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Abstract

Non-synonymous SNPs (nsSNPs), also known as Single Amino acid Polymorphisms (SAPs) account for the majority of human
inherited diseases. It is important to distinguish the deleterious SAPs from neutral ones. Most traditional computational
methods to classify SAPs are based on sequential or structural features. However, these features cannot fully explain the
association between a SAP and the observed pathophysiological phenotype. We believe the better rationale for deleterious
SAP prediction should be: If a SAP lies in the protein with important functions and it can change the protein sequence and
structure severely, it is more likely related to disease. So we established a method to predict deleterious SAPs based on both
protein interaction network and traditional hybrid properties. Each SAP is represented by 472 features that include
sequential features, structural features and network features. Maximum Relevance Minimum Redundancy (mRMR) method
and Incremental Feature Selection (IFS) were applied to obtain the optimal feature set and the prediction model was
Nearest Neighbor Algorithm (NNA). In jackknife cross-validation, 83.27% of SAPs were correctly predicted when the
optimized 263 features were used. The optimized predictor with 263 features was also tested in an independent dataset and
the accuracy was still 80.00%. In contrast, SIFT, a widely used predictor of deleterious SAPs based on sequential features, has
a prediction accuracy of 71.05% on the same dataset. In our study, network features were found to be most important for
accurate prediction and can significantly improve the prediction performance. Our results suggest that the protein
interaction context could provide important clues to help better illustrate SAP’s functional association. This research will
facilitate the post genome-wide association studies.
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Introduction

Millions of single nucleotide polymorphisms (SNPs) have been

collected in the public database, dbSNP [1], and it is estimated

that ,90% of human sequence variants are SNPs [2]. Among

them, non-synonymous SNPs (nsSNPs), also known as single

amino acid polymorphisms (SAPs), that lead to a single amino acid

change in the protein product are most relevant to human

inherited diseases [3]. Two databases, the Online Mendelian

Inheritance in Man (OMIM) [4] and the Human gene mutation

database (HGMD) [3], contain records of disease-causing variants

and suggest that the majority of the disease-causing variants are

non-synonymous changes [5]. It is estimated that there are

67,000–200,000 nsSNPs in the human population [5]. Some of

these nsSNPs are disease-associated, while others are functionally

neutral. It is important to discriminate disease-associated nsSNPs

from neutral ones for the investigation of genetic diseases.

Empirical rule-based [6,7,8], probabilistic models [9] and

machine learning approaches [10,11,12,13,14,15,16,17] were

used to classify the nsSNPs. These studies made use of a variety

of potential features to distinguish deleterious nsSNPs from

neutral ones – mainly features derived from protein sequences

[11,12,13] or from both protein structural and sequential

information [10,14,15,16,17]. However, only a limited number

of proteins have known three-dimensional structures, while the

vast majority does not have their structural information available

[5]. Among the above mentioned papers that mainly used the

sequence information, some did not consider the sequence

microenvironment [13] and some lacked a feature selection

procedure [16].
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The major limitation of traditional methods that are based on

structural or sequential features is that they only focus on the local

variation of the protein itself. Although the prediction accuracy

may be high, it is hard to believe that the change of only one SAP

protein could determine or cause a pathophysiological phenotype.

More and more studies have shown that diseases can be caused by

perturbed cellular networks [18,19]. Including network features,

therefore, should improve the prediction of deleterious SAPs.

In this paper, a new classification method was established by

combining new network features and traditional sequential

features of the amino acid microenvironment surrounding the

SAP and using a carefully designed feature selection procedure.

Each SAP was coded by 472 features, which were derived from

the transformed scores of the amino acid index, position-specific

scoring matrices, the structural features, betweenness and the

KEGG enrichment scores of the protein neighbors in STRING

[20] network. Next, feature selection and analysis methods,

including the Maximum Relevance Minimum Redundancy

method (mRMR) [21] and Incremental Feature Selection (IFS)

[22] were used to obtain the optimal features to be used for the

prediction of deleterious nsSNPs versus neutral ones. The

prediction model was built using well-known Nearest Neighbor

Algorithm (NNA) [23]. As a result, the optimal 263-feature set

were selected, achieving a correct prediction rate of 83.27%

when evaluated by Jackknife cross-validation test. The optimized

prediction model with 263 features was also tested on an

independent dataset, and the accuracy was still 80.00%. Network

features were found to be most important for accurate

prediction.

