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ABSTRACT: This study introduces an innovative computational approach using hybrid machine learning models to predict toxicity
across eight critical end points: cardiac toxicity, inhalation toxicity, dermal toxicity, oral toxicity, skin irritation, skin sensitization, eye
irritation, and respiratory irritation. Leveraging advanced cheminformatics tools, we extracted relevant features from curated data
sets, incorporating a range of descriptors such as Morgan circular fingerprints, MACCS keys, Mordred calculation descriptors, and
physicochemical properties. The consensus model was developed by selecting the best-performing classifier�Random Forest (RF),
eXtreme Gradient Boosting (XGBoost), or Support Vector Machines (SVM)�for each descriptor, optimizing predictive accuracy
and robustness across the end points. The model obtained strong predictive performance, with area under the curve (AUC) scores
ranging from 0.78 to 0.90. This framework offers a reliable, ethical, and effective in silico approach to chemical safety assessment,
underscoring the potential of advanced computational methods to support both regulatory and research applications in toxicity
prediction.

■ INTRODUCTION
Toxicity can manifest in various forms, be quantified through
measures including the lethal dose (LD50), or be described
qualitatively in terms such as low, moderate, or high toxicity.1,2

These assessments consider multiple factors, including the
route and frequency of exposure, chemical properties, and
biological characteristics of the subject.3,4 Toxicity assessment
is essential for understanding chemicals’ potential risks to
human health and the environment.5 Traditionally, it has relied
heavily on animal testing to identify harmful effects.6 However,
ethical considerations, high costs, and limited relevance to
human biology raised questions about this approach.7,8

For example, the European Commission has highlighted the
significant costs associated with toxicity testing under the
Registration, Evaluation, Authorization and Restriction of
Chemicals (REACH) regulation, with expenses for a single
chemical reaching millions of euros for long-term tests.9,10 This
has led to a growing shift toward more sophisticated methods
that can reduce the dependence on animal testing while
improving the accuracy and relevance of toxicity predictions.
Regulatory and scientific communities, such as the Interagency
Coordinating Committee on the Validation of Alternative

Methods (ICCVAM 2018), have increasingly embraced New
Approach Methods (NAMs), which emphasize the reduction,
refinement, and replacement of animal testing.11−13 The
financial and ethical challenges have prompted the 2018
ICCVAM strategic roadmap and the U.S. Environmental
Protection Agency’s plan to phase out mammalian studies by
2035 while underscoring the urgent need for reliable
alternative methods.13

Among these alternatives, in silico toxicology has gained
significant attention as a computational approach that
complements and enhances traditional testing methods.14,15

This field encompasses a range of techniques, including
databases for chemical and toxicity data, molecular descriptor
generation, and predictive modeling, such as Quantitative
Structure−Activity Relationship (QSAR) models.16−18 These
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computational tools analyze and predict chemical toxicity
before substances are synthesized, offering a cost-effective and
efficient approach to hazard identification.19 Using in silico
methods, researchers and regulatory bodies can more
accurately predict toxicological outcomes, reduce the need
for animal testing, and ensure that chemical safety assessments
are ethical and reliable. Various research groups20−22 have
developed reliable QSAR models to predict the skin
sensitization potential of chemicals. Alves et al. utilized
molecule descriptors, Quantitative Neighborhoods of Atoms
(QNA), and “biological” descriptors.20 Their models demon-
strated a 71% correct classification rate (CCR) for human skin
sensitization prediction. Kang et al. developed machine
learning models to predict skin irritation and corrosion of
liquid chemicals. Their study calculated 34 physicochemical
descriptors from chemical structures, which were curated and
analyzed using 22 descriptors for model construction. The
XGBoost model demonstrated an accuracy of 0.73, which was
the highest compared to the other classifier models.23

