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Abstract
Herein, a Harris corner detection algorithm is proposed based on the concepts of iterated threshold segmentation and adaptive
iterative threshold (AIT–Harris), and a stepwise local stitching algorithm is used to obtain wide-field ultrasound (US) images.
Cone-beam computer tomography (CBCT) and US images from 9 cervical cancer patients and 1 prostate cancer patient were

examined. In the experiment, corner features were extracted based on the AIT–Harris, Harris, and Morave algorithms. Accordingly,
wide-field ultrasonic images were obtained based on the extracted features after local stitching, and the corner matching rates of all
tested algorithms were compared. The accuracies of the drawn contours of organs at risk (OARs) were compared based on the
stitched ultrasonic images and CBCT.
The corner matching rate of the Morave algorithmwas compared with those obtained by the Harris and AIT–Harris algorithms, and

paired sample t tests were conducted (t=6.142, t=31.859, P< .05). The results showed that the differences were statistically
significant. The average Dice similarity coefficient between the automatically delineated bladder region based on wide-field US
images and the manually delineated bladder region based on ground truth CBCT images was 0.924, and the average Jaccard
coefficient was 0.894.
The proposed algorithm improved the accuracy of corner detection, and the stitched wide-field US image could modify the

delineation range of OARs in the pelvic cavity.

Abbreviations: ART = adaptive radiotherapy, BF = brute-force, CBCT = cone-beam computer tomography, DSC = dice
similarity coefficient, GTV = gross tumor volume, OARs = organs at risk, RANSAC = random sample consensus, US = ultrasound.
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1. Introduction

Cone beam computer tomography (CBCT) is a common image
guiding method and has been extensively used in adaptive
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radiotherapy (ART) of pelvic tumors.[1] However, the soft tissue
resolution of CBCT is low,[2] and the artifacts caused by the
hardening effect and electron scattering worsen the quality of the
reconstructed image.[3] Ultrasound (US) possesses numerous
advantages, including portability, use of nonionizing radiation,
and real-time performance.[4,5] It is commonly used in the
monitoring of ventricular mechanical performance, cardiac
motion estimation, and cardiovascular boundary detection,
among others.[6–8] In the radiotherapy of pelvic tumors, US
images can be combined with CBCT images to assist in image-
guided treatment.[9] Arcadipane et al[10] demonstrated that 3D
US images could clearly show the contours of the anterior rectal
wall and bladder neck and reduce the error of delineation of the
prostate, bladder, and other organs in prostate cancer radiother-
apy. However, for patients with pelvic tumors, in the case of high
bladder filling, it is difficult to include the gross tumor region
(GTV) and complete organs in the imaging range with narrow
beam US images, which is not conducive to clinicians’ judgment
of tumor location or organs at risk (OARs). At the same time,
incomplete organ structure imaging also has a certain degree of
impact on the set up accuracy of radiotherapy. To solve the above
problems, narrow-beam US images are stitched into wide-field
images through image stitching technology, so that the GTV and
the complete tissues or organs are completely included in the
imaging range. Wide-field US images can better present the
contour edge of organs and relative position information between
different organs, so that doctors can make more accurate
delineation of target areas and OARs, and also help to improve
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Figure 1. Harris corner detection schematic. (A) Flat region; (B) edge region; (C) corner region.
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the accuracy of the set up. Therefore, US combined with CBCT
image guidance method can be better applied in the treatment of
pelvic tumors.
Image stitching refers to the combination of a group of

