDSF) and isothermal titration calorimetry (ITC). nano-
DSF is based on the observation that the thermal stability of a
protein is increased upon ligand binding (53, 54). By exciting
the protein at 280 nm and measuring the ratio of 350-nm and
330-nm fluorescence intensities while heating at a constant
rate, one can determine the protein denaturation midpoint
(Tm). This experiment is conducted in the absence and pres-
ence of a potential ligand, and a binding event is detected by a
shift of the Tm to a higher temperature. When two different
ligands induce substantially distinct bound conformations, the
magnitude of the shift of the Tm differs. Thus, nanoDSF can
resolve different ligand-bound conformations under saturating
conditions. In contrast to nanoDSF, ITC directly measures
ligand binding by measuring the amount of heat released or
absorbed during a binding event. ITC is considered a bench-
mark method for measuring protein–ligand interactions (55,
56). Combination of these two approaches (nanoDSF and ITC)
provides complimentary information regarding a protein–
ligand interaction event.

Previous in vivo growth studies have suggested that the FliY-
YecSC ABC transport system satisfies the sulfur requirements
of Escherichia coli by importing a variety of compounds, such as
the amino acid cysteine, its oxidized dimeric form cystine, djen-
kolic acid, and lanthionine (49, 50). We therefore studied the
binding of various sulfur-containing compounds by FliY.

In the absence of ligand, FliY was a relatively stable protein
with a Tm of �65 °C. The nanoDSF measurements were highly
reproducible, as indicated by the near-perfect superimposition
of replicates (Fig. S2). As expected, addition of nonrelated sub-
strates, such as D-maltose or D-arabinose, had no thermostabi-
lizing effect (Fig. S2). In contrast, addition of L-cysteine led to
significant stabilization of the SBP by �4.5 °C (Fig. 1A). Next we
tested the amino acid serine, which is identical to cysteine
except for the absence of the sulfur atom from its side chain.
Despite this similarity, L-serine had no thermostabilizing effect
on FliY, suggesting that the sulfur atom is an important deter-
minant of FliY recognition (Fig. 1A). However, other sulfur-
containing compounds, such as L-methionine, GSH, and djen-
kolic acid, had no thermostabilizing effect, demonstrating the
specificity of the FliY–L-cysteine interaction (Fig. 1A). Similar
to L-cysteine, addition of the L-enantiomer of its oxidized
dimeric form (Cys-S-S-Cys, cystine) also led to thermostabili-
zation of FliY (Fig. 1B). However, for cysteine and cystine, the
effect was highly stereospecific, as no thermostabilization effect
was observed in the presence of D-cysteine or D-cystine (Fig.
1B). Taken together, the nanoDSF results suggest that FliY spe-
cifically binds the L-enantiomers of the amino acid cysteine and
its oxidized dimeric form (L-cystine).

Next we used ITC to measure the binding affinity of FliY to
different ligands. Titration of L-cystine to apo FliY generated a
strong exothermic signal (Fig. 2A), and a fit with a simple 1:1
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interaction model yielded a KD value of 9.3 � 2.8 �M. This
binding affinity is similar to published values for other amino
acid SBPs, such as the L-glutamine SBP of Listeria monocyto-
genes (KD � 4.7 �M), but considerably weaker than that
reported for the E. coli SBPs for L-histidine (HisJ, KD � 60 nM)
and L-methionine (MetQ, KD � 0.2 nM) (57–59). This variabil-
ity in binding affinities between SBPs of amino acids may reflect
the environmental availability of the amino acids. Binding of
L-cystine by FliY was entirely enthalpy-driven, and a positive
entropic value was noted in all experiments. Although we did
not attempt to pinpoint the values of �H and �S, these obser-
vations are in line with the suggestion that the mobility of class
II substrate-binding proteins, such as FliY, is restricted upon
ligand binding (therefore leading to a decrease in �S). Consist-
ent with the nanoDSF results, titration of D-cystine to apo FliY
did not produce any measurable ITC signal (Fig. 2B). From
these results, we conclude that FliY binds L-cystine but not its
D-enantiomer.

NextweconductedsimilarexperimentswiththeL-andD-enan-
tiomers of cysteine. As expected, binding of L-cysteine by FliY
was readily detectable by ITC (Fig. 2C) and was also exothermic
and mainly driven by enthalpy. The affinity of FliY to L-cysteine
(KD � 14.4 � 2.4 �M) was modestly weaker (1.5-fold) than for
L-cystine, but this difference was determined to be significant
using a Student’s two-sided t test (p � 0.02). Surprisingly, bind-
ing of D-cysteine to apo FLiY was readily detected by ITC exper-
iments (Fig. 2D). The affinity of FliY to D-cysteine (KD � 10 �
3.4 �M) was similar to the affinities measured for L-cystine and
L-cysteine.