A study by Lou et al. predicting chemical acute dermal
toxicity used a machine learning model with molecular
fingerprint, molecular descriptor, and molecular graph as
features.24 Their proposed model obtained an Area Under the
Curve (AUC) score of 0.63 and 0.764 for the external
validation data sets of rats and rabbits, respectively. The
RespiraTox study developed a QSAR method to predict
respiratory irritants, significantly contributing to the reduction
in animal testing. By comparing several machine learning
approaches, the study found that Gradient-Boosted Decision
Trees (GBTs) obtained the highest area under the curve
(AUC) of 0.71.25

Schieferdecker et al. proposed oral toxicity prediction based
on fingerprints and molecular descriptors with a consensus
classification model, including GBT, multilayer perceptron
(MLP), and graph attention network.26 They evaluated the
classification performance of the majority voting classifier,
stacking ensemble with logistic regression (LR), and MLP as a
meta classifier. Their majority voting classifier obtained the
highest performance with an AUC score of 0.72 compared to
the LR and MLP stacking classifiers, which provided 0.70 and
0.71 AUC scores, respectively.
Several studies developed QSAR modeling for predicting

hERG channel blocker-induced cardiac toxicity.27−32 The
DMFGAM model, a novel deep learning approach, integrates
multiple molecular fingerprints and graph features to predict
hERG channel blockers accurately.33 Utilizing a data set of
10,355 compounds, standardized using the research and
development kit (RDKit) and molecular validation and
standardization (MolVS), the study calculated molecular
fingerprints and represented each molecule as a graph. A
simplified molecular input line entry system (SMILES) graph
attention network (SGAT) processed these features using a
multihead attention mechanism and then fed the combined
features into a fully connected neural network for classification.
Performance evaluation revealed that DMFGAM provided an
accuracy of 0.82, an AUC of 0.89, a specificity of 0.78, and a
sensitivity of 0.85, outperforming classical methods and
highlighting its potential in early-stage drug discovery for
assessing cardiotoxicity risks associated with hERG channel
blocking.
The STopTox study established a comprehensive set of

QSAR models which was designed to predict toxicity for six
critical end points, including three topical end points (skin

sensitization, skin irritation, and eye irritation) and three
systemic end points (acute oral toxicity, acute inhalation
toxicity, and acute dermal toxicity).34 The study gathered and
refined the most extensive publicly accessible data sets,
building and validating the models following the Organization
for Economic Cooperation and Development (OECD) QSAR
guidelines with compounds excluded from the training data
sets. The proposed QSAR model utilizing Morgan circular
fingerprints, molecular access system keys (MACCS keys), and
modified calculation descriptors with the random forest
classifier exhibited high internal accuracy through cross-
validation and attained an external correct classification rate
between 70 and 77%. A study by Chushak et al. also developed
QSAR modeling with “six-pack” end points, similar to
STopTox. Their study reported accuracy with a range of
0.72−0.78.35
Despite their potential, QSAR models face challenges due to

their limited ability to consistently provide reliable assess-
ments, necessitating continuous refinement and validation.
While previous studies have developed QSAR models for
predicting chemical toxicity, they often faced limitations in
specificity, sensitivity, and generalization across diverse
chemical structures due to their reliance on limited feature
representations. These models frequently failed to capture the
full complexity of molecular interactions, resulting in less
reliable predictions. Our study addresses these issues by
employing a hybrid machine learning approach that integrates
various fingerprint and molecular descriptors with physico-
chemical properties, leveraging the strengths of multiple
machine learning models to enhance prediction accuracy and
robustness. Additionally, our study expands the scope by
classifying a broader range of end points compared to previous
models, ensuring that the models are validated and robust for
many end points.
We curated data sets from reputable sources, including