Materials and Methods

Dataset
Care et al. [24] evaluated several common SAP (single amino

acid polymorphism) datasets and concluded that the Swiss-Prot

dataset is the best training data for the prediction of SAPs. In this

study, SAP data from Swiss-Prot Protein Knowledgebase (http://

www.uniprot.org/docs/humsavar, release 57.4 of 16-Jun-2009

and release 57.13 of 19-Jan-2010) were acquired for the prediction

and analysis of SAPs. Human polymorphisms and disease

mutations in release 57.4 were used for Jackknife cross-validation.

The SAPs added in release 57.13 after release 57.4 were used as an

independent test dataset. Each SAP in the Swiss-Prot is annotated

with a label of either ‘disease’ (SAP with disease association),

‘polymorphism’ (SAP with no known disease association) or

‘unclassified’ (SAP which has too little information to be classified).

We excluded ‘unclassified’ SAPs and SAPs without the required

features for our method. The final, filtered dataset was composed

of 20,706 polymorphism SAPs and 16,304 disease SAPs. The

independent test dataset was composed of 1,905 polymorphism

SAPs and 766 disease SAPs.

Feature Construction
The features of the network. In a network, some nodes

occupy important positions; others must rely on those nodes to

exchange information. Such a network property of a node can be

studied using Freeman’s betweenness measure [25]. For a graph

G~ V,Eð Þ, the betweenness of node v is defined as:

CB vð Þ~
X

s=v=t[V

sst vð Þ
sst

ð1Þ

where s and t are all the other nodes in the network, sst is the

number of shortest paths between node s and node t and sst vð Þ is

the number of those paths that go through node v.

Betweenness is used to measure information that flows through

networks. High betweenness means that there are multiple paths

between nodes, and low betweenness means there are few paths.

In a biological network, betweenness measures the ways in which

signals can pass through the interaction network. The R package

tnet (http://opsahl.co.uk/tnet) was used to calculate the between-

ness of each protein in the weighted network derived from

STRING v8.2 [20].

The most simple and direct method to predict one protein’s

function is to consider the known functions of proteins found in its

immediate neighborhood [26]. The function of neighbors is an

important feature for the environment of this protein. The

enrichment score of one protein’s neighbors on a STRING

network was defined as the 2log10 of the p-value generated by the

hypergeometric test. The larger the enrichment score of one

KEGG pathway, the more overrepresented this pathway is. There

were 220 KEGG enrichment score features. Betweenness and the

KEGG enrichment scores were network level features.

The features of the PSSM conservation score. Evolu-

tionary conservation is one of the most important concepts in

biology. If an amino acid in a particular position of a particular

protein is conserved, it indicates that this amino acid may be

located in an important or functional region of the protein and

that its mutation may cause a significant change of the protein’s

structure and function.

Position Specific Iterative BLAST (PSI BLAST) can measure

the residue conservation at a given location. It uses a 20-

dimensional vector to represent the probabilities of conservation

against mutations to 20 different amino acids. Position Specific

Scoring Matrix (PSSM) [27] is a matrix of such vectors which

represent all residues in a given sequence. If a residue is conserved

in PSI BLAST, it is likely to be important for biological function.

In this study, we used the PSSM conservation score to quantify

the conservation status of each amino acid in the protein sequence.

Target sequences were scanned against the reference data sets

UniRef100 Release 15.9 to generate the position specific scoring

matrices (PSSMs) using Position Specific Iterative BLAST (PSI

BLAST) program Release 2.2.12 [28].

The features of the disorder score. Disordered regions in

proteins lack fixed three-dimensional structures under physi-

ological conditions, but they play important roles in regulation,

signaling and control. These activities are achieved by high-

specificity, low-affinity interactions and the binding of multiple

proteins [29]. Amino acid substitutions occurring in these regions

would, presumably, disturb their normal functions and thereby

demonstrate a ‘‘disease’’ phenotype. Previous investigations have

proven that disordered regions can contribute to the prediction of

SAP disease association [16].

In this study, we used the disorder score, calculated by VSL2

[30], to quantify the disorder status of each amino acid in the

protein sequence. VSL2 can predict disordered regions of any

length, and it can accurately identify short disordered regions. The

disorder scores of the surrounding amino acids of the SAP site

formed the features of disorder.