With respect to binding affinity of D-cysteine, the contradic-
tion of the ITC and nanoDSF results was puzzling. We hypoth-
esized that D-cysteine binds at the same site as L-cysteine or
L-cystine but that binding of D-cysteine induces a distinct con-
formational change that does not lead to increased thermosta-
bility. Recent studies have indeed demonstrated that binding of
closely related substrates by SBPs can lead to different bound
conformations (17, 60, 61). To explore this possibility, we con-
ducted binding competition experiments using nanoDSF. In
these experiments, a 4-fold molar excess of D-cysteine was
added together with L-cysteine. We predicted that if D-cysteine

binds to the same site as L-cysteine but does not stabilize FliY,
then its presence will inhibit the stabilization effect mediated by
binding of L-cysteine. Consistent with this prediction, relative
to the presence of only L-cysteine, concomitant addition of both
enantiomers led to a reproducible, �2 °C reduction in thermo-
stability (Fig. 3A).

As a negative control, we repeated this experiment using
L-methionine as a competitive ligand and did not observe a
reduction in thermostability. Furthermore, competition exper-
iments using D-cystine had no effect on the thermostabilization
of FliY by L-cystine (Fig. 3B). Perhaps unexpectedly, the mixture
of D-cysteine and L-cysteine did not lead to formation of multi-
ple or broader peaks but, rather, to formation of a single peak of
comparable width but reduced thermostability. Given the
capacity of FliY to bind cystine, a putative explanation for this
phenomenon may be the concurrent binding of D-cysteine and
L-cysteine, which leads to an intermediate level of stabilization.
Taken together, the ITC, nanoDSF, and nanoDSF-competition
results suggest that FliY specifically binds L-cystine, L-cysteine,
and D-cysteine and that binding of the L-enantiomers leads to a
conformational change that is distinct from that induced by
binding of the D-enantiomer.

ATP hydrolysis by YecSC

ABC transporters that function as importers are divided into
two classes or “types.” Type I importer systems import sugars,
amino acids, and peptides (36, 62–65), whereas type II systems
import metals or organo–metal complexes, such as heme, sid-
erophores, and vitamin B12 (15, 66–68). The type I and type II
subgroups differ structurally and mechanistically, and one dis-
tinctive mechanistic feature is their ATP hydrolysis activity.
Type I ABC importers generally have low basal rates of ATP
hydrolysis that are greatly stimulated by docking of the sub-
strate-loaded SBP (69 –71). In contrast, type II importers have
very high basal rates of ATP hydrolysis that are much less
responsive to the SBP and/or substrate (23, 34, 35, 72). To char-
acterize the basal ATP hydrolytic activity of YecSC and its mod-
ulation by FliY, the transporter was overexpressed in E. coli.
Following the strategy originally developed by Locher et al. (73),
we screened multiple constructs of YecSC to identify the posi-

Figure 1. Binding of sulfur-containing compounds by FliY. A, nanoDSF measurements conducted with 30 �M FliY in the presence of 200 �M of the following:
no addition (apo FliY, solid black trace), L-cysteine (dashed black trace), L-serine (light gray, solid), L-methionine (light gray, dotted), and GSH (dark gray, solid). B,
same as in A; shown are the measurements for apo FliY (no addition, solid black trace), L-cystine (dashed black trace), D-cystine (light gray, solid), and D-cysteine
(dark gray, solid). Shown are representative experiments conducted at least three times.
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tions that can accommodate the His tag without interfering
with membrane-embedded expression of the transporter. In
this screen, we observed that tagging of the NBD at its C-termi-
nal completely abolished its expression and that the TMD
domain tolerates tagging at both termini (Fig. S3). When we
compared the expression of the singly tagged constructs, the
N-terminally tagged NBD showed greater expression than
tagged TMD constructs (Fig. S3). Therefore, for subsequent
studies, we focused on a construct where only YecC (NBD) was
His-tagged, whereas YecS (TMD) was tag-free.