STopTox, RespiraTox, and DMFGAM,25,33,34 ensuring high-
quality input data. The STopTox database, for instance, is
sourced from REACH regulations and managed by the
European Chemicals Agency (ECHA) with OECD support.
Our methodology leverages cheminformatics tools to convert
molecular structures, represented by SMILES codes, into
detailed molecular representations. We calculate various
molecular descriptors, including Morgan circular fingerprints,
MACCS keys, modified calculations, and physicochemical
properties using RDKit and the Chemistry Development Kit
(CDK).
We employ a hybrid machine learning approach that

integrates the best-performing model for each descriptor
across three machine learning algorithms: Random Forest
(RF), eXtreme Gradient Boosting (XGBoost), and Support
Vector Machines (SVM). Each model undergoes optimization
through grid search with 5-fold cross-validation to identify the
optimal hyperparameters, ensuring robust predictive perform-
ance. By combining the strengths of these models, we establish
a consensus prediction method that selects the most accurate
predictions based on descriptor-specific performance. This
research provides a comprehensive framework for the in silico
prediction of acute systemic and topical toxicity, respiratory
irritation, and cardiotoxicity. Leveraging advanced cheminfor-
matics tools and integrating diverse molecular descriptors, this
study aims to enhance the accuracy and reliability of chemical
hazard assessments, ultimately supporting safer and more
efficient regulatory evaluations.
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■ RESULTS AND DISCUSSION
This study aimed to evaluate the performance of QSAR
classification models for multivariate chemical hazard end
points (Table 1) using different feature sets (Table 2):

fingerprint and molecular descriptors (Morgan, MACCS keys,
and Mordred), physicochemical properties derived from
RDKit and CDK tools, and a combination of the best
prediction result from each descriptor. The machine learning
models applied were Random Forest (RF), XGBoost, and
Support Vector Machine (SVM), each trained individually on
these descriptor sets. The best-performing model for each set
was identified based on various classification metrics, and a
final prediction was made using a consensus approach, which
involved an equal-weighted average of the prediction scores
from each model (Figure 1).
In addition, this study examines the comparative effective-

ness of individual machine learning models versus a consensus
model in predicting toxicity end points. By comparing models
such as RF, XGBoost, and SVM to a consensus model that
integrates predictions from these individual models, the study
aims to identify which approach delivers better predictive
accuracy. The analysis primarily uses the AUC scores, F1 score,
sensitivity, and specificity as evaluation metrics to assess model
performance across different toxicity scenarios.
Tables 3−5 summarize the performance of the QSAR

classification models based on fingerprint and molecular
descriptors (Table 3), physicochemical properties (Table 4),
and a consensus approach combining the best prediction
outcomes from each descriptor (Table 5). The performance
metrics include accuracy, AUC, sensitivity, specificity, F1 score,
positive predictive value (PPV), negative predictive value
(NPV), and CCR for different toxicity end points. The
performance of QSAR classification modeling for cardiac
toxicity shows only slight differences when using various
feature sets. Utilizing fingerprint and molecular descriptors
alone (Table 3) results in an accuracy of 0.82, an AUC of 0.90,
a sensitivity of 0.86, and a specificity of 0.76, demonstrating a
robust model with a good balance between the detection of
positive and negative cases. The positive predictive value
(PPV) is 0.82, the negative predictive value (NPV) is 0.81, the
F1 score is 0.84, and the correct classification rate (CCR) is
0.81. However, when using physicochemical properties alone
(Table 4), the model shows a slightly lower performance, with
an accuracy of 0.75, an AUC of 0.83, a sensitivity of 0.83, and a
lower specificity of 0.65. The F1 score, PPV, NPV, and CCR
for this model are 0.79, 0.75, 0.74, and 0.74, respectively.
Importantly, when combining the best prediction outcomes

from each descriptor with a consensus approach (Table 5), the

Table 1. Number of Compounds for Each End Point

end points number of compounds source

inhalation toxicity 335 nontoxic; 342 toxic STopTox
cardiac toxicity 4479 hERG blockers; 4596 non hERG

blockers
DMFGAM

dermal toxicity 315 nontoxic; 314 toxic STopTox
oral toxicity 3600 nontoxic; 4596 toxic STopTox
respiratory
irritation

1890 nonirritation; 1777 irritation RespiraTox

skin irritation 276 nonirritation; 275 irritation STopTox
eye irritation 1139 nonirritation; 1146 nonirritation STopTox
skin sensitization 514 non sensitizer; 479 sensitizer STopTox
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Figure 1. Proposed schematic of QSAR classification modeling based on descriptors with machine learning. (a) Whole schematic of QSAR
modeling with consensus approach. (b) Topology of random forest. (c) Topology of XGBoost. (d) Schematic of support vector machine.

