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Abstract

Background

Congenital heart disease accounts for almost a third of all major congenital anomalies. Con-

genital heart defects have a significant impact on morbidity, mortality and health costs for

children and adults. Research regarding the risk of pre-surgical mortality is scarce.

Objectives

Our goal is to generate a predictive model calculator adapted to the regional reality focused

on individual mortality prediction among patients with congenital heart disease undergoing

cardiac surgery.

Methods

Two thousand two hundred forty CHD consecutive patients’ data from InCor’s heart surgery

program was used to develop and validate the preoperative risk-of-death prediction model

of congenital patients undergoing heart surgery. There were six artificial intelligence models

most cited in medical references used in this study: Multilayer Perceptron (MLP), Random

Forest (RF), Extra Trees (ET), Stochastic Gradient Boosting (SGB), Ada Boost Classifica-

tion (ABC) and Bag Decision Trees (BDT).

Results

The top performing areas under the curve were achieved using Random Forest (0.902).

Most influential predictors included previous admission to ICU, diagnostic group, patient’s

height, hypoplastic left heart syndrome, body mass, arterial oxygen saturation, and
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pulmonary atresia. These combined predictor variables represent 67.8% of importance for

the risk of mortality in the Random Forest algorithm.

Conclusions

The representativeness of “hospital death” is greater in patients up to 66 cm in height and

body mass index below 13.0 for InCor’s patients. The proportion of “hospital death” declines

with the increased arterial oxygen saturation index. Patients with prior hospitalization before

surgery had higher “hospital death” rates than who did not required such intervention. The

diagnoses groups having the higher fatal outcomes probability are aligned with the interna-

tional literature. A web application is presented where researchers and providers can calcu-

late predicted mortality based on the CgntSCORE on any web browser or smartphone.

Introduction

Congenital heart defects (CHD) are structural problems that arise in the formation of the heart

or major blood vessels, with a significant impact on morbidity, mortality and health costs in

children and adults. Defects vary in severity, from tiny holes between chambers that are

resolved naturally or malformations that may require multiple surgical procedures, being a

major cause of perinatal and infant mortality [1].

Reported birth estimates for patients with congenital heart disease vary widely among stud-

ies worldwide. The estimate incidence of 9 per 1,000 live births is generally accepted, thus,

annually, more than 1.35 million of children are expected to be born with some congenital

heart disease [2,3].

CHD may require several surgical procedures carrying its implicit death risk [2]. Survival

risk analysis provides support for medical decision-making, avoiding futile clinical interven-

tions or ineffective treatments [4]. There are some risk stratification models for mortality and

morbidity for children with congenital heart disease, for example RACHS-1 [5–7], Aristotles

Basic Complexity (ABC) and Aristotles Comprehensive Complexity (ACC) [8]. These models

were developed based on experience and consensus among experts in this field, due to the lack

of adequate data at that time [9].

One of the greatest challenges in developing accurate predictors of death related to pediatric

heart surgery is the wide heterogeneity range of congenital heart anomalies. Unlike adult car-

diac surgery (where there is a limited number of surgical procedures and very large numbers

of patients undergoing such procedures), the exact opposite applies in pediatric cardiac sur-

gery where there are thousands of different procedures and small number of patients undergo-

ing each type of procedures. Many cardiac surgical programs may undertake certain rare

procedures only once in several years. Thus, to build a helpful risk predictive model, the expe-

rience of a large number of patients must be analyzed. Of note, the Society of Thoracic Sur-

geons (STS) has the world’s largest multi institutional congenital cardiac database registering

data from the majority of United States and Canada pediatric cardiac centers [10]. The STS

has published numerous comprehensive articles modelling risk factor analysis in a representa-

tive population living and treated in a developed country. Recently a new global database is

being established by the World Society for Pediatric and Congenital Heart Surgery

(WSPCHS). It aims to include multiple institutions from multiple countries with the proposal

to represent more heterogeneous population of children assisted by different health systems
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and facilities [11]. Indeed, the motivation for the development of the global database is exactly

the problem pointed in 2014, that we used to justify the ASSIST Registry project: there is mas-

sive heterogeneity of CHD diagnosis, procedures, patient characteristics, trained human

resources and facilities diverse structures where they are treated. Following the need to per-

form outcomes assessments, respecting the characteristics of our population and healthcare

system, we hope to establish a multi institutional Brazilian database in the near future based on

our ASSIST Registry.

The ASSIST Registry was established in 2014 as a multicenter São Paulo State regional data-

base [12], as the pilot for this national project. In the past 5 years the ASSIST Registry collects

data from five institutions aiming to elicit our population’s specific covariates and their indi-

vidual conditions that could modify the outcomes risk model, currently based on international

well established risk scales for databases stratification [10]. The predictions of these models,

despite the efforts for enhancing it are not sufficiently accurate for individual’s risk assessment

worldwide, either because the performance of a given risk score reflects the average of a group

or because there are sociodemographic particularities that affect the model’s response [13,14].

Given this scenario, individualized mortality prediction models have been proposed [15].

Some studies with AI aids have been performing better when compared to the standard sever-

ity scoring system [16,17].

The proposal for mortality risk models using artificial intelligence for patients with congen-

ital heart disease is promising, although research on this subject is scarce. Recent studies

include machine-learning algorithms to classify groups of risks of death in surgery [16].