To extract YecSC from E. coli membranes, several detergents
were screened. Of these, the most efficient extraction was
achieved using 7-cyclohexyl-1-heptyl-�-D-maltoside, and
YecSC could be subsequently purified to high homogeneity in
this detergent. However, despite the clear presence of the
ATPase and transmembrane domains, we could not detect any
ATPase activity of 7-cyclohexyl-1-heptyl-�-D-maltoside–
purified YecSC. Other detergents did not efficiently extract
YecSC from membranes, and we therefore tested combinations
of detergents. We found that a 1:1 (w/w) mixture of N-decyl-�-
D-maltopyranoside (DM) and dodecyl maltoside (DDM)
improved extraction of YecSC and allowed isolation of the
transporter with high purity (Fig. S4). To preserve the ATPase
activity of YecSC, it was necessary to add lipids to the DDM/
DM-purified protein. All subsequent activity measurements
were conducted in the presence of a 20:1 molar excess of puri-
fied E. coli polar lipids.

In the absence of FliY, YecSC displayed very low ATP hydro-
lytic activity that was barely detectable above the background
level (Fig. 4A). Addition of L-cystine alone (in the absence of
FliY) had no effect, and the ATPase activity remained near
background. In contrast, addition of a 5-fold molar excess of
substrate-free apo FliY led to a marked (�3-fold) stimulation of
the ATPase activity of YecSC. To rule out the possibility

Figure 4. ATP hydrolysis by YecSC. A, 0.5 �M of purified YecSC was supple-
mented with 10 �M of E. coli polar lipids and incubated for 2 min with 1 mM

ATP. To initiate hydrolysis, 2 mM MgSO4 was injected at time 0. The rate of
release of Pi was determined by continuous monitoring of the 340-nm absor-
bance of the solution using the EnzCheck kit. ATP hydrolysis was measured in
the presence of 0.5 �M YecSC (black curve); buffer only (blue); 1 �M FliY
(orange); 0.5 �M YecSC and 30 �M L-cystine (yellow); 0.5 �M YecSC and 1 �M

FliY (red); or 0.5 �M YecSC, 1 �M FliY, and 30 �M L-cystine (green). Shown are
representative experiments conducted at least three times. B, initial rates of
hydrolysis of 15–2000 �M ATP were measured in the presence of 1 �M YecSC,
5 �M FliY, and 100 �M L-cystine. Circles represent the experimental data, and
dotted lines are the linear fits. C, the initial rates of ATP hydrolysis were plotted
as a function of the ATP concentration (crosses). The data were then fit using
the Michaelis–Menten equation (dashed line) or its expanded version that
includes also a term for the Hill coefficient (solid line).

Figure 2. Affinity of binding of the D/L-enantiomers of cystine and cysteine. A–D, isothermal titration calorimetry was used to determine the binding of
L-cystine (A), D-cystine (B), L-cysteine (C), or D-cysteine (D). Shown are consecutive injections of 2-�l aliquots from 200 – 400 �M solutions of the indicated amino
acid into 200 �l of 70 �M FliY. The top panels show the calorimetric titration, and the bottom panels display the integrated injection heat derived from the
titrations, for which the best-fit curve (solid black trace) was used to calculate the KD. The experiments were conducted three times, and the KD value is mean �
S.D. of three independent experiments.

Figure 3. Competition between the D- and L-enantiomers of cystine and cysteine in binding to FliY. A, nanoDSF competition measurements conducted
with 10 �M FliY under the following conditions: no addition (apo FliY, solid black trace), 50 �M L-cysteine (dashed black trace), 50 �M L-cysteine and 200 �M

D-cysteine (light gray, dotted), and 50 �M L-cysteine and 200 �M L-methionine (light gray, solid). B, no addition (apo FliY, solid black trace), 50 �M L-cystine (dashed
black trace), and 50 �M L-cystine and 200 �M D-cystine (light gray, solid).
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of contaminating ATP hydrolysis activity, we conducted exper-
iments where FliY was present but YecSC was absent. No
ATPase activity was measured in these experiments, demon-
strating that the observed activity requires the presence of both
YecSC and FliY. Concomitant addition of FliY and L-cystine led
to the highest level of stimulation, �11-fold over basal activity
(Fig. 4A).

