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Abstract: Dietary habits have considerable impact on brain development and mental health. Despite
long-standing interest in the association of dietary habits with mental health, few population-based
studies of dietary habits have assessed depression and fluid intelligence. Our aim is to investigate
the association of dietary habits with depression and fluid intelligence. In total, 814 independent loci
were utilized to calculate the individual polygenic risk score (PRS) for 143 dietary habit-related traits.
The individual genotype data were obtained from the UK Biobank cohort. Regression analyses were
then conducted to evaluate the association of dietary habits with depression and fluid intelligence,
respectively. PLINK 2.0 was utilized to detect the single nucleotide polymorphism (SNP) × dietary
habit interaction effect on the risks of depression and fluid intelligence. We detected 22 common
dietary habit-related traits shared by depression and fluid intelligence, such as red wine glasses per
month, and overall alcohol intake. For interaction analysis, we detected that OLFM1 interacted with
champagne/white wine in depression, while SYNPO2 interacted with coffee type in fluid intelligence.
Our study results provide novel useful information for understanding how eating habits affect the
fluid intelligence and depression.

Keywords: depression; fluid intelligence; dietary habits; polygenic risk score; genome-wide environ-
mental interaction

1. Introduction

Depression is one of the most common and debilitating mental disorders that severely
restricts psychosocial functioning and reduces life quality [1]. The lifetime prevalence
of major depression around the world is between 1.0% and 16.9% [2]. Intelligence is
a complex construct that has inspired voluminous literatures regarding its definition,
measurement, and implications. A widely accepted model of cognitive ability divides fluid
and crystallized intelligence as two primary components [3]. Fluid intelligence reflects
reasoning and the ability to solve novel problems, whereas crystallized intelligence reflects
knowledge and skills that are the result of experience and learning [4]. The affecting factors
of depression and fluid intelligence are related to environmental and genetic factors. Several
risk factors have been proposed to explain the mechanisms of depression, such as substance
abuse disorders and poor physical health [5–7]. Some investigators have confirmed that the
intelligence level was influenced by brain size, neural efficiency and genetic factors [8,9].
The risk factors of depression and fluid intelligence may be overlapped. For instance,
depression symptom has been demonstrated to have significant negative genetic correlation
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with fluid intelligence [10,11]. Researchers found that low fluid intelligence at a given age
predicted higher depressive symptoms across the following 3-year interval [12]. In contrast,
higher fluid intelligence in childhood predicted lower depression risk in adults [13].

Dietary habits have considerable impact on brain development and mental health [14].
Recently, an increasing number of studies provided evidence for dietary habits as a kind of
modifiable affecting factors for mental traits. For example, a study examined the association
between intelligence and dietary habits in preschool children, and suggested that poor
food choices at preschool age characterized by foods with high fat, salt and sugar were
associated with reduced scores in verbal and cognitive ability [15]. Velten et al. found that
high consumption of alcohol could contribute to a deficient nutritional intake, which might
lead to mental disorders [16]. There was a clear genetic component to diet demonstrated
by significant heritability and individual genetic associations [17]. However, the relevance
between detailed dietary habits with depression and fluid intelligence remains unclear.

To date, genome-wide association study (GWAS) has succeed in revealing causal loci
that contribute to the risk of psychiatric traits, such as anorexia nervosa and depression [18].
Nevertheless, the GWAS result shows that the effect sizes of individual causal loci are
relatively small. To solve this dilemma, researchers proposed the polygenic risk score
(PRS), a score reflecting the sum of all known risk loci [19]. PRS is an individual-level
score calculated based on the number of risk variants, and weighted by single nucleotide
polymorphism (SNP) effect sizes derived from an independent large-scaled discovery
GWAS [19]. The effect sizes of multiple SNPs are combined into a single polymerized score
that can be used to predict the risks of human diseases [20]. PRS has contributed to the
genetic architecture of psychiatric traits by its ability to predict disease status [21].