Table 3. Performance Result of QSAR Classification Modeling Using Fingerprint and Molecular Descriptor

classification performance metric

end points accuracy AUC sensitivity specificity F1 score PPV NPV CCR

cardiac toxicity 0.82 0.90 0.86 0.76 0.84 0.82 0.81 0.81
inhalation toxicity 0.77 0.81 0.76 0.78 0.74 0.73 0.81 0.77
dermal toxicity 0.75 0.84 0.71 0.81 0.76 0.82 0.70 0.76
oral toxicity 0.78 0.86 0.84 0.71 0.81 0.78 0.78 0.78
skin irritation 0.86 0.89 0.92 0.81 0.85 0.79 0.93 0.86
skin sensitization 0.70 0.79 0.66 0.75 0.69 0.72 0.69 0.70
eye irritation 0.73 0.80 0.77 0.70 0.75 0.73 0.74 0.73
respiratory irritation 0.72 0.78 0.71 0.73 0.70 0.69 0.74 0.72
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model’s performance achieves an accuracy of 0.82, an AUC of
0.90, and a sensitivity of 0.89, with a balanced specificity of
0.75. The F1 score, PPV, NPV, and CCR for the combined
model are 0.85, 0.82, 0.83, and 0.82, respectively. This
indicates that the consensus prediction across all descriptors
provides better overall predictive performance, particularly by
improving sensitivity while maintaining strong accuracy, AUC,
and F1 score. These results suggest that integrating multiple
descriptor types enhances the model’s effectiveness in
predicting cardiac toxicity.
For inhalation toxicity, using fingerprint and molecular

descriptors (Table 3) achieves an accuracy and Correct
Classification Rate (CCR) of 0.77, with an AUC of 0.81.
The model demonstrates balanced sensitivity and specificity
values of 0.76 and 0.78, respectively, with an F1 score of 0.74.
The Positive Predictive Value (PPV) and Negative Predictive
Value (NPV) are 0.73 and 0.81, respectively, indicating a
relatively good performance. In contrast, using physicochem-
ical properties alone (Table 4) results in slightly lower
performance, with an accuracy and CCR of 0.73, an AUC of
0.82, and higher sensitivity at 0.78 but lower specificity at 0.69.
The F1 score is 0.71, with PPV and NPV values at 0.66 and
0.80, respectively. When conducting a consensus of prediction
result from each descriptor (Table 5), the model improves,
achieving an accuracy and CCR of 0.80, an AUC of 0.83, with
a notable increase in specificity to 0.86, while maintaining a
reasonable sensitivity of 0.73. The F1 score increases to 0.76,
with PPV and NPV values at 0.80, demonstrating that a
consensus approach offers a more reliable prediction for
inhalation toxicity.
Predicting dermal toxicity using fingerprint and molecular

descriptors (Table 3) results in an accuracy and Correct
Classification Rate (CCR) of 0.75 and an AUC of 0.84, with a
sensitivity of 0.71 and a specificity of 0.81, indicating a
reasonably balanced model. The F1 score is 0.76, and the