overlapping images based on image registration and image fusion
and the generation of a new wide-field image, which includes all
the pixel information of the images before stitching.[11] One of the
key steps in image stitching is the extraction of corner features.
Corner features refer to the points of the maximum curvature on
the edge curve or the pixels of 2D image with drastic gray change.
These features can effectively reduce the amount of image
information, effectively improve the speed of calculation, and
facilitate the accuracy of images matching. Accordingly, corner
feature detection methods can be classified into the following 2
categories: corner detection based on image edges[12] and corner
detection based on image grayscale values.[13] The first type
mainly determines corner points according to the detected edge
intersection points, which mainly relies on image segmentation
and edge extraction. It involves a large amount of calculations
and a small fault tolerance rate, and its application scope is
limited. Edge detection operators mainly include the Laplacian of
Gaussian, Canny, and Sobel operators.[14,15] The second type
searches for pixels that correspond to the maximum values of
local grayscale changes and sets them as corner points. Gray-level
detection operators mainly include the Moravec, Harris, and
Susan operators.[16–18] The Harris operator is a common method
based on image grayscale detection corners. Harris corner
detection algorithm is a signal-based point feature extraction
method that is based on the Moravec algorithm. It uses a fixed
window to move in any direction in the image and compares the
degree of grayscale change in the window before and after sliding
to determine the corner points.[19] A schematic of the Harris
corner detection method is shown in Figure 1. If the window
moves in any direction without grayscale change, it is the flat
region. However, if the window moves in a certain direction, the
grayscale of the image in the window changes greatly, and the
grayscale in other directions does not change, it is the edge region.
If the window moves in any direction and the gray scale changes
obviously, it is the corner region. The Harris corner features are
insensitive to image rotation and grayscale and noise changes and
is relatively simple to calculate. It can extract a large number of
feature points from complex human tissue images.[20] However,
the traditional Harris corner detection algorithm needs to
2

manually set the threshold when corner points are extracted,
which is not scale invariant. If the threshold setting is too large, it
will lead to the loss of some corners, and if it is too small, it will
lead to a large number of pseudo corners.[21] Previous studies
have improved the threshold selection in the case of the
traditional Harris corner detection method, but they are not
ideal in terms of robustness and self-adaptation, and the
calculation amount is also large.[22–24]

In this study, the segmentation method based on iterative
threshold was proposed to extract the corner features of
abdominal US images. The selected features were more accurate
and adaptive for identifying the threshold of corner detection.
According to the precision of the extracted corner features, the
methods of stepwise local brute-force (BF) and random sample
consensus (RANSAC) matching were used to stitch the
abdominal ultrasonic images obtained from different scanning
angles. In this respect, the stitched ultrasonic images provided a
wider field of vision than the scope of the probe. Finally, the
delineated bladder region was compared with that in the CBCT
image to prove its applicability in the delineation of OARs in
abdominal tumor radiotherapy. The flow chart of wide-field US
acquisition is shown in Figure 2.

2. Methods

2.1. Data

The data included 9 patients with cervical cancer who did not
undergo surgery and 1 patient with prostate cancer. The protocol
of this study was approved by the IRB of Second People’s
Hospital of Changzhou, Nanjing Medical University, Changz-
hou, China (Ethical no.:2019KY056-01). All experiments were
performed in accordance with relevant guidelines, and the
informed consent was obtained from all participants.
2.2. CBCT and US image acquisition

Before image acquisition, the indoor laser lamp coordinate
system and US probe were calibrated with a calibration phantom.
This operation assured the same coordinate positions for each 3D
ultrasonic voxel point. After calibration, the CBCT of Infinity
Linear Accelerator (Elekta Company, Sweden) was used to scan
the patients. The scanning conditions included 120kV tube



Figure 2. Flow chart of wide-field US acquisition.
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voltage, 20mA tube current, and 1�1�3mm3 voxels. US
images were acquired using the Clarity US-guided device (Elekta
Company, Sweden). Scanning was conducted with a C5–2/60 US
probe and a central frequency of 3.5MHz. The voxel size was 1�
1�3mm3. US images were scanned immediately after acquisition
of CBCT images to reduce errors caused by the movement of
OARs. The acquisition interval between CBCT and US images
was<2minutes. During ultrasonic scanning, the ultrasonic probe
was attached to a robotic arm that performs constant pressure
scans over a predetermined orbit and kept in a perpendicular
orientation to the body surface of patients. The patients were
scanned in 2 directions (75 and 105 degree relative to the coach)
in succession to avoid bone tissues.
2.3. Harris corner detection algorithm based on an
iterative threshold method