Next, to examine the role of the two ATPase sites in YecSC,
we measured the initial rates of activity under a range of ATP
concentrations. As shown, at ATP concentrations of 15–2000
�M, the initial rates of ATP hydrolysis were linear for more than
2 min (Fig. 4B). The rate constants were plotted as a function of
ATP concentration, and the data were fit using the Michaelis–
Menten model or an expanded version that includes the Hill
coefficient (Fig. 4C). Adding the term for the Hill coefficient
lowered the root mean square deviation of the fit by �15-fold.
These results suggest that the two ATP binding sites of YecSC
are interdependent and hydrolyze ATP cooperatively (nHILL �
1.7 � 0.2). Similar cooperative ATP hydrolysis has been
described for the vitamin B12 transporter BtuCD (nHILL � 2),
the methionine transporter MetNI (nHILL � 1.7), the maltose
importer MalFGK2 (nHILL � 1.4 –1.7), and the histidine
importer HisPQM (nHILL � 1.9) (16, 69, 72, 74). The affinity of
YecSC to ATP is quite low (Km(ATP) � 0.3 mM), substantially
weaker than that reported for BtuCD and MalFGK2 (10 –20
�M) but similar to the Km reported for HisPQM (�0.5 mM) and
MetNI (�0.3 mM) (16, 35, 69, 70, 72). Given the high intracel-
lular concentrations of ATP in E. coli, we anticipate that YecSC
would be nearly saturated with ATP under physiological con-
ditions (75).

As shown above (Fig. 4A), substrate-bound FliY more
strongly stimulates the ATPase activity of YecSC than sub-
strate-free FliY. Previous work has demonstrated that class II
substrate-binding proteins undergo a large Venus flytrap–like
conformational change when binding substrates (76 –79). This
conformational change is sensed by the transmembrane
domain of the transporter and provides a substrate occupancy
signal that is transmitted to the nucleotide-binding domains.
As a result, docking of the substrate-bound SBP stimulates ATP
hydrolysis and, ultimately, transport (70). This substrate-de-
pendent stimulation of ATPase activity can be a result of two
mechanisms or their combinations. One possibility is that sub-
strate-free and -bound FliY dock to YecSC with similar affini-
ties, but substrate-bound FliY more efficiently induces closure
of the NBDs and, thus, promotes ATP hydrolysis. Such a mech-
anism has been demonstrated for the ABC importers for malt-
ose and histidine (25, 80). Alternatively, substrate binding could
increase the affinity of FliY to YecSC, which leads to a higher
fraction of transporter-bound FliY molecules in the ATPase
assays.

To discriminate between these two possibilities, we deter-
mined the initial rates of ATP hydrolysis with a range of FliY
concentrations in the absence or presence of saturating L-cys-
tine. Under both conditions, the data were readily fit with the
Michaelis–Menten equation, consistent with a 1:1 FliY:YecSC
interaction ratio (Fig. 5A). A comparison of the kinetic con-
stants showed that the apparent kcat was largely unaffected by
the presence of substrate. In contrast, the presence of substrate

lowered the apparent Km for FliY by �9-fold (from 10.3 to 1.1
�M). The unchanged kcat

app and the lower Km
app suggest that,

when docked, apo and holo FliY equally stimulate the ATP hy-
drolysis activity of the transporter but that L-cysteine– bound
FliY has higher affinity to YecSC than apo FliY.

In nanoDSF and ITC binding experiments with FliY, we
observed that the L- and D-enantiomers of cystine and cysteine
bind differently, which could lead to distinct conformations of
holo FliY. In turn, this difference in conformations could influ-
ence the stimulation of ATP hydrolysis by YecSC. To test this
hypothesis, we measured the stimulation of ATPase activity by
each of these substrates. As anticipated based on our thermo-
dynamic measurements, D-cystine had no effect on FliY-medi-
ated stimulation of ATPase activity (Fig. 5B). This observation
further supports the conclusion that FliY does not interact with
D-cystine. The highest levels of ATPase stimulation were
observed in the presence of the L-enantiomers of cysteine and
cystine (Fig. 5B), suggesting a productive interaction of FliY
with the L-enantiomers. Finally, FliY-D-cysteine had a modest
(but reproducible) stimulatory effect that was higher than the
effect of FliY alone but lower than the effect of the L-enantio-
mers, further supporting the hypothesis that binding of D-cys-
teine leads to a distinct conformational change.

3D structural modeling of FliY

As described above, FliY binds both enantiomers of cysteine
(but not the iso-structural serine) but discriminates between
the L- and D-enantiomers of cystine, binding only the former. In
an attempt to understand the molecular basis of this selectivity,
we employed a combination of 3D structural modeling, evolu-
tionary analysis, and molecular docking. Notably, because cys-
tine is twice larger than cysteine, FliY may adopt different con-
formations when binding each of these two ligands. We
therefore used two different templates for the modeling, as
described below.