Another study proposed an artificial neural network (ANN) model to predict the risks of con-

genital heart disease in pregnant women [17]. However, there was no result when we searched

the published scientific literature for specific models of individual prediction of death in car-

diac surgery for patients with congenital heart defects.

The proposal of this study is to evaluate six statistics models to ascertain the mortality risk,

adapted to the regional reality, focused on individual mortality prediction among patients with

congenital heart disease undergoing cardiac surgery. Secondly, we aimed to instrument the

model-based mortality prediction with a calculator tool, the CngtSCORE calculator model,

accessible through any web browser or smartphone.

Materials and methods

Study design

This is a retrospective post-hoc AI analysis of the prospectively built ASSIST Registry multi-

center CHD 2014–2019 study. These analyses intended to elicit the highest AI accuracy model

to build the individual’s death risk prediction before individual’s surgery.

Six artificial intelligence models most cited in medical references were used in this study.

The Multilayer Perceptron (MLP), Random Forest (RF), Extra Trees (ET), Stochastic Gradient

Boosting (SGB), Ada Boost Classification (ABC) and Bag Decision Trees (BDT) machine-

learning algorithms were tested with the InCor’s dataset aiming to elicit the most adjusted out-

come evaluation.

Study population

Between January 2014 and December 2018, there were 2,240 consecutive patients with CHD

referred for InCor’s surgical treatment. All data were extracted from the general ASSIST Regis-

try dataset and stored in compliance with institutional security and privacy governance rules.

The database ASSIST Registry accumulates more than 3,000 patients reported [12].

PLOS ONE Improving preoperative risk-of-death prediction in surgery congenital heart defects

PLOS ONE | https://doi.org/10.1371/journal.pone.0238199 September 4, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0238199


Despite this collaborative dataset (since the data from the remaining centers was not exter-

nally audited until now), we used only the InCor’s data to keep this pilot test data more

accurate.

To ensure data accuracy, the postgraduate student and the supervisors (authors) performed

quality checks over time.

Predicting variables

Eighty-three pre-operational ASSIST Registry predictive variables for the outcome of each

patient were applied. Selection decisions were made based on their methodology, the evidence

literature used, their applicability, and by consensus among the participant researchers (these

variables and its parametrization are presented in Table 1). These variables were used as exoge-

nous variables in the six machine-learning algorithms to create the CgntSCORE calculator.

The six algorithms trained in this study were Multilayer Perceptron (MLP), Random Forest

Table 1. Pre-operative variables.

Variable Characteristic Description

PRE_proc_2 Origin (patient’s home) 1—Ignored

2—Pará

3—São Paulo—state

4—São Paulo—capital

5—Espı́rito Santo

6—Goiás

7—Minas Gerais

8—Rio Grande do Norte

9—Tocantins

10—Paraná

11—Bahia

12—Roraima

13—Brası́lia

14—Mato Grosso do Sul

15—Pernambuco

16—Paraı́ba

17—Ceará

18—Santa Catarina

19—Amazonas

20—Piauı́

21—Mato Grosso

22—Rio de Janeiro

23—Maranhão

24—Rio Grande do Sul

25—Amapá

26—Alagoas

27—Rondônia

28—Acre

PRE_prov_3 Provider 1 = SUS

2 = Particular

3 = Health insurance

4 = Ignored

(Continued)
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Table 1. (Continued)

Variable Characteristic Description

PRE_sexo_4 Sex 1—Male

2—Female

PRE_prenat_5 Diagnosis of Congenital Heart Disease in Prenatal Care 1 = No

2 = Yes

3 = No information

PRE_premat_6 Prematurity 1 = No

2 = Yes

3 = No information

PRE_maediab_7 Son of a Diabetic Mother 1 = No

2 = Yes

3 = No information

PRE_cirpre_8 Previous Surgery 1 = No

2 = Yes

PRE_intpre_9 Number of Hospitalizations 1 to 12

PRE_ncirpre_10 Number of Previous Sugeries 1 to 7

PRE_sindcrom_11 Non-Cardiac Abnormality—Chromossomal Sydrome 1 = No

2 = Yes

PRE_down_12 Down’s Sydrome 1 = No

2 = Yes

PRE_digeorge_13 DiGerorge Syndrome 1 = No

2 = Yes

PRE_turnner_14 Turner Syndrome 1 = No

2 = Yes

PRE_willians_15 Williams Syndrome 1 = No

2 = Yes

PRE_edwards_16 Edwards Syndrome 1 = No

2 = Yes

PRE_Noonan_17 Noonan Syndrome 1 = No

2 = Yes

PRE_outcrom_18 Other Syndromes 1 = No

2 = Yes

PRE_anoanat_19 Non-cardiac Abnormality—Malformations 1 = No

2 = Yes

PRE_atresiaesofag_20 Esophageal Atresia 1 = No

2 = Yes

PRE_anusimperf_21 Imperforated Anus 1 = No

2 = Yes

PRE_Fistraqueo_22 Tracheoseophageal Fistula 1 = No

2 = Yes

PRE_herniadiaf_23 Diaphragmatic Hernia 1 = No

2 = Yes

PRE_onfalocele_24 Omphalocele 1 = No

2 = Yes

PRE_fendaPalat_25 Cleft Palate 1 = No

2 = Yes

PRE_Outanoanat_26 Other Anomalies 1 = No

2 = Yes

(Continued)
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Table 1. (Continued)