positive predictive value (PPV) and negative predictive value
(NPV) are 0.82 and 0.70, respectively. In contrast, using
physicochemical properties alone (Table 4) yields a lower
accuracy and CCR of 0.69 and an AUC of 0.79, with a lower
sensitivity of 0.65 but still a decent specificity of 0.74. The F1
score for this model is 0.70, with PPV and NPV values at 0.75
and 0.64, respectively. When conducting a consensus of
prediction result from each descriptor (Table 5), the accuracy
and CCR are enhanced to 0.78 while maintaining the same
AUC of 0.84, with an improved sensitivity of 0.75 and a similar
specificity of 0.81. The F1 score increases to 0.79, with PPV
and NPV values of 0.83 and 0.73, respectively. This suggests
that a consensus approach provides a better predictive
performance for dermal toxicity, particularly in terms of
sensitivity.
For oral toxicity, using fingerprints and molecular

descriptors alone (Table 3) achieves an accuracy and correct
classification rate (CCR) of 0.78 and an AUC of 0.86, with a
high sensitivity of 0.84 and a lower specificity of 0.71. The F1
score is 0.81, and the positive predictive value (PPV) and
negative predictive value (NPV) are both 0.78. In contrast,
using physicochemical properties alone (Table 4) results in a
lower accuracy and CCR of 0.72 and an AUC of 0.79, with a
balanced sensitivity of 0.73 and specificity of 0.69. The F1
score is 0.73, with PPV and NPV values at 0.71 and 0.72,
respectively. When combining both prediction results from
each descriptor with a consensus approach (Table 5), the
model’s performance improves, with accuracy and CCR
increasing to 0.79 and the AUC to 0.87. The model also
shows a high sensitivity of 0.86 and a similar specificity of 0.70.
The F1 score increases to 0.82, with PPV and NPV values of
0.78 and 0.80, respectively, suggesting that a consensus model
is more effective in predicting oral toxicity.
The prediction performance for skin irritation is notably

strong across all models. Using fingerprint and molecular

Table 4. Performance Result of QSAR Classification Modeling Using Physicochemical Properties

classification performance metric

end points accuracy AUC sensitivity specificity F1 score PPV NPV CCR

cardiac toxicity 0.75 0.83 0.83 0.65 0.79 0.75 0.74 0.74
inhalation toxicity 0.73 0.82 0.78 0.69 0.71 0.66 0.80 0.73
dermal toxicity 0.69 0.79 0.65 0.74 0.70 0.75 0.64 0.69
oral toxicity 0.72 0.79 0.73 0.69 0.73 0.71 0.72 0.71
skin irritation 0.81 0.88 0.83 0.79 0.79 0.75 0.86 0.81
skin sensitization 0.68 0.74 0.66 0.70 0.67 0.68 0.67 0.68
eye irritation 0.72 0.79 0.73 0.69 0.73 0.71 0.72 0.71
respiratory irritation 0.68 0.75 0.72 0.65 0.68 0.64 0.73 0.69

Table 5. Performance Results of the Proposed QSAR Classification Model, Achieved through a Consensus Approach That
Combines the Prediction Outcomes from the Best-Performing Machine Learning Model for Each Individual Descriptor
(Fingerprint Descriptors and Physicochemical Properties)

classification performance metric

end points accuracy AUC sensitivity specificity F1 score PPV NPV CCR

cardiac toxicity 0.82 0.90 0.89 0.75 0.85 0.82 0.83 0.82
inhalation toxicity 0.80 0.83 0.73 0.86 0.76 0.80 0.80 0.79
dermal toxicity 0.78 0.84 0.75 0.81 0.79 0.83 0.73 0.78
oral toxicity 0.79 0.87 0.86 0.70 0.82 0.78 0.80 0.78
skin irritation 0.86 0.90 0.90 0.83 0.84 0.80 0.91 0.86
skin sensitization 0.72 0.78 0.70 0.74 0.71 0.73 0.71 0.72
eye irritation 0.74 0.81 0.77 0.71 0.75 0.73 0.75 0.74
respiratory irritation 0.72 0.78 0.72 0.72 0.71 0.69 0.75 0.72
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descriptors alone (Table 3) provides an accuracy and correct
classification rate (CCR) of 0.86, with an AUC of 0.89, a high
sensitivity of 0.92, and a specificity of 0.81. The F1 score is
0.85, with a positive predictive value (PPV) of 0.79 and a

negative predictive value (NPV) of 0.93. In contrast, using
physicochemical properties alone (Table 4) yields a slightly
lower performance, with an accuracy and CCR of 0.81 and an
AUC of 0.88, alongside a balanced sensitivity of 0.83 and