Multiple sequence alignment of the query protein and its
homologs facilitates homology modeling in that it may aid in
finding the best structural template and in improving the query
template alignment. Thus, we used HHblits (81) to search for

Figure 5. A, modulation of ATP hydrolysis by apo- and holo FliY. ATP hydro-
lysis by 1 �M YecSC was measured in the presence of a range of FliY concen-
trations (0.25–20 �M, as indicated) in the absence (empty circles) or presence
(full circles) of 100 �M L-cystine. The dashed line represents the fit of the data
using Michaelis–Menten. B, stimulation of ATPase activity by the D- and L-enan-
tiomers. ATP hydrolysis was measured for 1 �M YecSC (gray); 1 �M YecSC and
2 �M FliY (black); 1 �M YecSC, 2 �M FliY, and 30 �M D-cystine (yellow); 1 �M

YecSC, 2 �M FliY, and 30 �M D-cysteine (blue); 1 �M YecSC, 2 �M FliY, and 30 �M

L-cysteine (green); and 1 �M YecSC, 2 �M FliY, and 30 �M L-cystine (red).
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homologs of FliY, and a search against Uniclust30 (82) yielded
250 homologs, which we aligned using MAFFT (83). We then
used Modeler (84) to construct a model of FliY using the 2.26 Å
resolution crystal structure of NGO2014, the L-cysteine SBP of
Neisseria gonorrhoeae (PDB code 2YJP, 26% sequence identity
to FliY (85)).

We then docked L-cysteine to this model (see “Experimental
procedures” for the docking protocol) and observed that,
according to the model, the C terminus of L-cysteine makes a
salt bridge with the side chain of Arg-114, its N terminus makes
hydrogen bonds with Thr-109 and Asp-192, and the thiol forms
hydrogen bonds with Tyr-51 and Thr-158 and a weak salt
bridge, 4.3Å in length, with Lys-182 (Fig. 6A). Docking of D-cys-
teine revealed that it docks in essentially the same pose as L-cys-
teine (Fig. 6B), which explains why FliY binds both enantio-
mers. The predicted pKa (see “Experimental procedures”) for
the docked cysteine was estimated to be 6, suggesting that 95%
of the bound cysteine population would be deprotonated at
physiological pH. This may also explain why serine, with its
much higher pKa of 15, is discriminated against; at physiologi-
cal pH, serine’s side chain will be protonated and will make less
favorable interactions with the side chains of Tyr-51, Thr-158,
and Lys-182.

We used a similar protocol and the structure of the L-cystine
SBP from N. gonorrhoeae (PDB code 2YLN, 35% sequence iden-
tity to FliY, (85)) to predict the coordination of L-cystine by FliY.
The predicted binding mode for L-cystine was very similar to
what was observed in the template structure (Fig. 6C), whereas
the pose predicted for D-cystine differed in its interaction with

Glu-48 (Fig. 6D). The electrostatic interaction between the
amine of L-cystine and the carboxylate oxygens of Glu-48 seems
pivotal, as it is conserved in all FliY homologs (ConSurf grade of
9 on a scale of 1–9, (86) and also in the L-cystine SBP of N. gon-
orrhoeae (here the equivalent residue is Glu-56). Although the
amine of L-cystine interacts with both carboxylate oxygens (Fig.
6C), in D-cystine, the amine is displaced and can only interact
with one oxygen atom (Fig. 6D). This difference in binding
modes may explain why FliY preferentially binds the L-enan-
tiomer of cystine.

Discussion

Previous studies have suggested that SBPs of ABC transport-
ers may exist in a conformational equilibrium between an open,
unliganded form (O); a closed, unliganded form (C); and a
closed, liganded form (C�L) (17, 61, 87). The results we present
here for YecSC-FliY are consistent with such a model (Fig. 7).

In the absence of ligand, FliY predominantly adopts the O
conformation, which does not bind to YecSC. The small frac-
tion of molecules that are in the C conformation are available
for docking to YecSC and stimulate its ATPase activity. In the
presence of ligand, the conformational equilibrium is shifted
toward the (C�L) conformation. More molecules are now avail-
able for docking to YecSC, and higher ATPase stimulation is
observed. This is why the affinity of FliY to YecSC appears to be
higher in the presence of ligand. However, it is important to

Figure 6. 3D modeling of FliY and enantiomer coordination. A–D, FliY was
modeled based on the structures of the L-cysteine SBP (A and B, PDB code
2YJP) or the L-cystine SBP (C and D, PDB code 2YLN). The protein backbone is
shown as a cartoon representation, and selected ligand-coordinating residues
are shown as balls and sticks, colored according to their ConSurf conservation
score. The ligands are shown as balls and sticks and are colored cyan (L-cys-
teine, A; D-cysteine, B) and green (L-cystine, C; D-cystine, D). Also shown at the
bottom is the ConSurf color-coded conservation scale (1, variable; 9,
conserved).