Variable Characteristic Description

PRE_ht_preop_adm1_27 Pre-operative Hematocrit 1. 21 to 26

2. 27 to 32

3. 33 to 38

4. 39 to 44

5. 45 to 50

6. 51 to 56

7. 57 to 62

8. 63 to 70

9. No information

PRE_sato2_preop_adm1_28 Arterial Oxygen Saturations 1. 55 to 60%

2. 61 to 64%

3. 65 to 67%

4. 70 to 73%

5. 74 to 78%

6. 79 to 82%

7. 83 to 87%

8. 88 to 92%

9. 93 to 96%

10. 97 to 100%

11. No information

PRE_Diagnostico_categoria1a12_29 Diagnosis Category 1 = cardiomiopatia

2 = cor triatriatum

3 = DORV—double outlet right ventricle

4 = electrophysiological

5 = left heart lesions

6 = miscellaneous, other

7 = pulmonary venous anomalies

8 = right heart lesions

9 = septal defects

10 = single ventricle

11 = thoracic arteries and veins

12 = transportation of the great arteries

PRE_Truncus_30 Truncus Arteriosus 1 = No

2 = Yes

PRE_CMP_31 Cardiomypathy 1 = No

2 = Yes

PRE_DAPVVPP_32 Partial Anomalous Drainage of the Pulmonary Veins 1 = No

2 = Yes

PRE_DATVVPP_33 Total Anomalous Drainage of the Pulmonary Veins 1 = No

2 = Yes

PRE_Aneurisma_Ao_34 Aortic Aneurysm 1 = No

2 = Yes

PRE_Doenca_ValvaAO_35 Aortic Valve Disease 1 = No

2 = Yes

PRE_Doenca_ValvaMi_36 Mitral Valve Disease 1 = No

2 = Yes

(Continued)
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Table 1. (Continued)

Variable Characteristic Description

PRE_Doenca_ValvaTri_37 Tricuspide Valve Disease 1 = No

2 = Yes

PRE_Janela_AO_Pulm_38 Aortopulmonary Window 1 = No

2 = Yes

PRE_PCA_39 Persistence of the Arterial Canal 1 = No

2 = Yes

PRE_CIA_40 Arterial Communication 1 = No

2 = Yes

PRE_DSAV_41 Atrioventricular Septal Defect 1 = No

2 = Yes

PRE_CIV_42 Interventricular Communication 1 = No

2 = Yes

PRE_CoAo_HipoArcoAO_43 Aortic Arch Coartation ans Hypoplasia 1 = No

2 = Yes

PRE_Miscelania_44 Miscellaneous 1 = No

2 = Yes

PRE_TCGA_45 Corrected Transposition of the Great Arteries 1 = No

2 = Yes

PRE_CorTriatriatum_46 Cor Triatriatum 1 = No

2 = Yes

PRE_Anomalia_Coronaria_47 Coronary anomaly 1 = No

2 = Yes

PRE_DVSVD_48 Dual Right Ventricular Outflow Tract 1 = No

2 = Yes

PRE_SHCE_49 Left Heart Hypoplasia Syndrome 1 = No

2 = Yes

PRE_T4F_50 Tetralogy of Fallot 1 = No

2 = Yes

PRE_RVOT_51 Expansion of the Right Ventricular Outflow Tract 1 = No

2 = Yes

PRE_Interrupcao_ArcoAO_52 Aortic Arch Disruption 1 = No

2 = Yes

PRE_Atresia_pulmonar_53 Pulmonary Atresia 1 = No

2 = Yes

PRE_Doenca_ValvaPulm_54 Pulmonary Valvopathy 1 = No

2 = Yes

PRE_TGA_55 Transposition of the Great Arteries 1 = No

2 = Yes

PRE_Ventriculo_unico_56 Single Ventricule 1 = No

2 = Yes

PRE_Eletrofisiologia_57 Heart Rhythm Changes 1 = No

2 = Yes

PRE_Tunel_VE_AO_58 Tunneling Left Ventricule Aorta 1 = No

2 = Yes

PRE_Shone_59 Shone syndrome 1 = No

2 = Yes

(Continued)
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Table 1. (Continued)

Variable Characteristic Description

PRE_Anel_Vascular_60 Vascular Ring 1 = No

2 = Yes

PRE_grupo_diag_61 Diagnostic Group 1 = Aortic Aneurysm

2 = Aortic Valve Disease

3 = AP Window

4 = ASD

5 = AV Canal

6 = Cardiomyopathy

7 = Coarctation of Aorta and Aortic Archhypoplasia

8 = Congenitally Correted TGA

9 = Cor Triatriatum

10 = Coronary Artery Anomalies

11 = DORV

12 = Electrophysiological

13 = Hypoplastic Left Heart Syndrome

14 = Interrupted Arch

15 = LV to Aorta Tunnel

16 = Miscellaneous

17 = Mitral Valve Disease

18 = Partial Anomalous Pulmonary Venous Connection

19 = Patent Ductus Arteriosus

20 = Pulmonary Atresia

21 = Pulmonary Valve Disease

22 = RVOT Obstruction and/or Pulmonary Stenosis

23 = Shone’s Syndrome

24 = Single Ventricle

25 = Tetralogy of Fallot

26 Total Anomalous Pulmonary Venous Connection

27 = Transposition of the Great Arteries

28 = Tricuspid Valve Disease and Ebstein Anormaly

29 = Truncus Arteriosus

30 = Vascular Rings and Slings

31 = VSD

PRE_proc_previos_2Sim_1Nao_63 Patient Undergoing Previus Procedures 1 = No

2 = Yes

PRE_proc_previos_01_64 Number of Previous Procedures 1 to 85

PRE_Ressuc_PCR_Pre_Adm1_65 Pre-operative ressuscitated Cardiac Arrest Patient 1 = No