Two groups of 3D US images for stitching were Gaussian filtered
and resampled. They were then registered with CBCT images
acquired during the same treatment stage with automatic affine
registration. The algorithm found the most likely correspond-
ences between the bladder contour of both images in a
noniterative manner based on a modified Viterbi algorithm.[25]

Two sets of 2D US slices after registration were aligned in
sequence. This avoided the problem that arises when directly
acquired 2D image pairs are not at the same scanning level and
have specific angular differences. Based on iterative threshold
segmentation, we proposed an adaptive corner response
threshold method to select corner features[26] and improve the
traditional Harris corner feature detection algorithm. The are 4
steps. First, a 5�5 test window was set in the 2D US image and
centered on specific pixels within the image. The test windowwas
then moved slightly in all spatial directions. If the window was
too large, the convolution operation process could lead to corner
point offsets during the calculation of the image pixel adaptive
matrix. Conversely, if it was too small, a large number of pseudo
corner points would be extracted from the US image owing to the
influence of noise points. Second, the angular point response
value within the window was calculated as follows:

Rðr; cÞ ¼ m1�m2

ð m1 þ m2j j þ 0:0001Þ�102 ð1Þ
3

where R is the response value of the corner point; r and c
represent the horizontal and vertical coordinates of the image
pixel points, respectively; andm1 andm2 are the singular values of
the autocorrelation matrix. Each pixel in the US image had a
specific R value. Third, the initial corner response threshold T
was set, and the pixels in the image were divided into groups G1
and G2. G1was composed of pixels with R values greater than T,
andG2was composed of pixels with R values less than T. Fourth,
the average R values m1 and m2 of G1 and G2 classes were
calculated, and the new threshold Tk= (m1+m2)/2 was obtained
and compared with the initial T value. Lastly, the 4th step was
repeated until the difference DT between the Tk values in the
successive iterations became smaller than the error value, and the
optimal threshold T was obtained. The process of obtaining the
optimal threshold based on the iterative threshold segmentation
method is depicted in Figure 3.

2.4. Stepwise local US image stitching algorithms

After obtaining the corner features, the US images were stitched
based on the 8 steps. First, to improve the efficiency of corner
feature matching and avoid obvious corner mismatching, a
60�150 local corner matching window was set. Second, a
multiscale-oriented patch descriptor was constructed with each
corner as the center. The descriptor was invariant and could be
used to record the regional feature information around the
corner. Third, the BF method was used to match the 2 US
images for stitching. The Euclidean distance between the
descriptors was calculated, and the matched corner pairs were
obtained. Fourth, the RANSAC algorithm was used to purify
the angular pairs obtained by BF, and point pairs with false
matches were eliminated. The calculated mean distance
between the angular matching corner pairs could be used as
the optimal stitching range for the local US images.[27] Fifth, the
steps listed above were repeated, and the corresponding weight
value was set based on the ratio of the corner pairs in the
windows to the total corner matching pairs of the entire image.
Then, the optimal matching range of the entire image was
calculated according to the following equation:

d ¼
Xn

i¼1
vidi ð2Þ
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Figure 3. Flow chart of optimal corner response threshold based on iterative threshold segmentation method.
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vi ¼ ni
n

where i represents the i-th corner matchingwindow, the range is
(0, 1), vi is the weight, n is the number of matching points among
the corner points, di is the optimal matching range of the local US
images, and d represents the optimal matching range of the entire
image. Sixth, the progressively evolving fusion algorithmwas used
to stitch the US images to form a 2Dwide-field US image. Seventh,
the stitched 2D images were reconstructed into a 3Dwide-field US
image. Eighth, the reconstructed 3D US and CBCT images were
registered by global mutual information and local deformation
registration methods. The bladder region in the US image was
extracted using regional saliency and used for local deformation
registration. The whole registration process would alternate
between global and local registrations until it converged.[28] Local
corner matching results of US images are shown in Figure 4A–C
show the pairs of US images to be matched after corner detection.
The red points are corners, and the red rectangular window is a
local corner matchingwindow, which limits thematching range of
corner features. Figure 4D–F are the corresponding results of the
local matching of corner points of the US images. Every 2matched
corner points in the 2US images are connectedbya color line. It can
be seen that in each local region, most of the corner points can be
matched correctly, which can improve the accuracy of image
stitching.