Figure 7. Proposed model for the YecSC-FliY interaction and modulation
of ATPase activity. In the absence of ligand, FliY exists in a conformational
equilibrium between open and closed unliganded forms, where the majority
of the molecules are in the open form (state I). The molecules that are in state
I do not interact with the transporter and do not stimulate its ATPase activity.
The minority of molecules that are in the closed, unliganded form (state II)
interact with the transporter and stimulate its ATPase activity. When ligand is
present, its binding induces a population shift toward the closed, liganded
form (state III). More molecules are not available for interaction with the trans-
porter, and higher ATPase stimulation is observed. Nevertheless, even in the
absence of substrate, when the concentrations of apo FliY are sufficiently
high, the concentration of the fraction of the molecules that are in the closed,
unliganded form will be higher than the KD for interaction of YecSC with the
closed, unliganded FliY and also higher than the concentration of YecSC.
Therefore, maximal ATPase rates are achieved (Vmax (apo) � Vmax (holo)), and
further addition of substrate does not lead to increased activity. KD (apo) and
KD (holo) represent the apparent KD for the FliY-YecSC interaction (in the
absence or presence of substrate, respectively) as inferred from the apparent
Km of FliY-mediated stimulation of ATPase activity.
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note that, in terms of ATPase stimulation, the C and C �L con-
formations are equivalent. At high enough concentrations,
APO-FliY stimulates the ATPase activity of YecSC just as well
as holo FliY (Fig. 5A). The only effect of substrate is to shift the
equilibrium between the O and C states. This is different from
what has been suggested for the maltose transporter, where the
SBP and maltose are required to induce closure of the NBDs
(70). In MalFGK, the ligand (maltose) has a direct role in allos-
teric communication via its interaction with residues in the
transmembrane domain (88, 89). This substrate-mediated
direct effect seems to be missing in YecSC-FliY because full
stimulation of ATP hydrolysis can also be achieved in the
absence of ligand. Binding of D-cysteine seems to lead to a dis-
tinct ligand bound form, C*�L, with different thermostability
and a reduced ATPase-stimulatory effect. A recent single-mol-
ecule study suggested that binding of cognate and noncognate
substrates by SBPs lead to productive and nonproductive con-
formational changes, respectively (61). This may indicate that,
although D-cysteine is bound by FliY, it is not transported by
YecSC or transported with reduced efficiency. This issue
remains to be resolved by transport assays.

On one hand, the results we report here for the cysteine/
cystine importer YecSC-FliY are very similar to those reported
for the histidine ABC importer HisPQM-J (69); both systems
hydrolyze ATP cooperatively with very similar Hill coefficients
and nearly identical affinity to ATP. However, the effect of
ligand is reversed in the two systems. In HisPQM, apo and holo
HisJ bind to the transporter with equal affinities, but the Vmax of
ATP hydrolysis is �13-fold higher in the presence of histidine
(69). The opposite is true for YecSC-FliY, where substrate
increases the affinity of the SBP to the transporter by �9-fold
but has no effect on the Vmax of ATP hydrolysis. These differ-
ences further demonstrate the extent of mechanistic diversity
in the superfamily of ABC transporters (4).

An additional difference between YecSC-FliY and other ABC
transporters of amino acids is related to the complete absence
of cysteine from the amino acid sequence of YecSC-FliY and
other cysteine import systems. The same cannot be said for
glutamine, histidine, or methionine, which are routinely found
in the amino acid sequences of the ABC importers that import
them. This means that, even when the intracellular level of cys-
teine is low, up-regulated biogenesis of YecSC-FliY can be ful-
filled, leading to replenishment of the cysteine pool.

Furthermore, the YecSC-FliY system is distinct in the selec-
tivity of the SBP. Relative to FliY, other SBPs of amino acids
display much higher discrimination in favor of the L-enan-
tiomer. For example, GlnP of L. monocytogenes and HisJ of
E. coli bind only the L-enantiomers of glutamine or histidine,
respectively (57, 90). Similarly, the affinity of MetQ to L-methi-
onine is �15,000-fold higher than to D-methionine (91). In
comparison, the affinity of FliY to L-cysteine is only �3-fold
higher than to D-cysteine. Why would FliY be more permissive
toward the D-enantiomer? FliY expression is induced under
conditions of limited sulfur availability (92), and E. coli contains
several enzymes dedicated to utilization of D-cysteine as a sulfur
source, including D-cysteine desulfhydrase (93). This observa-
tion suggests that a main goal of cysteine import systems is to
deliver the sulfur atom in addition to a proteogenic precursor.