2 = Yes

PRE_Arritmia_pre_Adm1_66 Pre-operative Arrhythmia 1 = No

2 = Yes

PRE_Inotropicos_pre_Adm1_67 Inotropic Use in the Pre-operative Period 1 = No

2 = Yes

PRE_Vent_mec_Pre_Adm1_68 Pre-operative Mechanical Ventilation 1 = No

2 = Yes

PRE_Traqueo_pre_Adm1_69 Pre-operative Tracheostomy 1 = No

2 = Yes

(Continued)
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Table 1. (Continued)

Variable Characteristic Description

PRE_Hipotiroidismo_pre_Adm1_70 Pre-operative Hypothyroidism 1 = No

2 = Yes

PRE_Diabetes_Pre_Adm1_71 Pre-operative Diabetes 1 = No

2 = Yes

PRE_Endocardite_pre_Adm1_72 Pre-operative Diagnosis of Endocarditis 1 = No

2 = Yes

PRE_Sepsis_pre_Adm1_73 Sepsis in the Pre-operative 1 = No

2 = Yes

PRE_Convulsao_pre_Adm1_74 Pre-operative Seizure 1 = No

2 = Yes

PRE_Alt_Neuro_pre_adm1_75 Neurological Changes in the Pre-operative 1 = No

2 = Yes

PRE_Disf_renal_pre_Adm1_76 Pre-operative Renal Dysfunction 1 = No

2 = Yes

3 = No information

PRE_Hipert_Pulm_pre_Adm1_77 Pre-operative Pulmonary Hypertension 1 = No

2 = Yes

3 = No information

PRE_Gastro_pre_Adm1_79 Pre-operative Gastrostomy 1 = No

2 = Yes

3 = No information

PRE_ECMO_VAD_pre_80 Pre-opeative ECMO Need 1 = No

2 = Yes

3 = No information

PRE_UTI_Previa_2sim_1nao_adm1_81 Previous ICU Admission 1 = não

2 = sim

PRE_peso_kg_adm1_82 Patient Weight on the Surgery Date 1 = from 1.7 to 13.1 Kg

2 = from 13.2 to 24.6 Kg

3 = from 24.7 to 36.1 Kg

4 = from 36.2 to 47.6 Kg

5 = from 47.7 to 59.1 Kg

6 = from 59.2 to 70.6 Kg

7 = de 70.7 to 82.1 Kg

8 = from 82.2 to 93.6 Kg

9 = de 93.7 to 105.1 Kg

10 = over 105.1 Kg

PRE_estat_cm_adm1_83 Patient Height on the Surgery Date 1 = up to 51 cm

2 = from 52 to 66 cm

3 = from 67 to 82 cm

4 = from 83 to 97 cm

5 = from 98 to 112 cm

6 = from 113 to 128 cm

7 = from 129 to 143 cm

8 = from 144 to 159 cm

9 = from 160 to 174 cm

10 = above 175 cm

(Continued)
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(RF), Extra Trees (ET), Stochastic Gradient Boosting (SGB), Ada Boost Classification (ABC)

and Bag Decision Trees (BDT). These six different machine-learning algorithms were used to

predict the risk of pre-surgical mortality and to understand the magnitude each variable

affected the risk of death.

Outcome variables

The outcome variable of interest was hospital mortality, defined as death in the hospital or

within 30 days of cardiac surgery, as defined by STS [10].

Data analysis

The experiments were performed on an Intel1 Core ™ i7-7700HQ 2.80GHz notebook, 16.0

GB of RAM, under the Windows 10 platform. Moreover, for the manipulation, analysis and

training of the algorithms, Python 3.7.1 software and Numpy, Pandas, Matplotlib, Seaborn,

Scikit-Learn, Imblearn and PyTorch libraries were used.

Table 1. (Continued)

Variable Characteristic Description

PRE_IMC_adm1_84 Body Mass Index on the Surgery Date 1 = from 6.3 to 9.6

2 = from 9.7 to 13.0

3 = from 13.1 to 16.4

4 = from 16.5 to 19.8

5 = from 1.9 to 23.2

6—from 23.3 to 26.6

7 = from 26.7 to 30.0

8 = from 30.1 to 33.4

9 = from 33.5 to 36.8

10 = from 36.9 to 39.1

PRE_SC_adm1_85 Body Surface on the Surgery Date 1 = from 0.2 to 0.4 m2

2 = from 0.5 to 0.7 m2

3 = from 0.8 to 1.0 m2

4 = from 1.1 to 1.3 m2

5 = from 1.4 to 1.6 m2

6 = from 1.7 to 1.9 m2

7 = from 2.0 to 2.3 m2

8 = over 2.3 m2

PRE_IDADE_CIRURGIA_dias_adm1_90 Age on the Surgery Date 1 = from 0 to 2,432 days

2 = from 2,433 to 4,864 days

3 = from 4,864 to 7,295 days

4 = from 7,296 to 9,727 days

5 = from 9,728 to 12,159 days

6 = from 12,160 to 14,590 days

7 = from 14,591 to 17,022 days

8 = from 17,023 to 19,454 days

9 = from 19,455 to 21,885 days

10 = from 21,886 to 24,316 days

DESFECHO_FINAL_OBITO_89 Death 1 = Hospital discharge

2 = Hospital death

https://doi.org/10.1371/journal.pone.0238199.t001
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The forecasting model development included the following steps: preparation of the InCor

data set, normalization or standardization of the variables, division of the data into training

and validation sub-sets, balancing of the training set, training and algorithm adjustments, and

finally, measuring the model’s forecast performance. Fig 1 presents this procedure sequence

and subsequent texts define and further explain each step.