2.5. Evaluation

The accuracy of the US image stitching process can be measured
using the matching rate, which can not only measure the
reliability of the corner feature detection algorithm but also
demonstrate the accuracy of the matching algorithm. In this
experiment, the corner matching rate of the ultrasonic image was
defined as follows:

P ¼ Nc

Nc þNe
�100% ð3Þ
4

whereNc is the number of correctly matched corner pairs in all
slices, which includes the bladder region of the tested patients,
and represents the sum of the corner matching pairs that were not
eliminated after purification by the RANSAC algorithm.Ne is the
number of mismatched corner point pairs, andNc+Ne represents
the sum of the unpurified pair of supporting parts after BF
stitching.
In this study, the Dice similarity coefficient (DSC)[29] and

Jaccard similarity coefficient[30] were used to evaluate the
segmentation accuracy of the bladder region based on the
stitched wide-field US images. The ground truth was defined by
the contour of the bladder, which was manually delineated by
medical physicists in CBCT images. By calculating the overlap of
the bladder volume, an accurate segmentation result outcome
should yield a high organ volume overlap rate. The DSC and
Jaccard coefficients were defined as follows:

DSC ¼ 2 LCBCT ∩LUSj j
LCBCTj j þ LUSj j ð4Þ

JðLCBCT ;LUSÞ ¼ LCBCT ∩LUSj j
LCBCT∪LUSj j ð5Þ

where LCBCT and LUS represent the results of binary
segmentation of the bladder in CBCT and US images,
respectively. As the DSC and Jaccard coefficient values approach
unity, the automatically segmented bladder region (from the
stitched US image) becomes progressively more similar to that
outlined in the CBCT image.
3. Results

All images used in this study were obtained from 9 cervical
cancer patients and 1 prostate cancer patient. The wide-field US
images obtained after local stitching based on corner features
extracted by the AIT–Harris, Harris, and Morave algorithms
are shown in Figure 5. The corner matching rates obtained by
the three algorithms are listed in Table 1. The average corner



Figure 4. Local corner matching of US images. (A–C) The US images used for stitching. (D–F) Local corner matching results of the US images.

Figure 5. Results of local corner point matching in US images. Symbols a1 and a2 refer to the US images for stitching, whereas b1,2, c1,2, and d1,2 are the wide-field
ultrasonic images spliced based on corner features extracted by the AIT–Harris, Harris, and Morave algorithms, respectively.
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Table 1

Matching results after corner feature extraction based on 3 corner detection algorithms.

Matching point pairs Correct matching pairs

Patients AIT-Harris Harris Morave AIT-Harris Harris Morave Matching Rate (%)

1 6291 6839 6841 5720 5813 5796 90.9 85.0 84.7
2 6313 6945 6983 5753 6032 5917 91.1 86.9 84.7
3 6125 6763 6794 5532 5854 5773 90.3 86.6 84.9
4 6197 6796 6829 5578 5912 5786 90.0 87.0 84.7
5 6266 6874 6917 5639 5901 5844 89.9 85.8 85.3
6 6328 6903 6970 5694 5998 5919 89.9 86.8 84.9
7 6173 6782 6825 5572 5890 5789 90.3 86.9 84.8
8 6289 6842 6897 5659 5952 5866 90.0 87.0 85.0
9 6232 6819 6831 5618 5927 5783 90.1 86.9 84.6
10 6380 6922 6964 5792 5930 5938 90.7 85.7 85.2
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matching rate based on the AIT–Harris algorithm was the
highest. In addition, the corner matching rate obtained by the
Morave algorithm was defined as the ground truth and was
compared with that obtained by the Harris and AIT–Harris
algorithms with estimated paired sample t test values of t=
6.142 and t=31.859, respectively (P< .05). Compared with the
Harris algorithm, the corner matching rate obtained by the
improved algorithm was significantly different from that
obtained by the ground truth.
In this study, CBCT was used as a registration reference image.