The features of AAFactors. AAIndex (http://www.genome.

ad.jp/aaindex/) is a database of numerical indices, representing

various physicochemical and biochemical properties of amino

acids or pairs of amino acids. Atchley et al. [31] did factor analysis

on AAIndex to produce a small set of highly interpretable numeric

patterns of amino acid variability. These high-dimensional

attributes of amino acids were summarized and transformed

to five multidimensional patterns of attribute covariation that

Deleterious SAP Prediction
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reflected polarity, secondary structure, molecular volume, codon

diversity, and electrostatic charge. These five transformed scores

(we called ‘‘amino acid factors’’ or ‘‘AAFactors’’) were used to

encode each amino acid in our research.

Other structural features. Twelve features in Ye’s study

[16] were also included in our feature space. These features were

described as follows:

HLA family. HLA is a group of genes with diverse functions,

many of which encode proteins of the immune system and are

highly polymorphic [32]. Based on this consideration and our

previous findings [16], we reason that natural variations associated

with these genes should tend to be neutral and labeling them with

a specified feature should be helpful to our classifier. To identify

the HLA SAPs, we performed Blast with the corresponding

protein sequences against the IMGT/HLA database [32]. Those

hit by IMGT/HLA entries with both an e-value less than or equal

to 0.01 and a sequence identity greater than 70% were assigned as

HLA proteins, and their SAPs were assigned as HLA SAPs,

accordingly.

Disordered region. In addition to the disorder score calculated

by VSL2, we also used disordered region information parsed from

DisProt [29]. We did a Blast of the protein sequences against the

DisProt [29] database and set the e-value to be less than or equal

to 0.01 and the sequence identity to be greater than 70%. Based

on the blast hits, we transferred the annotation of disordered

regions to the query protein and thereby determined whether the

SAPs on this protein were located in disordered regions.

Functional sites. Proteins play their biological roles through

functional sites, and an alteration in or near a functional site is

more likely to disturb the normal function than alterations at other

sites. Based on this consideration, adopting attributes to represent

these effects will likely be helpful in solving the SAP classification

problem [16,33]. Similarly to previous methods, we defined these

attributes using the sequential distance between SAP and the

nearest functional sites (if greater than 50, set 50 as the upper

bound). The functional sites used here were taken directly from

Swiss-Prot annotations with the feature table key of ACT_SITE,

BINDING, CARBOHYD, LIPID, METAL, MOD_RES,

CROSSLNK and DISULFID. We also used TRANSMEM

annotation, where the attribute was assigned as either 1 or 0 to

indicate whether the SAP was in a trans-membrane region or not.

GRANTHAM score. Each element in the GRANTHAM

matrix shows the differences of physicochemical properties

between amino acids [34]. Using these values, we defined an

attribute for each SAP that reflected the physicochemical

difference between the original and changed residue.

Feature space of SAP. The microenvironment of a SAP

consisted of 8 amino acids: 4 neighboring amino acids on each

side. Including the original and changed amino acids of the SAP, a

total of 10 amino acids were encoded. Hence, each SAP was

programmed to have 5|10~50 AAFactors, 20|9~180 PSSM

conservation scores, 1 protein betweenness, 220 KEGG enrich-

ment scores, 9 disorder scores and 12 other structural features; this

resulted in a total of 472 features.

mRMR method
The Maximum Relevance, Minimum Redundancy method

[21] was originally developed by Peng et al. The mRMR program

used in this paper was downloaded from the website http://

penglab.janelia.org/proj/mRMR. It ranks each feature according

to both its relevance to the target classification variable and the

redundancy between the features. A ‘‘good’’ feature is character-

ized by maximum relevance with the target variable and minimum

redundancy within the features. Both relevance and redundancy

are defined by mutual information (MI), which estimates

how much one vector is related to another. MI is defined as

follows:

I X ,Yð Þ~
ðð

p X ,Yð Þ log
p X ,Yð Þ

p Xð Þp Yð Þ dXdY ð2Þ

where X and Y are two vectors, p X ,Yð Þ is the joint probabilistic

density, and p Xð Þ and p Yð Þ are the marginal probabilistic

densities.