Complex human diseases were considered to involve the interaction between envi-
ronmental and lifestyle factors, as well as inherited susceptibility [22]. The genome-wide
environmental interaction (GWEI) study aims to describe the interactions between genetic
and environmental factors and the effects on human diseases [22]. The risk of psychosis
increased with the accumulation of many genetic risk variants and the exposure of multiple
adverse environmental factors. Additionally, the impact of environmental exposure likely
depends on individual susceptibility, influenced by gene-environment interactions [23].
The great performance of GWEI makes it widely used in many brain related researches.
For example, the GWEI analysis of early life stress supported the risk of depression out-
comes [24]. Caroline et al. suggested that genetic variations in FKBP5, CRH, or CRHR1 and
SLE genes possibly moderate the effects of a stressful life event on depression [25].

In this study, the UK Biobank data were utilized to calculate individual PRSs for
143 dietary habit-related traits. The linear regression and logistic regression were used to
analyze the correlation between each dietary habit-related PRS with 160,121 fluid intelli-
gence participants and 153,549 depression participants, respectively. Using the calculated
dietary habit related PRSs as covariates; GWEI analyses were performed to explore the
effects of gene-dietary habits interactions on the development of depression and fluid
intelligence, respectively.

2. Materials and Methods
2.1. Definition of Depression and Intelligence in the UK Biobank Samples

The summary statistics from the UK Biobank cohort were used in this study [26]. The
UK Biobank included approximately 500,000 candidates, aged between 40 and 69 years,
who have had whole-genome genotyping undertaken and have allowed the linkage of
these data with their patient records [26]. Briefly, the comprehensive and accurate depres-
sion phenotype was defined according to the Patient Health Questionnaire (PHQ-9) and
the Composite International Diagnostic Interview short-form (CIDI-SF) from screenshot
question or verbal interview within UK Biobank Assessment Centre [27,28]. CIDI was
developed by the World Health Organisation (WHO) for assessing mental disorders accord-
ing to the definitions of ICD-10 and DSM-IV, and the PHQ-9 is a nine item questionnaire
designed to screen for depression in primary care and other medical settings. The case
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group of depression was selected based on depression phenotype, which was defined
according to the coding 1286 from Data-Field 20002, coding 3, 4 or 5 from Data-Field 20126
and coding 11 from Data-Field 20544. After excluding the self-reported depression defined
in our study and depression single episode defined in Davis et al. [29], the control group
was selected with PHQ score ≤5, and participants who respond “NO” to the question
“Have you ever had a time in your life when you felt sad, blue, or depressed for two
weeks or more in a row?” or “Have you ever had a time in your life lasting two weeks or
more when you lost interest in most things like hobbies, work, or activities that usually
give you pleasure?” (The core symptoms of depression described in CIDI ID 20446 and
20441). After removing the participants without the calculated dietary habit related PRS,
153,549 participants of depression were included for association analysis (Table 1).

Table 1. Descriptive characteristics for fluid intelligence and depression participants.

Fluid Intelligence Depression

Participants 160,121 153,549 (case = 74,579)
Sex (female) 86,818 (54.22%) 87,265 (56.83%)
Age (years) 56.70 ± 8.15 56.12 ± 7.78

Note: Age is described as Mean ± standard deviation; Sex is described as N (%).

The Data-Field 20016 of fluid intelligence score has four UK Biobank categories in-
cluding cognitive function (ID 100026), cognitive function summary (ID 1005), fluid in-
telligence/reasoning (ID 100027), and the UK Biobank assessment centre (ID 100000).
Fluid intelligence phenotype was defined using fluid intelligence measurement, a sim-
ple unweighted sum of the number of correct answers given to the 13 fluid intelligence
questions (Resource 100231). Participants who failed to answer all of the questions
within the two minutes limit were scored as zero for each of the unattempted questions
(http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20016, accessed on 8 May 2020).
According to fluid intelligence score, the participants were classified from 0 to 13. After
removing the participants without the calculated dietary habit-related PRS, 160,121 partici-
pants of intelligence were included for association analysis (Table 1).

2.2. Genotyping, Imputation and Quality Control in the UK Biobank

Genotyping, imputation and quality control (QC) for 487,409 individuals were per-
formed by the UK Biobank group [26]. Briefly, the UK BiLEVE Axiom array and UK
Biobank Axiom array which share over 95% of their marker content were used for geno-
typing. IMPUTE4 was used for imputation in chunks of about 50,000 imputed markers
with a 250 kb buffer region. Marker-based QC was performed using statistical tests de-
signed primarily to check for consistency of genotype calling across experimental factors.
Sample-based QC was performed using the metrics of missing rate, heterozygosity, and
a set of 15,766 high quality markers on the X and Y chromosomes [26]. More informa-
tion about genotyping, imputation, QC and physical measurements has been described
previously [26].