Compared with the affine registration results of CBCT and
unstitched US images, the same registration method was used to
quantitatively evaluate the improvement of the registration
results of wide-field US and CBCT. The registration errors
between US and CBCT are shown in Table 2. US (75) and US (105)

refer to the US images obtained from 2 different angles (75 and
105 degree, respectively). US(matching) refers to the stitched US
images. The mean registration errors of the stitched US images
and CBCT are 0.33, 0.38, and 0.32 in the lateral, longitudinal,
and vertical directions, respectively. Compared with the
registration results of unstitched US images and CBCT, the
improvement effect is significant.
Figure 6 shows a comparison of bladder contours. Figure 6A

shows a comparison of bladder contouring results obtained from
the patient with prostate cancer. Figs. 6B and C show another
comparison of bladder contouring results obtained from cervical
cancer patients. The yellow line is the outline of the bladder based
on the CBCT image and serves as the ground truth. The white line
is the bladder contour extracted by using the concept of region
saliency based on the stitched US images. Two quantitative
indices, namely, the DSC and Jaccard coefficients, were used to
evaluate the similarity between the automatically sketched
bladder contour based on US image and CBCT ground truth
Table 2

The registration errors between US (US(75), US(105), and US(matching))
and CBCT images.

US ↔ CBCT Lateral, mm Longitudinal, mm Vertical, mm

US (75) 1.02±0.11 1.13±0.20 1.07±0.15
US (105) 0.96±0.13 1.15±0.23 1.06±0.21
US (matching) 0.33±0.19

∗
0.38±0.17

∗
0.32±0.11

∗

CBCT = cone-beam computer tomography, US = ultrasound. The bold is used to show the best
performance.
∗
Indicates significant improvement via paired t tests (P< .05).

6

contour. The experimental results are listed in Table 3. The mean
DSC measured between the segmented bladder regions on the US
image obtained based on the improved algorithm splicing and the
bladder region manually outlined on the CBCT image was 0.924,
and the mean value of the Jaccard coefficient was 0.894.

4. Discussion

In this study, the Harris corner feature detection algorithm was
improved using the iterative threshold segmentation method.
Additionally, the stepwise local RANSAC corner matching
method was used to stitch the US images without using the wide-
field imaging function. US images acquired at one angle did not
show larger GTV and OARs within the imaging range. The
stitched wide-field US images also facilitated the delineation of
OARs in SBRT and ART in CBCT images. The experimental
results showed that the corner feature obtained by the AIT–
Harris corner detection method is more accurate. As can be
observed from the comparison of the contours of the bladder
area, the US image has high contrast in the soft tissue area and
clearly distinguishes the contours of the bladder and surrounding
tissues. According to the results of the DSC and Jaccard
coefficients, the bladder region in the wide-field US image is
similar to that delineated by CBCT; however, their contours at
the junction of the bladder and surrounding tissues and organs
are significantly different. The contour of the bladder region
based on wide-field US could be corrected in the CBCT images.
The corner detection threshold in the traditional Harris corner

detection algorithm is an empirically derived value and can only
be applied to the detection of corner features in some specific
images. Accordingly, it cannot be used universally.[31] The
structures of tissues and organs in the lower abdomen are quite
complex. As such, many corner points and edge features can be
observed in the US image of this region. A single, fixed threshold
T would yield a large number of invalid points while detecting
corner points. To improve the accuracy, the threshold of
manually repeated debugging is needed, which reduces the
efficiency of corner detection. In this study, the adaptive iterative
threshold Harris corner detection algorithm was improved.
Based on iterative threshold segmentation, the corner response R
values of all pixels in the image were substituted for the pixel
value. Additionally, repeated iterative calculations were per-
formed to obtain the optimal corner response threshold by
replacing the threshold value of the traditional algorithm—which
was determined based on experience—so as to provide accurate



Table 3

Evaluation results of theDSCand the Jaccard coefficient based on the automatic segmentation of bladder contours on ultrasound images
and the manual delineation of ground truth contours on CBCT.