The Department of Cardiovascular Surgery-Pediatric Cardiac Unit, Heart Institute of Uni-

versity of São Paulo Medical School—InCor provided the data set used in this study and its

technical expertise. The data set, extracted from the ASSIST database, contains the history of

2,240 cardiac surgeries performed on patients with heart disease from 2014 to 2018. This infor-

mation was organized into 84 variables, many derived from the international RACHS and

Aristotle risk scores checklists, including continuous, quantitative or categorical qualitative

parameterized fields, as detailed in Table 2. We defined the objective variable as “Final Out-

come” and tabulated it 0 or 1, with 0 for “Hospital Discharge” and 1 for “Hospital Death”.

As the first step to train of the algorithm, it was necessary to evaluate the need for normali-

zation or standardization of the variables. Indeed, many machine-learning algorithms perform

better or converge more quickly when the resources are on a relatively similar scale or close to

the normal distribution, as for example, in Linear Regression, Logistic Regression, K-Nearest

Neighbors Algorithm (KNN), Artificial Neural Networks (RNA), Support Vector Machines

with radially polarized core (SVM), Principal Component Analysis (PCA) and Linear Discrim-

inant Analysis (LDA) [18–21].

The data set partition for training and testing (validation) was separated by the forecasting

statistic adjusted model. The training set was then used to train the model and the test set (vali-

dation) was used to evaluate the model’s performance. However, this approach without adjust-

ments could have led to problems of variance using the same algorithm, with scenarios where

Fig 1. Steps performed in the model development.

https://doi.org/10.1371/journal.pone.0238199.g001
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precision obtained in one test is different from the precision obtained in another test set. To

minimize variance and ensure better performance of the machine learning models [22,23],

Hold-out and K-Fold Cross Validation techniques were compared, regarding our model pur-

pose and the size of the dataset. The Hold-out method divides the data set into two parts, train-

ing and testing, while the K-Fold Cross Validation method divides the data set into K parts of

equal size, also called folds. The training process was then applied to all folds, with the excep-

tion of one fold that was used as a test set in the validation process, where, finally, the measure

of performance was the average of all performance tests for all folds. The advantage of this K

partition method is that the entire data set is trained and tested, reducing the variation of the

chosen estimator. This guarantees a more accurate forecast and less bias from the positive rate

estimator [23,24].

As in this study, the 10-fold K-Fold Cross Validation method (K = 10) has shown good per-

formance in several health-related studies with low variability between the training and test

sample [16,25–29].

Another source of results variance we analyzed was derived from unbalance within data cat-

egories included, such as, for example, some diagnostic variables (e.g. small numbers of rare

conditions). Indeed, in data sets it is common to observe large differences in the percentage of

representativeness in the classes studied. For instance, in the InCor’s study data set, we

observed 10.8% patients dying after surgery versus 89.2% who survived. When the classifica-

tion categories are not equally represented, it is said that the data set is unbalanced [30,31].

Conventional algorithms tend to be biased towards the majority class because their loss

functions try to optimize quantities such as error rate, disregarding data distribution. In the

worst case, minority examples are treated as outliers of the majority class and ignored, causing

the model to be trained only to identify the majority class, which for this study it would lead to

failure to classify a patient’s risk of death.

The InCor’s data set is unbalanced, that is, there is a 1:9 ratio between mortality and post-

surgery survival [30,31]. In some algorithms, if this effect is not addressed, there would be a

false interpretation of the model’s performance, which was not desirable since the study’s aim

is to identify and understand the risk of death, the minority class of the studied data set.

To reduce the impacts due to the unbalance, technical methods to do under-sampling or

over-sampling the data set were used. The under-sampling techniques consisted of reducing

the sample of its most representative category to increase the sensitivity of a classifier towards

its minority class, while the over-sampling technique simply increased the sample of the

Table 2. Summary of methods and techniques.

Methods and
Techniques

Bagged Decision
Trees (BDT)

Random Forest (RF) Stochastic Gradient
Boosting (SGB)

Extra Trees (ET) AdaBoost
Classification (ABC)

Multilayer
Perceptron (MLP)

ASSIST Database
(select variables)

84 variables (all

variables)

42 variables (Recursive

Feature Elimination

Method)

42 variables (Recursive

Feature Elimination

Method)

42 variables (Recursive

Feature Elimination

Method)

42 variables (Recursive

Feature Elimination

Method)

84 variables (all

variables)

Standardization
(method)

Yes Yes Yes Yes Yes Yes

Separation in Training
and Validation
(method)

K-Fold Cross

Validation

K-Fold Cross

Validation

K-Fold Cross

Validation

K-Fold Cross

Validation

K-Fold Cross

Validation

Stratified K-Fold

Cross Validation

Data Set Balancing
(method)

Over-sampling by

the algorithm

Over-sampling by the

algorithm

Over-sampling by the

algorithm

Over-sampling by the

algorithm

Over-sampling by the

algorithm

No

Parameter Tuning
(technique)

GridSearchCV and

Randomized

SearchCV

GridSearchCV and

Randomized

SearchCV

GridSearchCV and

Randomized

SearchCV

GridSearchCV and

Randomized

SearchCV

GridSearchCV and

Randomized

SearchCV

Experimental

Method

https://doi.org/10.1371/journal.pone.0238199.t002
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minority category using statistical techniques to replicate minority samples, duplicating them

or generating new samples from the actual samples [30].