2.3. GWAS Summary Data of Dietary Habits

A recent large-scale GWAS data of dietary habits was used here [30]. Briefly, the
phenotype derivation and genomic analysis were conducted on a homogenous population
of 455,146 participants of European ancestry. BOLT-lmm software (v.2.3.2) was used to
obtain the measures of heritability [31]. The estimated relatedness matrix was utilized
to explain the pseudo-heritability measurement representing the fraction of phenotypic
variance. In GWAS, linear mixed model association was conducted by BOLT-lmm software
(v.2.3.2) to account for relatedness in all variables [31,32]. Additional covariates included in
BOLT-lmm analysis for both heritability and GWAS included genotyping array and the first
10 genetic principal components (PC) derived on the subset of unrelated individuals using
FlashPCA2, followed by projection of related individuals on to the PC space [33]. LDstore
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v1.157 was used to calculate linkage disequilibrium (LD) and identify SNPs in high LD
(r2 ≥ 0.80) with any of the 77,229 95% credible set SNPs [34]. PC analyses were conducted
of the single food intake quantitative traits (FI-QTs) to generate 85 PC-dietary patterns
(DPs) that capture correlation structure among intake of single foods. The linear mixed
models of GWAS were conducted on the 143 significantly heritable dietary habits in up to
449,210 participants. In total, 814 LD independent loci were identified surpassing genome
wide significance (p < 5.0 × 10−8). The detailed information of phenotype derivation,
heritability, GWAS, and genetic correlation analyses is described elsewhere [30].

2.4. Dietary Habit Related PRS Calculation and Association Analysis

According to the standard approach, PLINK 2.0 was used to calculate dietary habit-
related PRS of each study subject using individual genotype data from the UK Biobank
(http://www.cog-genomics.org/plink/2.0/, accessed on 18 May 2020) [35]. Briefly, we set
PRSn as denoting the PRS value of dietary habits for the nth subject, defined as:

PRSn =
l

∑
i=1

EiDin (1)

where l denotes the total number of dietary habit-associated SNPs; Ei denotes the effect
size of significant dietary habits associated SNP i; Din denotes the dosage of the risk
allele of the ith SNP for the nth individual (0 is coded for homozygous protective geno-
type, 1 for heterozygous and 2 for homozygous polymorphic genotypes). R software
(https://www.r-project.org/, accessed on 23 May 2020) was used to establish linear and
logistic regression model to evaluate the possible associations between each dietary habit
PRS and target traits of fluid intelligence and depression. The PRSs of dietary habits were
set as instrumental variables, while age and sex were set as covariates.

2.5. Genome-Wide Environmental Interaction (GWEI) Study

The genotype data of depression and fluid intelligence were firstly adjusted for age,
sex and 10 PCs using logistic and linear regression models, and the residuals from the
regression model were then used for GWEI analysis, respectively. The command ‘glm’
of PLINK 2.0 was used to analyze the interaction between SNPs with the PRS of sig-
nificant dietary habits for depression and fluid intelligence, setting PRSs as covariates
(http://www.cog-genomics.org/plink/2.0/, accessed on 28 May 2020) [35]. For quality
control, we removed the SNPs with call rates < 90%, Hardy-Weinberg equilibrium (HWE) <
0.001, or minor allele frequencies (MAF) < 0.01. The kinship coefficients were estimated by
KING software (http://people.virginia.edu/~wc9c/KING/, accessed on 28 May 2020) to
remove the genetically related subjects [26]. Rectangular Manhattan plot and QQ plot were
produced using the “CMplot” package (https://github.com/YinLiLin/R-CMplot, accessed
on 15 June 2020) in R platform. Locus zoom plots were generated using the LocusZoom
web interface tool (http://locuszoom.sph.umich.edu//, accessed on 15 June 2020) [36].

3. Results
3.1. Associations of Dietary Habits with Depression and Fluid Intelligence

We detected 32 candidate dietary habits associated with depression in UK Biobank,
such as champagne/white wine glasses per month (p = 6.56 × 10−4), total drinks of
alcohol per month (p = 6.86 × 10−4), and never eat sugar vs. no sugar restrictions
(p = 1.09 × 10−2) (Appendix A Table A1). In addition, we detected 41 candidate di-
etary habits associated with fluid intelligence, such as coffee type: decaffeinated vs. any
other (p = 8.77 × 10−3), overall beef intake (p = 2.33 × 10−2), and overall cheese intake
(p = 1.20 × 10−22) (Appendix A Table A2).