Patients no.

1 2 3 4 5 6 7 8 9 10

DSC 0.934 0.929 0.922 0.930 0.926 0.931 0.919 0.915 0.920 0.918
Jaccard 0.902 0.897 0.891 0.889 0.898 0.902 0.881 0.884 0.896 0.885

CBCT = cone-beam computer tomography, DSC = dice similarity coefficient.

Figure 6. Comparison of bladder contours. The yellow line is the outline of the bladder based on the CBCT image, and the white line is the bladder contour
extracted after segmentation based on the stitched US images. (A) Comparison of bladder contouring results obtained from the prostate cancer patient. (B and C)
Comparison of bladder contouring results obtained from cervical cancer patients.
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corner features for the subsequent stitching process. This
algorithm avoided the corner response threshold, which was
set based on experience, and extracted corner features more
accurately. Meanwhile, it reduced the extraction of pseudo
corners in US images and improved the adaptability of traditional
Harris corner detection methods. Each slice has its own optimal
threshold to extract corner features, and the adaptive effect is
obvious. In global image matching, the mapping function needs
to traverse all pixel points in the image. Regarding redundant
corner features in the overlapped areas outside the 2 US images
for stitching, the mapping function interfered with the normal
matching of the corner features inside the overlapped areas of the
US images, resulting in mismatching.[32] Based on the over-
lapping area of 2 US images for stitching, a local matching
window is set, and the entire overlapping area is traversed in a
stepwise manner to limit the stitching range. This operation can
reduce the erroneous matching of corner pairs in the matching
algorithm. In this experiment, the accuracy of corner feature
extraction and image stitching algorithms based on US images
was preliminarily studied in 9 patients with postoperative cervical
cancer and 1 prostate cancer. The results proved the application
prospect of US images in the auxiliary delineation of OARs in the
RT of clinical abdominal tumors. In future research, we will
continue to generate new data and verify the application prospect
of the algorithm. Considering the abundance of corner feature
information in 3D ultrasonic images and the large values of the
calculated corner response R, the operation time of corner
detection based on 3D images is very long, ultimately affecting
the efficiency of image stitching. Therefore, this study adopted the
2D ultrasonic image stitching algorithm. In future experiments,
we will conduct an in-depth study on the algorithm based on a
7

deep learning method to extract the corner features of US images
so as to improve the accuracy and real-time performance of the
stitching process.
5. Conclusions

In this study, a corner detection method was proposed based on
iterative threshold segmentation, and the accuracy of the new
method was verified experimentally. Based on the preliminary
study on the accuracy of the stepwise local US stitching
algorithm, narrow beam US images are stitched into wide-field
images, so that the GTV and organs are completely included in
the imaging range, which is convenient for doctors to make more
accurate delineation of target areas and OARs, and also helps to
improve the accuracy of set up. This makes US combined with
CBCT image guidance method better applied in the treatment of
pelvic tumors.
Author contributions

Hongfei Sun is a graduate student at Northwestern Polytechnical
University. He currently pursuing the Ph.D. degree with the
School of Automation, Northwestern Polytechnical University,
China. In this study, he performed the experimental character-
izations and analyzed the results.

Jianhua Yang received the Ph.D. degree from Northwestern
Polytechnical University. She is currently a Professor with the
School of Automation, Northwestern Polytechnical Univer-
sity. Her research interests include biomedical image
processing, detection, and control technology. In this study,
she revised the manuscript.

http://www.md-journal.com


Sun et al. Medicine (2020) 99:37 Medicine
Rongbo Fan is a graduate student at Northwestern Polytechnical
University. He currently pursuing the master’s degree with the
School of Automation, Northwestern Polytechnical Univer-
sity, China. In this study, he preprocessed the images and
assisted to perform the experimental characterizations.