In this respect, D-cysteine contains the precious sulfur atom just
the same and, to ensure sufficient supply of sulfur, bacteria may
have evolved to also import the nonproteogenic D-enantiomer.

Experimental procedures

Bacterial strains and plasmids

The genes for yecC (ACC P37774), yecS (ACC P0AFT2), and
fliY (ACC P0AEM9) were PCR-amplified from the E. coli K-12
derivative strain BW25113. All restriction sites for subcloning
were inserted at this stage. fliY was inserted into the NdeI/XhoI
sites of a pET21b expression vector, resulting in C-terminal
fusion of a His6 tag. yecS and yecC were inserted in tandem into
a custom-made pET-derived vector where each gene is pre-
ceded by a T7 promoter and a ribosome binding site. The
YecSC construct used in this study contained an enterokinase
cleavage site followed by a His10 tag fused to the N-terminal of
YecC. E. coli strain DH5� (Invitrogen) was used for cloning
procedures, and BL21-Gold (DE3, Stratagene) was the host for
protein expression.

Protein expression and purification

For small-scale expression testing, 20-ml cultures were
grown in glycerol-supplemented Terrific Broth medium to an
A600 of �2 and induced for 1.5 h with 0.5 mM isopropyl 1-thio-
�-D-galactopyranoside. Membranes were prepared by disrupt-
ing the cells by sonication, debris removal was performed by
centrifugation for 10 min at 10,000 � g, and membrane sedi-
mentation was done by ultracentrifugation at 120,000 � g for 45
min. The His-tagged protein content of the membrane frac-
tions was visualized using standard SDS-PAGE and immuno-
blot detection using an anti-His antibody. To visualize expres-
sion of FliY, cells were disrupted as above, debris was removed,
and 30 –50 �g of the total cell lysate was separated by SDS-
PAGE and stained with Coomassie Brilliant Blue.

Purification of FliY

Osmotic shock extracts prepared from cells overexpressing
FliY in 50 mM Tris-HCl (pH 7.5), 250 mM NaCl, and 20 mM

imidazole (pH 8) were loaded overnight onto a 5-ml Ni-NTA
affinity column (HisTrap HP, GE Healthcare). The column was
washed with 20 column volume (CV) of 20 mM imidazole before
elution with a gradient of 60 –250 mM imidazole. Imidazole was
removed using a Sephadex G-25 column, and FliY was concen-
trated using Amicon Ultra concentrator (Millipore) with a
molecular cutoff of 30 kDa to 5– 6 mg/ml. Aliquots of FliY were
snap-frozen in liquid nitrogen and stored at �80 °C until use.

Purification of YecSC

For preparation of the membrane fraction, cells were resus-
pended in 50 mM Tris-HCl (pH 7.5), 0.5 M NaCl, 30 �g/ml
DNase (Worthington), one complete EDTA-free protease
inhibitor mixture tablet (Roche), 1 mM CaCl2, and 1 mM MgCl2
and tip-sonicated for 30 min prior to rupture by three passages
in an EmulsiFlex-C3 homogenizer (Avestin). Debris was
removed by 30-min centrifugation (4 °C, 10,000 � g). Mem-
branes were pelleted by ultracentrifugation at 160,000 � g for
1 h; washed; resuspended in 50 mM Tris-HCl (pH 7.5), 0.5 M

NaCl, and 10% (v/v) glycerol; and stored at �80 °C until use.
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To solubilize the membranes, DM and DDM were added to a
final concentration of 0.5% (w/w). The suspension was gently
tilted at 4 °C for 1 h, and the insoluble fraction was removed by
ultracentrifugation at 160,000 � g for 1 h. The soluble fraction
was loaded onto a 5-ml Ni-NTA column as described above for
FliY running Tris-HCl (pH 7.5), 0.5 M NaCl, 0.05% DDM, and
0.05% DM. The column was washed with 20 CV of the same
buffer containing 20 mM imidazole, followed by a 10 CV wash
with buffer containing 60 mM imidazole. YecSC was eluted
using an imidazole gradient of 60 –250 mM. Imidazole was
removed by desalting, and protein was concentrated to �1
mg/ml using an Amicon Ultra concentrator (Millipore) with a
molecular cutoff of 100 kDa. Aliquots of YecSC were snap-
frozen in liquid nitrogen and stored at �80 °C until use.