Moreover, in the process of building the machine-learning model, it was necessary to evalu-

ate algorithm performance, the model’s errors and its hits capacity. In this study, the model

aims to accurately predict the risk of death of patients with congenital heart disease before car-

diac surgery, so it is a binary classification problem. In binary classification problems there are

several evaluation metrics [32]; the most common performance metrics in machine learning

are Accuracy, Precision, Specificity, Sensitivity or Recall, and the ROC (Receiver Operating

Characteristics) curve AUC (Area Under the Curve), also written as AUROC (Area Under the

Receiver Operating Characteristics).

Accuracy, Precision, Specificity, Sensitivity or Recall measurements were calculated using

the Confusion Matrix (Fig 2).

The methods and techniques used in this study are summarized in Table 2.

Ethical approval

This study is part of the larger ASSIST Registry project ("Estudo do Impacto dos Fatores de

Risco na Morbimortalidade das Cardiopatias Congênitas: comparação entre estratos de risco

quando duas escalas internacionais são aplicadas no Sistema Único de Saúde do Estado de São

Paulo"), protocol CAAE: 31994814.0.3001.5440 approved by the Ethics Committee of the

Heart Institute of University of São Paulo Medical School, São Paulo, Brazil. Because this study

used solely the pre-established database by the larger ASSIST Registry project, the use of the

patient’s informed consent forms was waived.

Companion web site

A companion site was designed to contain additional, up-to-date information on the data set,

model as well as a Web Application that can perform mortality predictions based on individual

patient characteristics.

Results

The predictive performance metrics of the machine learning algorithms tested in this study are

shown in Table 3.

Fig 2. Confusion matrix.

https://doi.org/10.1371/journal.pone.0238199.g002
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Table 3 shows that the Multilayer Perceptron (MLP) neural network obtained the highest

levels of accuracy (accuracy) and specificity (specificity) in relation to the other studied algo-

rithms, respectively 90.2% and 98.5%. On the other hand, it obtained the lowest sensitivity

index (20.8%), ROC AUC (84.6%) and AP ((Average Precision) 0.44). These results demon-

strate that the Multilayer Perceptron neural network achieved the best performance in the

accuracy of survival forecasts, a fact reinforced with the specificity index (Specificity) of 98.5%.

In contrast, its ability to identify patients at risk of death is the lowest among the models stud-

ied; only 20.8% of the total patients who died in surgery were identified as risk of death by the

neural network.

Given our InCor’s unbalanced dataset [33,34], we used the ROC AUC and AP to analyze

the performance of the models. The Bagged Decision Trees (BGT), Random Forest (RF) and

Stochastic Gradient Boosting (SGB) algorithms stand out with the highest ROC AUC rates

among the studied algorithms, respectively 92.6%, 90.2% and 88.5%. They also have the highest

AP rates, 0.81 for Bagged Decision Trees (BGT), 0.73 for Random Forest (RF) and 0.70 for Sto-

chastic Gradient Boosting (SGB). The sensitivity index (Recall) is another metric considered

useful to subsidize decision making, where the 92.2% index for Random Forest (RF) is

observed, the highest index among the studied algorithms.

In line with the objective of predicting the risk of pre-surgical mortality, the Bagged Deci-

sion Trees (BGT) and Random Forest (RF) algorithms stand out in the performance require-

ment. The Bagged Decision Trees (BGT) algorithm demonstrated better performance for

predicting survival, specificity (specificity) of 90.8%, without giving up the ability to identify

risk of death, sensitivity index (Recall) of 70.6%. While Random Forest (RF) stood out in its

ability to identify risk of death, reaching a sensitivity index (Recall) of 92.2%.

The data in the Confusion Matrix of the RF algorithm are from the test set (validation), in

which it is possible to verify the number of observations with correct and predicted errors. It

can be seen that 8 of the 51 patients who died were not predicted by the model (Fig 3). This

matrix contains the information that was used to generate the model’s Accuracy, Sensitivity or

Recall, Specificity and Precision Indices (Fig 4).

In Fig 4, it can be seen that the RF model obtained an accuracy of 80.8%, sensitivity of

92.1% and precision of 54.6%.

The ROC AUC (AUROC) curve is another model performance metric frequently used to

support medical decision-making [35] increasingly adopted in the machine learning research

community [36]. The ROC AUC curve of the RF algorithm is shown in Fig 5.

Fig 5 shows the rate of false positives on the horizontal axis and the rate of true positives on

the vertical axis, and the plotted curve is the ROC curve. The area under the curve is called

AUC (Area Under Curve) and indicates the model’s ability to hit. The closer this index gets to

1, the greater the model’s ability to hit its predictions. The Random Forest (RF) reached a rate

of 90.2% of ROC AUC, information used to compare the performance of the other models and

to support the decision of the cutoff values for the desired objective.