We further compared the above association analysis results, and found 22 candi-
date dietary habits shared by depression and fluid intelligence, such as red wine glasses
per month (pdepression = 8.75 × 10−3, pintelligence = 3.35 × 10−19), overall alcohol intake

http://www.cog-genomics.org/plink/2.0/
https://www.r-project.org/
http://www.cog-genomics.org/plink/2.0/
http://people.virginia.edu/~wc9c/KING/
https://github.com/YinLiLin/R-CMplot
http://locuszoom.sph.umich.edu//
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(pdepression = 3.60 × 10−2, Pintelligence = 8.31 × 10−8), and overall cheese intake (pdepression =
1.70 × 10−5, pintelligence = 1.20 × 10−22).

3.2. Interaction Analysis of Dietary Habits with Depression and Fluid Intelligence

For depression, we detected nine significant SNPs interacted with champagne/white
wine glasses per month, such as rs7869470 (p = 1.54 × 10−8), rs34379422 (p = 2.39 × 10−8)
and rs796938996 (p = 6.33 × 10−9) (Figure 1A,B). The nearest gene of the nine SNPs was
OLFM1 gene (Figure 1C). The analysis results (p < 5.00 × 10−8) of depression are detailed
in Table 2.

Nutrients 2021, 13, x FOR PEER REVIEW 5 of 13 
 

3. Results 
3.1. Associations of Dietary Habits with Depression and Fluid Intelligence 

We detected 32 candidate dietary habits associated with depression in UK Biobank, 
such as champagne/white wine glasses per month (p = 6.56 × 10−4), total drinks of alcohol 
per month (p = 6.86 × 10−4), and never eat sugar vs. no sugar restrictions (p = 1.09 × 10−2) 
(Appendix Table A1). In addition, we detected 41 candidate dietary habits associated 
with fluid intelligence, such as coffee type: decaffeinated vs. any other (p = 8.77 × 10−3), 
overall beef intake (p = 2.33 × 10−2), and overall cheese intake (p = 1.20 × 10−22) (Appendix 
Table A2). 

We further compared the above association analysis results, and found 22 candidate 
dietary habits shared by depression and fluid intelligence, such as red wine glasses per 
month (pdepression = 8.75 × 10−3, pintelligence = 3.35 × 10−19), overall alcohol intake (pdepression = 3.60 
× 10−2, Pintelligence = 8.31 × 10−8), and overall cheese intake (pdepression = 1.70 × 10−5, pintelligence = 
1.20 × 10−22). 

3.2. Interaction Analysis of Dietary Habits with Depression and Fluid Intelligence 
For depression, we detected nine significant SNPs interacted with champagne/white 

wine glasses per month, such as rs7869470 (p = 1.54 × 10−8), rs34379422 (p = 2.39 × 10−8) and 
rs796938996 (p = 6.33 × 10−9) (Figure 1A,B). The nearest gene of the nine SNPs was OLFM1 
gene (Figure 1C). The analysis results (p < 5.00 × 10−8) of depression are detailed in Table 
2. 

For fluid intelligence, we detected three significant SNPs interacted with coffee type: 
decaffeinated vs. any other, including rs6846781 (p = 4.22 × 10−8), rs7690236 (p = 3.28 × 
10−8) and rs28378450 (p = 3.29 × 10−8) (Figure 2A,B). The three SNPs located at SYNPO2 
gene (Figure 2C). The analysis results (p < 5.00 × 10−8) of fluid intelligence are summa-
rized in Table 3. 