nanoDSF measurements

To remove potential copurified endogenous ligands, purified
FliY was dialyzed overnight (two buffer replacements) against a
1000-fold excess of 50 mM Tris-HCl (pH 7.5) and 250 mM NaCl.
The dialysis buffer was used to dilute the stock solutions of the
tested ligands. FliY was incubated with different ligands, and
measurements were performed with Prometheus NT.48
(Nanotemper). The tryptophan residues of the protein were
excited at 280 nm, and the fluorescence intensity was recorded
at 330 and 350 nm. The temperature of the measurement com-
partment increased from 25 °C to 95 °C at a rate of 1 °C min�1.

ITC

Prior to experiments, FliY was dialyzed overnight against a
1000-fold (2 buffer replacements) volume of 50 mM Tris-HCl
(pH 7.5) and 0.5 M NaCl. To avoid buffer mismatch, this dialysis
buffer was used to dilute the stock solutions of the tested
ligands. Calorimetric measurements were performed with the
MicroCal iTC200 system (GE Healthcare), and all measure-
ments were carried out at 25 °C. 2-�l aliquots from a 200 – 400
�M ligand solution (as indicated) were added by a rotating
syringe to the reaction well containing 200 �l of 70 �M FliY.
Data fitting was performed with Origin software using a simple
1:1 binding model, where the ligand-free form of the protein is
in equilibrium with the bound species.

ATPase assays

ATP hydrolysis was performed using the EnzChek� Phos-
phate Assay Kit (Molecular Probes). The reaction buffer con-
tained 50 mM Tris-HCl (pH 7.5), 0.5 M NaCl, 0.05% DDM, 0.05%
DM, 20 �M E. coli polar lipids, 0.2 mM 2-amino-6-mercapto-7-
methylpurine riboside, 1 unit/ml purine nucleoside phospho-
rylase, and the indicated concentrations of ATP, YecSC, and
FliY. Measurements were conducted at 37 °C in an automated
plate reader (Infinite M200 Pro, Tecan). Following 2- to 5-min
incubation at 37 °C, 2 mM MgCl2 was injected to initiate ATP
hydrolysis.

Homology modeling

Multiple sequence alignment of the query protein and its
homologs facilitates homology modeling in that it may aid in
finding the best structural template and in improving the query
template alignment. Thus, we used HHblits (81) to search for

homologs of the E. coli cysteine-binding protein (FliY, SWIS-
SPROT P0AEM9). A search against Uniclust30 (82) yielded 250
homologs, which we aligned using MAFFT (83). Using the 2.26
Å resolution crystal structure of NGO2014, the cysteine bind-
ing protein of N. gonorrhoeae (85) (PDB code 2YJP, 26%
sequence identity to FliY) and the 1.12 Å resolution crystal
structure of NGO0230, the cystine binding protein from the
same bacterium (PDB code 2YLN, 35% sequence identity to
FliY) as templates, we constructed homology models using
Modeler (84).

Molecular docking

Prior to any docking simulations, we had to prepare the ho-
mology models and template structures for docking using the
protein preparation wizard (94). We mostly used the recom-
mended settings for the preparation, except for the minimiza-
tion, which was restricted to the hydrogen atoms; the heavy
atoms were maintained in their crystal structure coordinates.
The ligands were prepared using LigPrep (95) (Schrödinger
LLC), which generated probable protonation states at pH 7.0 �
2.0. In this pH range, serine had a single protonation state (zwit-
terion with neutral side chain), whereas the cysteine had two
(protonated and deprotonated side chain). Using Glide (96), we
defined the receptor grid as a box with 10 Å edges, centered
around the ligand coordinates from the template structure. We
then used the standard precision Glide docking protocol and
generated up to five docking poses per ligand.

pKa calculations

To determine the pKa of the bound cysteine and serine
ligands, we used the DelPhiPKa web server (97), which calcu-
lates an amino acid’s pKa in the context of the protein environ-
ment. We used the default settings to calculate the pKa of all
titratable residues, including serine, tyrosine, threonine, and
cysteine. Heteroatoms were removed, excluding the cysteine
ligand, which was treated as part of the protein.

Conservation of coordinating residues

Amino acid conservation grades were calculated for the ho-
mology models and the template structures (PDB codes 2YJP
and 2YLN) using the ConSurf web server (86) with default set-
tings, except for the number of collected homologs, which was
increased to 300.
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