Figure 2. Evaluation metrics, including area under the curve (AUC), F1 score, sensitivity, and specificity, for various toxicity end points using
multiple molecular descriptors and machine learning models. Each panel corresponds to a specific toxicity end point, showing the performance of
three models�Random Forest (RF), XGBoost (XGB), and Support Vector Machine (SVM). The “Consensus” bar represents an aggregated score,
derived by combining the best predictions from individual descriptors across models.
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specificity of 0.79. The F1 score for this model is 0.79, with
PPV and NPV at 0.75 and 0.86, respectively. When combining
both prediction results from each descriptor with a consensus
approach (Table 5), the model maintains an accuracy and
CCR of 0.86 but with a slightly higher AUC of 0.90, along with
a high sensitivity of 0.90 and an improved specificity of 0.83.
The F1 score is 0.84, with PPV and NPV values at 0.80 and
0.91, respectively. This indicates that a consensus approach
yields the most balanced and robust model for predicting skin
irritation.
For skin sensitization, using fingerprint and molecular

descriptors (Table 3) results in an accuracy and correct
classification rate (CCR) of 0.70, with an AUC of 0.79, a
sensitivity of 0.66, and a specificity of 0.75. The F1 score is
0.69, with a positive predictive value (PPV) and negative
predictive value (NPV) of 0.72 and 0.69, respectively. In
comparison, using physicochemical properties alone (Table 4)
shows a similar accuracy and CCR of 0.68 but a lower AUC of
0.74, with balanced sensitivity and specificity of 0.66 and 0.70,
respectively. The F1 score for this model is 0.67, with PPV and
NPV values of 0.68 and 0.67. The consensus prediction result
from each descriptor (Table 5) slightly improves the accuracy
and CCR to 0.72 and the AUC to 0.78, with a sensitivity of
0.70 and a specificity of 0.74. The F1 score increases to 0.71,
with PPV and NPV values at 0.73 and 0.71, suggesting that the
consensus approach provides a marginally better prediction for
skin sensitization.
The prediction of eye irritation using fingerprint and

molecular descriptors (Table 3) results in an accuracy and
correct classification rate (CCR) of 0.73 and an AUC of 0.80,
with a balanced sensitivity of 0.77 and a specificity of 0.70. The
F1 score is 0.75, and the positive predictive value (PPV) and
negative predictive value (NPV) are 0.73 and 0.74,
respectively. Using physicochemical properties alone (Table
4) yields a similar performance, with an accuracy and CCR of
0.72 and an AUC of 0.79, along with a balanced sensitivity of
0.73 and specificity of 0.69. The F1 score is 0.73, with PPV and
NPV at 0.71 and 0.72, respectively. The consensus prediction
result from each descriptor (Table 5) slightly improves
accuracy and CCR to 0.74 and AUC to 0.81, while maintaining
a similar sensitivity of 0.77 and specificity of 0.71. The F1 score
remains 0.75, with PPV and NPV at 0.73 and 0.75,
respectively, indicating a marginal benefit of the consensus
approach of all for predicting eye irritation.
For respiratory irritation, using fingerprint and molecular