Kai Xie is an assistant research fellow at the Affiliated Changzhou
No.2 People’s Hospital of Nanjing Medical University. In this
study, he focused on the delineation of the organ at risk.

Conghui Wang is a graduate student at Northwestern Poly-
technical University. She currently pursuing the master’s
degree with the School of Automation, Northwestern
Polytechnical University, China. For this study, she conceived
the experiments.

Xinye Ni received the Ph.D. degree from Nanjing University of
Aeronautics and Astronautics, Nanjing, with an expertise in
radiotherapy and biomaterials. In this study, he performed the
ultrasound images segmentation and revised the manuscript.

References

[1] Wu QJ, Li T, Wu Q, et al. Adaptive radiation therapy: technical
components and clinical applications[J]. Cancer J 2011;17:182–9.

[2] Yan H, Zhen X, Cerviño L, et al. Progressive cone beam CT dose
control in image-guided radiation therapy[J]. Med Phys 2013;40:
060701.

[3] Geraily G, Mirzapour M, Mahdavi SR, et al. Monte Carlo study on
beam hardening effect of physical wedges[J]. Int J Radiat Res
2014;12:249–56.

[4] Van Der Meer S, Camps SM, Van Elmpt W, et al. Simulation of pseudo-
CT images based on deformable image registration of ultrasound images:
a proof of concept for transabdominal ultrasound imaging of the prostate
during radiotherapy[J]. Med Phys 2016;43:1913–20.

[5] SunH, LinT,XieK, et al. Imaging study of pseudo-CT images of superposed
ultrasounddeformationfieldsacquired in radiotherapybasedonstep-by-step
local registration[J]. Med Biol Eng Comput 2018;57:643–51.

[6] Kvale KF, Bersvendsen J, Remme EW, et al. Detection of regional
mechanical activation of the left ventricular myocardium using high frame
rate ultrasound imaging[J]. IEEE Transact Med Imaging 2019;38:2665–
75.

[7] Ouzir N, Basarab A, Lairez O, et al. Robust optical flow estimation in
cardiac ultrasound images using a sparse representation[J]. IEEE Trans
Med Imaging 2019;38:741–52.

[8] Gao Z, Chung J, Abdelrazek M, et al. Privileged modality distillation for
vessel border detection in intracoronary imaging. IEEE Trans Med
Imaging 2020;39:1524–34.

[9] Li M, Ballhausen H, Hegemann N, et al. A comparative assessment of
prostate positioning guided by three-dimensional ultrasound and cone
beam CT[J]. Radiat Oncol 2015;10:82–182.

[10] Arcadipane F, Fiandra C, Franco P, et al. Three-dimensional ultrasound-
based target volume delineation and consequent dose calculation in
prostate cancer patients with bilateral hip replacement: a report of 4 cases
[j]. Tumori J 2015;101:133–7.

[11] Ghosh D, Kaabouch N. A survey on image mosaicing techniques [J].
Journal of Visual Communication & Image Representation 2016;34
(C):1–1. doi: 10.1016/j.jvcir.2015.10.014.
8

[12] Quddus A, Gabbouj M. Wavelet-based corner detection technique using
optimal scale[J]. Pattern Recognition Letters 2002;23:215–20.
doi:10.1016/S0167-8655(01)00090-3.

[13] Chen S, Meng H, Zhang C, et al. A KD curvature based corner detector
[J]. Neurocomputing 2016;173(pt 2):434–41. doi: 10.1016/j.neu-
com.2015.01.102.

[14] Gauglitz S, Höllerer T, Turk M. Evaluation of interest point detectors
and feature descriptors for visual tracking[J]. International Journal of
Computer Vision 2011;94:335. doi:10.1007/s11263-011-0431-5.