Table 3. Performance metrics of algorithms.

Algorithms Accuracy Precision Recall Specificity ROC AUC Average Precision

Bagged Decision Trees 86.2% 69.2% 70.6% 90.8% 92.6% 0.81

Random Forest 80.8% 54.7% 92.2% 77.5% 90.2% 0.73

Extra Trees 72.8% 44.7% 82.4% 69.9% 86.0% 0.69

AdaBoost 84.4% 65.4% 66.7% 89.6% 85.7% 0.71

Gradient Boosting 82.6% 59.7% 72.5% 85.5% 88.5% 0.70

NN MLP 90.2% 62.5% 20.8% 98.5% 84.6% 0.44

https://doi.org/10.1371/journal.pone.0238199.t003
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Due to the InCor’s unbalanced dataset [33,34] and the warn of caution in the use of the

AUROC it is recommended to include Precision-Recall Curves in decision-making (Fig 6).

The Precision-Recall Curve shows the correlation of those two indices. It is observed that

the higher the Recall, the lower the Precision of the generated model. It is important

Fig 3. Confusion matrix of the RF algorithm.

https://doi.org/10.1371/journal.pone.0238199.g003

Fig 4. Performance metrics of the RF algorithm.

https://doi.org/10.1371/journal.pone.0238199.g004
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information for the cutoff point of the model. The highest precision is obtained in detriment

of the sensitivity, or the opposite. The AP index is also calculated, which in the RF model was

0.73.

The variables importance and influence analysis using the Random Forest (RF), Stochastic

Gradient Boosting (SGB), Extra Trees (ET) and AdaBoost Classification (ABC) algorithms is

presented, with the resulting magnitude each variable affected the risk of death, in Table 4.

Table 4 shows that some variables are listed as the most important in the four outstanding

studied algorithms, such as: Previous ICU admission, Diagnostic Group, Patient Height at the

Time of Surgery, Arterial Oxygen Saturation, Hypoplasia of the Left Heart and the Body Mass

Index in Surgery. These variables together represent 67.8% of the importance of the risk of

death in the Random Forest (RF) model, 57.6% in the Stochastic Gradient Boosting (SGB),

28.4% in Extra Trees (ET) and 32.0% in AdaBoost Classification (ABC).

Discussion

In recent research on individualized mortality prediction models, it is observed that the use of

machine learning techniques can be a tool to support medical decision making. Research in

this field has been increasing in recent years [16]. These techniques have shown better

Fig 5. ROC AUC curve of the RF algorithm.

https://doi.org/10.1371/journal.pone.0238199.g005

Fig 6. Precision-Recall curve of the RF algorithm.

https://doi.org/10.1371/journal.pone.0238199.g006
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performance compared to traditional techniques, such as logistic regression, [15,25,37],

including in mortality prediction studies [15].

Table 4. Importance of predictor variables in the outcome.

Significance

Variable Random Forest (RF) Stochastic Gradient Boosting

(SGB)

Extra Trees (ET) AdaBoost Classification

(ABC)