descriptors (Table 3) gives an accuracy and correct
classification rate (CCR) of 0.72 and an AUC of 0.78, with
a balanced sensitivity of 0.71 and specificity of 0.73. The F1
score is 0.70, with a positive predictive value (PPV) of 0.69
and a negative predictive value (NPV) of 0.74. In contrast,
using physicochemical properties alone (Table 4) results in a
lower accuracy and CCR of 0.68 and an AUC of 0.75, with a
balanced sensitivity of 0.72 but a lower specificity of 0.65. The
F1 score for this model is 0.68, with PPV and NPV values of
0.64 and 0.73, respectively. The consensus of all descriptors
with the best machine learning model (Table 5) maintains the
same accuracy and CCR of 0.72 and an AUC of 0.78, with a
balanced sensitivity of 0.72 and specificity of 0.72. The F1
score remains 0.71, with PPV and NPV both at 0.69 and 0.75,
respectively. This suggests that while the consensus model
does not significantly improve performance, it maintains a
balanced and consistent prediction for respiratory irritation.

Figure 2 highlights the effectiveness of the consensus
approach in toxicity prediction, which enhances performance
compared to previous studies by combining the best
predictions from various descriptor-model pairs. This method
improves AUC, F1 score, sensitivity, and specificity, creating a
balanced, robust outcome that surpasses individual descriptors
or models alone. The consensus approach shows greater
stability and accuracy, particularly for end points where single
descriptors or models may yield inconsistent results, making it
a valuable method for reliable and generalizable toxicology
predictions.
The performance of evaluation metrics shows that Random

Forest (RF) and Extreme Gradient Boosting (XGB)
consistently demonstrate superior performance in specific
toxicity end points. These models excel due to their robust
algorithms that effectively manage complex, nonlinear relation-
ships within the data.36 This capability allows them to capture
detailed structural information, leading to more accurate
predictions in those end points. While competitive, support
vector machine (SVM) models generally show slightly lower
AUC values than RF and XGB. This may be attributed to
SVM’s reliance on kernel functions, which might not capture
all of the nuances of the data as effectively as the ensemble
methods.37 In contrast, the consensus model integrates
predictions from multiple models and performs more
consistently across a wide range of toxicity end points. This
indicates that the consensus approach effectively leverages the
strengths of individual models, resulting in more reliable and
robust predictions overall.
Additionally, we evaluate the performance of models using

individual descriptors and consensus predictions combining all
descriptors’ performance. We evaluate the model performance
using individual descriptors, such as fingerprints and molecular
descriptors, along with physicochemical properties and
compare these results with consensus predictions that integrate
both types of descriptors. The superior performance of
fingerprint descriptors over physicochemical properties can
be attributed to the detailed structural information that they
capture. Fingerprint descriptors are designed to represent
specific substructures and patterns within molecules, which are
often critical for biological activity and toxicity. This detailed
representation allows machine learning models to make more
accurate predictions based on the presence or absence of
specific chemical features. In contrast, while valuable,
physicochemical properties provide a more general overview
of molecular behavior. They include molecular weight, log P,
and hydrogen bond donors/acceptors, among other properties
which are essential but might not capture the nuanced
structural features that directly influence toxicity.38 Combining
the prediction score with consensus approach when utilizing
fingerprint descriptors (Morgan, MACCS keys, and Mordred)
with physicochemical properties derived from RDKit and CDK
tools provides a holistic view of the molecules, significantly
enhancing the predictive power of QSAR models for various
toxicity end points (as shown in Tables 3−5). This integrated
approach allows the model to utilize both detailed structural
information and general physicochemical behavior, leading to
more accurate and reliable predictions. For several end points,
such as inhalation toxicity, dermal toxicity, oral toxicity, and
skin irritation, combining the predictions from each descriptor
with the best machine learning model notably improves
accuracy, sensitivity, and specificity compared to using
fingerprint and molecular descriptors alone. This improvement
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suggests that integrating diverse data types captures a more
comprehensive representation of the chemical and biological
properties relevant to these toxicities, resulting in more robust
predictions.
However, for other end points, such as cardiac toxicity, skin

sensitization, eye irritation, and respiratory irritation, the
predictive performance is not significantly different between
using fingerprint and molecular descriptors alone and
consensus all descriptors. In these cases, the fingerprint and
molecular descriptors are already highly effective, and adding
physicochemical properties provides only marginal enhance-
ments. This indicates that while the combined approach
generally improves predictive accuracy, the extent of improve-
ment can vary depending on the specific toxicity end point
being modeled.
The consensus approach, which integrates the prediction