Let V denote the whole vector set. The already selected vector

set with m vectors is denoted by Vs, and the to-be-selected vector

set with n vectors is denoted by Vt. The relevance D of a feature f
in Vt with a classification variable c can be computed by equation

(3):

D~I f ,cð Þ ð3Þ

The redundancy R of a feature f in Vt with all the features in Vs

can be computed by equation (4):

R~
1

m

X
fi[Vs

I f ,fið Þ ð4Þ

To maximize relevance and minimize redundancy, mRMR

function is obtained by integrating equation (3) and equation (4):

max
fj[Vt

I fj ,c
� �

{
1

m

X
fi[Vs

I fj,fi

� �
2
4

3
5 j~1,2,:::,nð Þ ð5Þ

For a feature pool containing N N~mznð Þ features, feature

evaluation will be executed in N rounds. After the pre-evaluation

procedure, a feature set S will be provided:

S~ f1

0
, f2

0
,:::, fh

0
,:::, fN

0h i
ð6Þ

In the feature set S, the feature index h denotes at which round the

feature is selected. Evaluations for features are also reflected by

these indices. For example, fa is believed to be better than fb if

avb because the better the feature satisfies equation (5) the earlier

it will be added to S.

Nearest Neighbor Algorithm
In our work, the Nearest Neighbor Algorithm was used to

classify each SAP as either neutral or disease-associated. Its basic

idea is to make a prediction based on the calculation of similarity

between the test samples and the training samples. The distance

between two vectors px and py in the study is defined as

[35,36]:

D px, py

� �
~1{

px
:py

DDpxDD:DDpyDD
ð7Þ

where px
:py is the inner product of px and py, and D DpDD is the

module of vector p. A smaller value of D px, py

� �
means increased

similarity between px and py.

In NNA, a vector pt will be designated as having the same class

as its nearest neighbor pn, i.e. D pn, ptð Þ is the smallest distance

among all the other distances.

Deleterious SAP Prediction
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D pn, ptð Þ~min D p1, ptð Þ,D p2, ptð Þ,:::,D pz, ptð Þ,:::,D pN , ptð Þf g z=tð Þ ð8Þ

where N represents the number of training samples.

Jackknife Cross-Validation Method
The Jackknife cross-validation, also called Leave-One-Out

Cross-Validation (LOOCV) [35,36,37] is one of the most effective

and objective ways to evaluate statistical predictions. In the

Jackknife cross-validation Method, each sample in the dataset is

knocked out in turn and tested by the predictor, which is trained

by the other samples in the data set. During this process, each

sample is involved in training N{1 times and is tested exactly

once. To evaluate the performance of the predictor, the accuracy

rates for the positive samples, negative samples and the overall

samples can be calculated as:

accuracy w positive dataset~
correctly predicted positive samples

positive samples

accuracy w negative dataset~
correctly predicted negative samples

negative samples

overall accuracy~

correctly predicted positive sampleszcorrectly predicted negative samples

positive samplesznegative samples

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

Incremental Feature Selection (IFS)
After the mRMR step, we obtained a feature list in their order

of selection. However, we do not know how many features in the

list should be chosen. In our study, Incremental Feature Selection

(IFS) [35,36] was used to determine the optimal number of

features.

We constructed N feature subsets of the feature list S provided

by the mRMR feature list defined in eq. (6) by adding an

additional feature to the candidate feature subset, starting from an

initial subset containing only the first feature S1~ f1

0
n o

. The i-th

feature subset is defined as:

Si~ f1

0
,:::,fi

0n o
1ƒiƒNð Þ ð10Þ

by adding feature fi

0
to the previous subset Si{1~ f1

0
,:::,fi{1

0n o
For each feature subset Si i~1,:::,Nð Þ, the Jackknife cross-

validation method is used to obtain the accuracy of prediction.

The results were plotted to produce an IFS curve with index i as its

x-axis and the overall accuracy as its y-axis. The feature set, say

S
optimal

~ f1, f2,:::, fhf g, would be considered as the optimal one if

the IFS curve has a peak at X~h.

Deleterious/tolerated SAP predicted by SIFT
SIFT [38] version 4.0 was downloaded from http://sift.jcvi.

org/www/sift4.0.tar. The protein sequences database was down-

loaded from UniProtKB/TrEMBL Release 40.12; NCBI BLAST

version 2.2.22 was used as a search engine. Lists of amino acid

substitutions to be predicted were generated and the median

conservation was set as 3.00.

Results

mRMR result
The first step of feature selection is to produce an mRMR

feature list. Because our data is continuous, we set the parameter

t~1 to categorize each feature in our data into one of three

possible states according to the equation mean+ t:stdð Þ: the ones

with a value smaller than mean{ t:stdð Þ, the ones with a value

between mean{ t:stdð Þ and meanz t:stdð Þ, and the ones with a

value larger than meanz t:stdð Þ. In these formulas, mean is the

mean value of the features in all samples and std is the standard

deviation. All 472 features were ranked according to their

importance for prediction by mRMR.