 
Figure 1. Genome-wide environmental interaction study in champagne/white wine glasses per 
month of depression. (A) Manhattan plot. The black solid line indicates the p value threshold for 
genome-wide significance (p < 5 × 10−8) while the black dotted line indicates p value threshold for 
suggestive significance (p < 5 × 10−5). (B) QQ plot. A graphical representation of the deviation of the 
observed p values from the null hypothesis: the observed p values for each single nucleotide pol-
ymorphism (SNP) are sorted from largest to smallest and plotted against expected values from a 
theoretical χ2-distribution. (C) Locus Zoom plot for gene OLFM1. Association results for SNPs as a 

Figure 1. Genome-wide environmental interaction study in champagne/white wine glasses per
month of depression. (A) Manhattan plot. The black solid line indicates the p value threshold for
genome-wide significance (p < 5 × 10−8) while the black dotted line indicates p value threshold for
suggestive significance (p < 5 × 10−5). (B) QQ plot. A graphical representation of the deviation of
the observed p values from the null hypothesis: the observed p values for each single nucleotide
polymorphism (SNP) are sorted from largest to smallest and plotted against expected values from a
theoretical χ2-distribution. (C) Locus Zoom plot for gene OLFM1. Association results for SNPs as a
function of genomic distance for OLFM1. The display range is chr9: 137767088−138213030. Purple
diamond indicates SNP at the locus with the strongest association evidence (rs7869470). Each point
represents an SNP.

Table 2. The significant SNPs interacted with champagne/white wine glasses per month for depression.

SNP ALT A1 Beta SE p

rs7869470 A G 0.062 0.011 1.54 × 10−8

rs34379422 C T 0.061 0.011 2.39 × 10−8

rs796938996 G GCG 0.067 0.011 6.33 × 10−9

rs17493408 A G 0.061 0.011 3.13 × 10−8

rs11103643 T C 0.060 0.011 4.94 × 10−8

rs113597793 C T 0.060 0.011 4.92 × 10−8

rs7036368 A C 0.061 0.011 3.87 × 10−8

rs7049100 G A 0.060 0.011 4.58 × 10−8

rs7040385 T A 0.060 0.011 4.43 × 10−8

Note: SNP = single nucleotide polymorphism; ALT = alternate alleles; A1 = tested allele; SE = standard error;
p = p-value.
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For fluid intelligence, we detected three significant SNPs interacted with coffee
type: decaffeinated vs. any other, including rs6846781 (p = 4.22 × 10−8), rs7690236
(p = 3.28 × 10−8) and rs28378450 (p = 3.29 × 10−8) (Figure 2A,B). The three SNPs located
at SYNPO2 gene (Figure 2C). The analysis results (p < 5.00 × 10−8) of fluid intelligence are
summarized in Table 3.
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of fluid intelligence. (A) Manhattan plot. The black solid line indicates the p value threshold for
genome-wide significance (p < 5 × 10−8) while the black dotted line indicates p value threshold for
suggestive significance (p < 5 × 10−5). (B) QQ plot. A graphical representation of the deviation of
the observed p values from the null hypothesis: the observed p values for each single nucleotide
polymorphism (SNP) are sorted from largest to smallest and plotted against expected values from a
theoretical χ2-distribution. (C) Locus Zoom plot for gene SYNPO2. Association results for SNPs as a
function of genomic distance for SYNPO2. The display range is chr4: 119571842−120182402. Purple
diamond indicates SNP at the locus with the strongest association evidence (rs7690236). Each point
represents an SNP.

Table 3. The significant SNPs interacted with coffee type: decaffeinated vs. any other for fluid
intelligence.

SNP ALT A1 Beta SE p

rs6846781 T T 0.052 0.009 4.22 × 10−8

rs7690236 T T 0.052 0.009 3.27 × 10−8

rs28378450 A A 0.052 0.009 3.29 × 10−8

Note: SNP = single nucleotide polymorphism; ALT = alternate alleles; A1 = tested allele; SE = standard error;
p = p-value.