Previous ICU Admission 22.2% 11.4% 8.9% 5.3%

Diagnostic Group 15.8% 2.2% 2.4% 5.3%

Patient Height at Surgery 11.6% 17.7% 5.2% 9.3%

Arterial Oxygen Saturation 5.5% 10.0% 5.7% 5.3%

Left Heart Hypoplasia Syndrome 6.5% 13.6% 2.6% 1.3%

Body Mass Index in Surgery 6.3% 2.7% 3.5% 5.3%

Preoperative Hematocrit 0.9% 4.0% 4.1% 2.7%

Pulmonary Atresia 4.3% 3.1% 2.8% 1.3%

Patient Weight in Surgery 2.4% 0.0% 1.6% 6.7%

Number of Previous Procedures 0.2% 1.5% 2.0% 6.7%

Diagnostic Category 1.6% 3.1% 2.6% 2.7%

Number of Hospitalizations 0.9% 0.7% 2.6% 5.3%

Body Surface in Surgery 5.4% 0.3% 3.3% 0.0%

Age at Surgery Date 1.9% 1.6% 1.1% 2.7%

Diagnosis of Congenital Heart Disease in Prenata

Care

1.4% 0.5% 2.5% 2.7%

Preoperative Diagnosis of Endocarditis 0.9% 1.5% 1.1% 1.3%

Preoperative Mechanical Ventilation 0.3% 1.4% 1.8% 1.3%

Sex 0.5% 0.0% 2.9% 1.3%

Tetralogy of Fallot 0.7% 0.0% 1.0% 2.7%

Single Ventricle 1.3% 2.1% 0.9% 0.0%

Preoperative Hypothyroidism 0.3% 0.4% 0.8% 2.7%

Preoperative ECMO Need 0.1% 1.9% 0.8% 1.3%

Prematurity 0.3% 1.2% 2.6% 0.0%

Provider 0.5% 0.0% 2.2% 1.3%

Cardiomyopathy 1.3% 0.8% 1.6% 0.0%

Other Syndromes 0.3% 1.1% 0.7% 1.3%

Son of Diabetic Mother 0.4% 0.3% 2.6% 0.0%

Undergoing Previous Procedures 0.4% 0.3% 1.1% 1.3%

Down’s Syndrome 0.1% 0.5% 1.0% 1.3%

Arterial Communication 0.3% 0.0% 2.2% 0.0%

Interventricular Communication 0.3% 0.0% 2.1% 0.0%

Non-Cardiac Abnormality—Chromosomal

Syndrome

0.5% 0.3% 1.4% 0.0%

Preoperative Seizure 0.9% 0.0% 0.0% 1.3%

Dual Right Ventricular Outflow Tract 0.5% 0.0% 0.0% 1.3%

Previous Surgery 0.6% 0.0% 1.2% 0.0%

Persistence of the Arterial Canal 0.2% 0.0% 0.0% 1.3%

Use of Inotropic Preoperatively 0.4% 0.5% 0.0% 0.0%

Non-Cardiac Abnormality—Malformations 0.4% 0.0% 0.0% 0.0%

Total Anomalous Drainage of the Pulmonary Veins 0.3% 0.0% 0.0% 0.0%

Aortic Valve Disease 0.2% 0.0% 0.0% 0.0%

Preoperative Renal Disfunction 0.1% 0.0% 0.0% 0.0%

https://doi.org/10.1371/journal.pone.0238199.t004
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The experiment was started following the steps described in Fig 2. With the normalized

data set, the training and test samples (validation) were separated, using the K-Fold Cross Vali-

dation method 10 times (K = 10), where 90% of the sample was separated to train the machine

learning algorithms and the rest separated for the validation step. Then, the need to balance

the data set was assessed, since there is an unbalanced set, a 1:9 ratio between mortality and

post-surgery survival and the search for greater predictability of risk of death. When balancing

was necessary, different methods of under-sampling or over-sampling were tested to adjust the

distribution of the training sample categories.

With the training and test samples (validation) separated and adjusted, the training step of

the algorithm began. In the process of training the algorithms, several parameter configura-

tions were tested, always seeking to minimize the generalization errors, either by overfitting or

under fitting [38].

In order to optimize the generalization of the algorithm, the ROC AUC (AUROC) and

Average Precision indexes were maximized, aiming to obtain the best forecasting assertiveness

and minimize the error of not signaling a patient at high risk of mortality.

Among the six machine learning algorithms studied, it was observed that the Bagged Deci-

sion Trees (BGT) and Random Forest (RF) algorithms stood out in predicting mortality in

relation to the other studied algorithms. In this selection to decide which one of the algorithms

best fulfilled the mortality prognosis, we considered the implementation complexity and the

possibility to understand the impact of the variables on the risk of death. Based on these

parameters, the Random Forest (RF) algorithm outperformed and made possible to analyze

the importance of variables, a function not present in Bagged Decision Trees (BDT). It was

also observed that the Random Forest (RF) algorithm did not use all the variables of the data

set in the generation of the model, thus, it reduced the implementation complexity. Moreover,

the Random Forest (RF) can be highlighted for its precision, ease of training, and adjustments

[21].

To the best of our knowledge, this is the first individual’s CHD mortality prognosis ascer-

tainment using AI.

Our AI derived outcomes analyses are in line with the aggregated international scientific lit-

erature published. The variables listed as the most important, where the representativeness of

“hospital death” is greater with more severe CHD diagnosis, indeed, agrees with the STS core

aggregated data published. However, the STS aggregated data more recently published [10]

has excluded low weight or out of -7.0 to 5.0 Z score range neonates present in InCor’s patient

population due to malnutrition, problems not prevalent in developed countries.

Conclusions

This study suggests the use of Random Forest (RF) as a model of individual death prediction

for cardiac surgery in patients with congenital heart disease. The prediction results of Random

Forest (RF) corroborate that machine learning algorithms can assist clinical specialists,

patients and family members to analyze the risks associated with a possible cardiac surgical

intervention.

Understanding which diagnoses and variables impact the probability of mortality of a

patient with congenital heart disease, when proposed to be submitted to a cardiac surgical

intervention, allows clinical specialists to understand the risks associated with a surgical inter-

vention, provide information to support the decision of health professionals and family mem-

bers of patients.

Analyzing the variables listed as the most important, it was observed that the representative-

ness of “hospital death” is greater in patients up to 66 cm in height and BMI below 13.0. In
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addition, the “hospital death” probability declines with the increase in the arterial oxygen satu-

ration index, allowing focusing the action and medical intervention to mitigate the risk of

death.

In the patients’ cluster with previous ICU stay or with prior hospitalization before surgery,

it was observed the highest proportion of deaths than the patients who did not needed such

admissions. In-depth analysis of the effects of this variable is timely in understanding the risks

of death and may be the target of studies in future research.

Accordingly, the most severe diagnosis groups have a higher percentage of death than oth-

ers, for example the left heart hypoplasia syndrome.

It is, thus, opportune to direct specific studies for these groups and variables that can direct

actions to mitigate the risk of death.

As a model-based mortality prediction tool, the CngtSCORE model can be accessed

through Web browsers and smartphones.

Perspectives

Future research can evaluate new machine-learning algorithms or even test new variables and

diagnoses, as well as an in-depth analysis of the effects of these variables in understanding the

risks of death in patients with congenital heart disease undergoing cardiac surgery.

In addition, given the transition of pediatric care into adult life, the continuous evolution of

treatment strategies, and the relatively long life expectancies of survivors of cardiac interven-

tions, new machine learning algorithms may compare the long-term efficacy of different treat-

ment strategies.
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