IFS results
As was mentioned in the above section, each SAP was represented

by 472 features. A NNA model was built 472 times for the IFS

procedure by adding features one by one to the model from the list of

472 mRMR features. Figure 1 shows the results of IFS. To improve

the efficiency of the computation, IFS was executed by alterable steps

to search for the highest accuracy as follows:

1. Calculate the accuracy with feature set S1,S6,:::,S471 using 5

features as the step.

2. Find the index of the feature set with which the maximum

accuracy was achieved, (261 for the data used in this research).

3. Refine the accuracy around S261, by calculating accuracies

using feature sets S256,S257,:::,S265.

The highest accuracy of IFS was 83.27% using 263 features. The

accuracy of polymorphism SAP and disease SAP classification using

these optimized 263 features were 85.26% and 80.73%, respective-

ly. The detailed information of the IFS procedure and the optimized

263 features of IFS are listed in Table S1 and Table S2.

Independent testing of our method
Human polymorphisms and disease mutations in Release 57.4

on 16-Jun-2009 were used for Jackknife cross-validation. The

newly added SAPs in release 57.13 after release 57.4 were used as

independent test dataset. The independent test dataset was

composed of 1,905 polymorphism SAPs and 766 disease SAPs.

The prediction accuracy of the independent test was 80.0%, which

was slightly lower than the accuracy of the Jackknife cross-

validation on training set, which was 83.27%.

Discussion

Comparison with SIFT
To compare our method with SIFT, we analyzed the same data

used in our predictor with SIFT. Some SAPs couldn’t be predicted

using SIFT due to limited diversity among their protein sequences.

Among the remaining SAPs, each one was identified as deleterious

(‘‘Disease’’) or tolerated (‘‘Polymorphism’’). The prediction

accuracy of SIFT was 71.05%, which is lower than our method.

SIFT (‘Sorting Tolerant from Intolerant’) is based on the

principles of protein evolution. Generally speaking, a highly

conserved position should be intolerant to most substitutions,

whereas a poorly conserved position can tolerate more substitu-

tions [39]. From a query protein sequence, SIFT compiles a

dataset of functionally related protein sequences by searching a

protein database using the PSI-BLAST algorithm. Then, the

sequences that are homologous with the query sequence are used

to build an alignment. In this step, SIFT scans each position in the

alignment and calculates the probabilities for all of the 20 possible

amino acids at that position. These probabilities are normalized by

the probability of the most frequent amino acid and are recorded

in a scaled probability matrix. SIFT predicts how a substitution

affects protein function, based on the scaled probability, by

comparing the SIFT score to the threshold value given by user. It

was previously reported that, when applied to a dataset of

mutations found in individuals affected with a disease, SIFT

ð8Þ

ð9Þ

Deleterious SAP Prediction

PLoS ONE | www.plosone.org 4 July 2010 | Volume 5 | Issue 7 | e11900



correctly predicted that 69% of the substitutions associated with

the disease affected protein function [40]. The reported prediction

accuracy is close to the prediction accuracy of SIFT in dataset of

this study.

Unlike SIFT, our methods used more features, including the

AAFactors, similarity to HLA families, disorder attributes, distance

between SAP and functional sites, betweenness and the KEGG

enrichment scores of the protein neighbors. These features

incorporated both amino acid- and protein-level information. In

particular, betweenness and the KEGG enrichment scores were

network level features. The results suggest that it is better to

uncover the complexity of diseases by integrating network-centric

methodology with the traditional sequence-based methodology.

Feature analysis
Some features can improve the prediction accuracy when they

are added, while others cannot. Figure 2 shows the number of

each type of feature in the optimized 263-feature set. Since the

prediction accuracy already achieved 80.29% with 36 features (see

Table S1), we also plotted the number of each type of feature in

these top 36 features ranked by mRMR in Figure S1. As we can

see from both Figure 2 and Figure S1, the feature with the

biggest contribution is KEGG enrichment scores, one kind of the

network features. To more objectively evaluate the importance of

KEGG enrichment scores, we did hypergeometric test on the

optimal feature set and found the 263 selected features were

significantly overrepresented onto KEGG enrichment scores with

p value of 9.0361028. Another kind of the network features,

betweenness, was also important. This suggests that if a protein

does not interact with biologically important proteins, then its

mutation may not cause severe damage. The second most

important feature is the PSSM conservation score, which is

similar to the basis of SIFT. Conservation is one of the most

important concepts in biology. If an amino acid in a particular

position of a particular protein is conserved, then it may mean that

this amino acid is located in an important or functional region of

the protein and that its mutation may cause a significant change in

the protein’s shape and function. The third most relevant feature is

the transformed scores of the amino acid index (‘‘AAFactor’’).