4. Discussion

In this study, a recent large-scale GWAS data was utilized to obtain 814 loci associated
with dietary habits. The UK Biobank data was used to conduct PRS analyses for each
individual of depression and fluid intelligence, respectively. The GWEI analyses were
performed to detect significant SNP × dietary habit interaction effects on depression and
fluid intelligence, respectively. Our study observed associations of dietary habit with
depression and fluid intelligence, and detected several candidate loci that interacted with
dietary habits for depression and fluid intelligence.
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Many mental disorders involve disruptions in cognitive function [37,38]. Given these
patterns, there has been long-standing interest in the association of depression with fluid
intelligence. An observational study found that fluid intelligence was positively associ-
ated with major depression in US adolescents [39]. Aichele et al. also indicated that the
decrement of fluid intelligence could predict the aggravation of depressive symptoms,
and both worsened with age [11,12]. In this study, multiple alcohol-related dietary habits
were associated with depression and fluid intelligence. Alcohol consumption has highly
negative effects that contribute to the symptoms in many neuropsychiatric disorders [40].
Churchill et al. suggested that alcohol consumption might induce depression, and is con-
sistently related to several measures of drinking behavior, including alcohol consumption
intensity, alcohol dependence and risk of dependence [41]. Interestingly, evidence about the
relationship between intelligence and alcohol intake were complicated, with researchers re-
porting evidence of a positive relationship [42] and a negative relationship [43]. Laust et al.
assessed the association between intelligence and preferred beverage type in young Danish
men, and found that high intelligence was associated with the preference for wine [44].
While the considerable associations of alcohol intake with depression and intelligence were
reported, the causal relationships and biological mechanisms remain elusive now. Our
results indicate that the common characteristics of dietary habit may play a vital role in the
relationship between depression and fluid intelligence.

Never eat sugar vs. no sugar restrictions were detected to be associated with depres-
sion. Higher sugar consumption was linked to higher depression prevalence in several
ecological and cross-sectional studies [45,46]. Likewise, the western diet richness in sugar
and fat might increase the risk of depression [47]. A recent meta-analysis also indicated
that the consumption of sugar-sweetened beverages might be associated with a modestly
higher risk of depression [48]. Knüppel et al. performed a random effects regression to
repeated measures, and suggested that high long-term consumption of carbohydrates has
adverse effects on psychological health, even leaded to higher rate of depression [46]. In
six countries, a highly significant correlation was detected between sugar consumption
and the annual rate of depression [49]. The above studies strongly support our result that
sugar consumption may closely relate to the risk of depression.

Interaction analysis of depression indicated that OLFM1 (olfactomedin 1) had inter-
action effects with the number of champagne/white wine glasses per month. OLFM1
is a glycoprotein highly expressed in human brain, and may have an essential role in
nerve tissue [50]. Nakaya et al. confirmed that OLFM1 participated in neural progenitor
maintenance and cell death in brain [51]. OLFM1 was also demonstrated to be related to
amyotrophic lateral sclerosis due to its regulation of motor cortex and spinal cord [52]. Our
result suggests that OLFM1 gene expression may be involved in the mechanism between
champagne/white wine and depression. Additionally, several suggestively significant
SNP-dietary interactions were observed in depression GWEI, such as interaction between
rs117916244 (PTPRJ) and total drinks of alcohol per month, and interaction between
rs62169868 (KYNU) and red wine glasses per month. The regulation of the ephrin-Eph-c-
Abl axis by PTPRJ plays a vital role in the proper central projection of retinal axons during
development [53]. Wigner et al. confirmed that venlafaxine modulated the expression and
methylation level of KYNU in brain when rats were exposed to the chronic mild stress
model of depression [54]. The SNP-dietary interactions suggest that PTPRJ and KYNU may
play a role in alcohol-induced depression.

Caffeine was detected to be associated with fluid intelligence in this study. The cogni-
tive enhancing properties of caffeine were facilitated by its indirect effects on mood and
attention [55]. A memory and intelligence test supported that intelligence was declined by
small dose of caffeine, while associative reproduction of idea was improved by caffeine [56].
Corley et al. collected intelligence quotient data from 923 healthy participants at age 11 and
assessed their cognitive function at age 70, and found that higher cognitive scores were as-
sociated with caffeine consumption [57]. Likewise, Rees et al. assessed the influence of age
on the effects of caffeine on a variety of psychomotor and cognitive tests, and observed that
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the psychomotor performance and cognitive function in participants were improved after
caffeine consumption [58]. A recent systematic review highlighted the benefit of caffeine on
memory, crystallized intelligence, physical and occupational performance [59]. In genetic
perspective, our research may suggest an effect of caffeine intake on fluid intelligence.