[15] Qu YD, Cui CS, Chen SB, et al. A fast subpixel edge detection method
using Sobel—Zernikemoments, operator[J]. Image&Vision Computing
2005;23:11–7.

[16] Wanjin Z, Shengrong G, Chunping L, et al. Adaptive Harris corner
detection algorithm[J]. Computer Engineering 2008;34:212–4.

[17] Yang X, Huang Y, Yan L, et al. An Improved SUSAN Corner Detection
Algorithm Based on Adaptive Threshold. 2010;IEEE, 613–616.

[18] Liu JJ, Jakas A, Ai-Obaidi A, et al. A comparative study of different
corner detection methods. 2009;IEEE Press, 509–514.

[19] WangW,TangYP,Ren JL, et al. An improved algorithm forHarris corner
detection[J]. Optics & Precision Engineering 2008;16:1995–2001.

[20] He B, ZhuM,Wei Y, et al. Amatching algorithm on statistical properties
of Harris corner. 2011;IEEE Press, 226–229.

[21] Pan H, Zhang Y, Li C, et al. An adaptive Harris corner detection
algorithm for image mosaic[J]. Communications in Computer &
Information Science 2014;484:53–62.

[22] Shen S, Zhang X, Wei H, et al. Auto-adaptive Harris corner detection
algorithm based on block processing[C]//International Symposium on
Signals Systems and Electronics. 2010;IEEE Press, 1–4.

[23] Sun L, Wang S, Xing J, et al. Self-adaption Harris corner detection
algorithm based on image contrast area[C]//Control and Decision
Conference. 2015;IEEE Press, 2287–2290.

[24] Vino G, Sappa AD. Revisiting Harris Corner Detector Algorithm: A
Gradual Thresholding Approach[C]//International Conference
Image Analysis and Recognition. Berlin, Heidelberg: Springer; 2013.
354–363.

[25] Nam WH, Kang DG, Lee D, et al. Automatic registration between 3D
intra-operative ultrasound and pre-operative CT images of the liver
based on robust edge matching[J]. Physics in Medicine and Biology
2012;57:69–91.

[26] Drever L, RoaW,Wilson , et al. Iterative threshold segmentation for PET
target volume delineation[J]. Medical Physics 2007;34:1253–65.

[27] Cai FU, Li D, Gen LU, et al. Improved image matching based on fast
retina keypoint algorithm[J]. Computer Engineering & Applications
2016;52:208–12.

[28] Zhang Z, Liu F, Tsui H, et al. A multiscale adaptive mask method for
rigid intraoperative ultrasound and preoperative CT image registration
[J]. Medical Physics 2014;41:102903. doi: 10.1118/1.4895824.

[29] Lee J, Nishikawa RM, Reiser I, et al. WE-G-207-05: Relationship
Between CT Image Quality, Segmentation Performance, and Quantita-
tive Image Feature Analysis[J]. Medical Physics 2015;42:3697–700.

[30] Shi R, Ngan KN, Li S. Jaccard Index Compensation for Object
Segmentation Evaluation[C]//IEEE International Conference on Image
Processing. 2015;IEEE Press, 4457–4461.

[31] Lei F, RenW, lv L. ImageMatching Algorithm Based on ImprovedHarris
[C]//International Conference on Computational Intelligence & Com-
munication Networks. 2010;IEEE Press, 378–381.

[32] Li M, Ballhausen H, Hegemann N, et al. A comparative assessment of
prostate positioning guided by three-dimensional ultrasound and cone
beam CT[J]. Radiation Oncology 2015;10:82–90.


	Stepwise local stitching ultrasound image algorithms based on adaptive iterative threshold Harris corner features
	1 Introduction
	2 Methods
	2.1 Data
	2.2 CBCT and US image acquisition
	2.3 Harris corner detection algorithm based on an iterative threshold method
	2.4 Stepwise local US image stitching algorithms
	2.5 Evaluation

	3 Results
	4 Discussion
	5 Conclusions
	Author contributions
	References