Figure 3 shows the frequency of each type of AAFactor features

in the optimized 263-feature set. It appears that factor 3 is the

most important one. Factor 3 relates to molecular size or volume

with high factor coefficients for bulkiness, residue volume, average

volume of a buried residue, side chain volume, and molecular

weight [31].

The most important single feature is the enrichment scores of

KEGG pathway is the hsa04350 TGF-beta signaling pathway.

The importance rank of each feature can be found in Table S2.

Transforming growth factor-beta proteins (TGF-beta proteins) are

key players in a large variety of physiological and disease processes.

The TGF-beta signaling pathway is related to many cellular

processes in both the adult organism and the developing embryo

including cell growth, cell differentiation, apoptosis, cellular

homeostasis and other cellular functions. If a protein can interact

with some proteins in TGF-beta signaling pathway, its mutation

has the potential to cause serious damage to the system. The

second most important single feature is the disorder score of the

site, two amino acids ahead of the SAP. Disordered regions in

proteins lack fixed three-dimensional structures under physiolog-

ical conditions, and they play important roles in regulation,

signaling and control, which can involve high-specificity, low-

affinity interactions and binding of multiple proteins [29]. Amino

acid substitutions that happened in these regions would most likely

disturb their normal functions and thus cause a disease phenotype.

The third most important single feature is the PSSM conservation

score of the SAP site, which is expected. The fourth is the

GRANTHAM score. The GRANTHAM matrix shows the

differences of physicochemical properties between amino acids

[34]. Intuitively, the larger the difference, the more likely the SAP

would destroy the function of the protein. We compared the

GRANTHAM scores of SAPs annotated with disease to those

annotated with polymorphism and found the former ones were
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Figure 1. The curve of IFS. (A) The IFS curve with a step width of 5. The highest accuracy was achieved with 261 features, which suggest the
optimal feature set should have more than 256 and less than 266 features; (B) The IFS curve between index 256 and 265. Refine the accuracy around
S261, by calculating accuracies using feature sets S256, S257… S265. The highest accuracy of IFS was 83.27% using 263 features. These 263 features
formed the optimal feature set.
doi:10.1371/journal.pone.0011900.g001

Deleterious SAP Prediction

PLoS ONE | www.plosone.org 5 July 2010 | Volume 5 | Issue 7 | e11900



greater than the latter, on average. This confirmed our intuition

and showed their contribution to our ability to discriminate disease

SAPs from polymorphism ones. Betweenness was 20th important

as single feature. Betweenness measures the information flow

through networks; a high betweenness indicates multiple paths

between nodes, and a low betweenness indicates few paths. In a

Figure 2. The number of each type of features in the optimal feature set. The feature with the biggest contribution is KEGG enrichment
scores, one kind of the network features. Another kind of the network features, betweenness, was also important. This suggests that if a protein does
not interact with biologically important proteins, then its mutation may not cause severe damage.
doi:10.1371/journal.pone.0011900.g002

Figure 3. The number of each type of AAFactor features in the optimal feature set. Factor 3 is the most important one and it relates to
molecular size or volume with high factor coefficients for bulkiness, residue volume, average volume of a buried residue, side chain volume, and
molecular weight.
doi:10.1371/journal.pone.0011900.g003
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biological network, betweenness measures the ways in which

signals can pass through the interaction network.

In this study, careful feature selection and analysis was

performed to choose an optimal feature set and to analyze what

kind of features are important for detection of deleterious SNPs.

Network features were found to be most important for accurate

prediction and can significantly improve the prediction perfor-

mance. Our results suggest that the protein interaction context

could provide important clues to help better illustrate SAP’s

functional association.

Supporting Information
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Found at: doi:10.1371/journal.pone.0011900.s001 (0.03 MB
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Table S2 The optimized 263 features.
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features. With these 36 features, the prediction accuracy achieved

80.29%.
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