Our interaction analysis of fluid intelligence highlighted that SYNPO2 (synaptopodin-
2) was a significant gene that interacted with dietary habit-coffee type: decaffeinated vs.
any other. SYNPO2 is mainly expressed in human brain tissue and has been demonstrated
to associate with several mental disorders [60]. For example, Zhang et al. observed
that SYNPO2 was one of the differentially expressed genes in schizophrenia [61]. The
GWASdb SNP-Phenotype association dataset showed that SYNPO2 was associated with
the schizophrenia phenotype in GWAS datasets [62]. SYNPO2 was demonstrated to
closely associate with cognitive development in mice brain [63]. Chronic variable stress in
mice induced significant down-regulation of SYNPO2 which was necessary for synaptic
plasticity, learning and memory [63]. Although there is less evidence to link caffeine
consumption and SYNPO2 expression, our result suggests that caffeine may influence the
fluid intelligence by affecting the expression of SYNPO2 in human brain.

There are several limitations in this study. Firstly, the culture/geographic background,
a measure of income, education, and socioeconomic status on participants were not con-
sidered in our analysis. Although the dietary habits and GWEI reported in this study
are significantly related to depression and fluid intelligence, and consistent with some
previous evidence, further experimental studies are needed to explore and confirm the
underlying molecular biological mechanisms. In addition, the GWAS and dietary habits
data in this study were obtained from European ancestry, which should be carefully applied
to other races.

Notably, this study lacked additional genotyping studies for internal reference, such as
alcohol intake-related genes ADH (alcohol dehydrogenase) and CYP2E1 (Cytochrome P450
2E1) [64,65]. The noncoding variants in ADH genes might influence alcohol metabolism
and alcoholism risk [66]. Catanzaro et al. demonstrated that certain CYP2E1 variable
number tandem repeat genotypes were associated with drinking habits [64]. In further
study, the combination of genotyping and GWAS could help to explain the complex results
in genome-wide environmental interaction analysis. In addition, different individuals
possess slightly different genetic information and show genetically determined differences
in several enzyme activities due to genetic variability [67]. For example, some alcohol-
related genes (such as ADH and CYP2E1) have an epigenetic regulation [65,68]. Naselli et al.
demonstrated that the A2 and A3 CYP2E1 alleles were essential in the expression of the
enzyme, compared with epigenetic genetic factors [68]. Dannenberg et al. suggested that
the ADHI genes were regulated by epigenetic mechanisms in human hepatoma cells [65].
These studies suggest that the expression of some genes can be modified by both genetic
polymorphisms and epigenetic changes.

Taken together, we performed the PRS and GWEI analysis to evaluate the associations
between dietary habits with depression and fluid intelligence utilizing the UK Biobank
data. Our findings reflect the potential role of dietary habits in the etiology of depression
and fluid intelligence, as well as how wine and coffee may influence depression and fluid
intelligence, respectively. Most importantly, this work highlights the critical importance of
dietary habits in brain health and development. Future studies should focus on integrating
GWAS and genotyping to investigate the role of epigenetics in genetic polymorphism of
complex traits.
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Appendix A

Table A1. The dietary habits associated with depression.

Dietary Habits OR p

Cereal type: cornflakes/frosties vs. any other 0.96 5.66 × 10−12

Among current drinkers, drinks usually with meals: yes
vs. no 0.97 4.24 × 10−7

Coffee type: decaffeinated vs. any other 0.98 1.78 × 10−6

Bread type: white vs. any other 0.98 1.82 × 10−6

Never eat wheat vs. no wheat restrictions 0.98 7.40 × 10−6

Overall cheese intake 0.98 1.70 × 10−5

Frequency of adding salt to food 1.02 1.79 × 10−4

Among current drinkers. Drinks usually with meals:
yes vs. no 1.02 3.45 × 10−4

Among current drinkers, drinks usually with meals: yes,
it varies, no 0.98 3.57 × 10−4

Cups of tea per day 1.02 5.07 × 10−4

Champagne/white wine glasses per month 0.98 6.56 × 10−4

Total drinks of alcohol per month 0.98 6.86 × 10−4

Bowls of cereal per week 0.98 8.66 × 10−4

Bread type: white vs. wholemeal/wholegrain + brown 1.02 1.42 × 10−3

Tablespoons of vegetables per day 0.99 3.94 × 10−3

Bread type: wholemeal/wholegrain vs. white + brown 0.99 4.88 × 10−3

Slices of bread per week 0.99 6.76 × 10−3

Among current drinkers, drinks usually with meals: yes
+ it varies vs. no 0.99 7.41 × 10−3

Overall oily fish intake 0.99 8.04 × 10−3

Red wine glasses per month 0.99 8.75 × 10−3

Milk type: soy milk vs. never 0.99 8.76 × 10−3

Never eat sugar vs. no sugar restrictions 1.01 1.09 × 10−2

Never eat wheat vs. no eggs, dairy, wheat, or sugar
restrictions 0.99 1.14 × 10−2

Overall non-oily fish intake 0.99 1.17 × 10−2

Milk type: skimmed vs. never 0.99 1.66 × 10−2

Cereal type: muesli vs. any other 1.01 2.83 × 10−2

Tablespoons of cooked vegetables per day 1.01 2.87 × 10−2

Overall alcohol intake 0.99 3.60 × 10−2

Alcohol drinker status: current + former vs. never 0.99 4.15 × 10−2

Slices of bread per week 0.99 4.21 × 10−2

Overall poultry intake 0.99 4.41 × 10−2

Cereal type: muesli vs. any other 0.99 4.87 × 10−2

Note: p = p-value.



Nutrients 2021, 13, 1150 10 of 13

Table A2. The dietary habits associated with intelligence.

Dietary Habits Beta p

Bread type: white vs. any other 0.03 1.30 × 10−32

Bread type: whole grain/whole meal vs. white
bread 0.02 3.13 × 10−23

Overall cheese intake 0.02 1.20 × 10−22

Red wine glasses per month 0.02 3.35 × 10−19

Among current drinkers. drinks usually with
meals: yes vs. no −0.02 1.21 × 10−13

Cereal type: cornflakes/frosties vs. any other 0.01 8.36 × 10−10

Overall alcohol intake 0.01 8.31 × 10−8

Champagne/white wine glasses per month 0.01 1.07 × 10−6

Temperature of hot drinks −0.01 1.18 × 10−6

Among current drinkers, drinks usually with
meals: yes vs. no 0.01 2.85 × 10−6

Never eat sugar vs. no sugar restrictions 0.01 6.91 × 10−6

Bread type: wholemeal/wholegrain vs. any
other 0.01 9.75 × 10−6

Overall non-oily fish intake 0.01 1.24 × 10−5

Bread type: wholemeal/wholegrain vs. white +
brown 0.01 1.51 × 10−5

Spread type: flora + benecol vs. never 0.01 4.50 × 10−5

Overall oily fish intake −0.01 7.96 × 10−5

Spread type: tub margarine vs. never −0.01 1.96 × 10−4

Never eat wheat vs. no wheat restrictions 0.01 3.43 × 10−4

Spread type: butter and butter-like spreads vs.
oil-based spreads 0.01 3.99 × 10−4

Never eat sugar vs. no sugar restrictions −0.01 5.99 × 10−4

Spread type: butter and margarine spreads vs.
oil-based spreads −0.01 7.58 × 10−4

Bowls of cereal per week 0.01 8.10 × 10−4

Cups of tea per day −0.01 1.43 × 10−3

Tablespoons of vegetables per day 0.01 3.54 × 10−3

Cereal type: comflakes/frosties vs. any other 0.01 5.97 ×10−3

Spread type: low fat spread vs. never −0.01 5.97 × 10−3

Beer/cider glasses per month −0.01 7.68 × 10−3

Cereal type: biscuit cereal vs. any other 0.01 8.49 × 10−3

Coffee type: decaffeinated vs. any other 0.01 8.77 × 10−3

Never eat wheat vs. no eggs, dairy, wheat, or
sugar restrictions 0.01 9.77 × 10−3

Among current drinkers, drinks usually with
meals: yes, it varies, no 0.01 1.09 × 10−2

Bread type: white vs. any other −0.01 1.16 × 10−2

Pieces of dried fruit per day 0.01 1.49 × 10−2

Milk type: skimmed vs. never 0.01 1.53 × 10−2

Overall non-oily fish intake −0.01 1.63 × 10−2

Slices of bread per week 0.01 1.98 × 10−2

Alcohol drinker status: current + former vs.
never 0.01 2.09 × 10−2

Overall beef intake −0.01 2.33 × 10−2

Cups of tea per day −0.01 2.33 × 10−2

Total drinks of alcohol per month 0.01 2.92 × 10−2

Overall lamb/mutton intake 0.01 3.07 × 10−2

Note: p = p-value.
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