scores from multiple models using different descriptors,
demonstrated superior performance compared to individual
descriptors and machine learning models alone. By employing
an equal weight average for the prediction scores, the
consensus method effectively balanced the contributions of
different models and descriptor sets, mitigating the weaknesses
of any single model or descriptor set. This approach leveraged

the strengths of each model and descriptor set, resulting in
more robust and accurate predictions. Figure 2 shows that the
consensus models consistently outperformed the best individ-
ual models across various toxicity end points. This robustness
is crucial, indicating that the consensus approach can handle
variability and inconsistencies better than individual models.
Figure 3 presents the AUC, F1 score, sensitivity, and

specificity for various toxicity end points using a consensus
model that combines predictions from different machine
learning algorithms across various feature sets, including
fingerprint and molecular descriptors, physicochemical proper-
ties, and a combination of all descriptors. The consensus
model’s performance is compared against previous studies such
as STopTox, RespiraTox, and DMFGAM. The results show
that leveraging multiple feature sets through a consensus
approach consistently enhances predictive accuracy and
robustness, outperforming or comparable to previous studies.
This underscores the value of incorporating diverse types of
features in toxicity assessments rather than relying on a single
type of descriptor.
For instance, in the case of cardiac toxicity, our consensus

model obtained an area under the curve (AUC) of 0.90. In
terms of additional metrics, our consensus model demonstrates

Figure 3. Comparison of evaluation metrics�AUC, F1 score, sensitivity, and specificity�for various toxicity end points, showcasing the
performance of the proposed consensus model using multiple machine learning algorithms. The feature sets include fingerprint and molecular
descriptors, physicochemical properties, and a consensus of all descriptors. Results are also compared against previous studies (STopTox,
RespiraTox, and DMFGAM) to provide a comprehensive view of the predictive capabilities and the effectiveness of the consensus of all descriptors
across different toxicity end points.
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a sensitivity of 0.88, a specificity of 0.75, and an accuracy of
0.822. This shows that our model is highly sensitive, effectively
identifying true positives in cases of toxicity. While specificity is
slightly lower at 0.75 compared to DMFGAM model's 0.78,
our model maintains competitive specificity, balancing the
reduction in false positives with high sensitivity. The accuracy
of our model at 0.822 also slightly surpasses that of DMFGAM
model (0.817), emphasizing its reliable overall performance.
Although this is only a slight improvement over the previous

study’s DMFGAM model, which had an AUC of 0.895, it is
important to note that these models are based on
fundamentally different methodologies. The DMFGAM
model employs a sophisticated deep learning approach that
integrates multiple molecular fingerprints, and graph features
to predict hERG channel blockers, which are indicators of
cardiac toxicity, with high accuracy.33 Each molecule is
represented as a graph, and these graphs are analyzed using
the SMILES Graph Attention Network (SGAT), a complex
deep learning architecture that utilizes a multihead attention
mechanism designed to identify complex relationships within
the molecular structure. The combined features are fed into a
fully connected neural network, allowing for highly nuanced
predictions.
In contrast, our study employs a consensus model that

integrates several machine learning algorithms, including
Random Forest (RF), eXtreme Gradient Boosting (XGB),
and Support Vector Machines (SVM), using a set of molecular
descriptors. While these machine learning methods are
generally considered less complex than deep learning models
such as DMFGAM, our consensus approach leverages the
strengths of each algorithm. Combining the predictions from
multiple models, we achieve a more robust and reliable
outcome, as evidenced by the higher AUC for cardiac toxicity.
The advantage of our approach lies in its simplicity,
interpretability, and ability to provide stable predictions
without requiring extensive computational resources typically
associated with deep learning models.
Furthermore, our model consistently outperforms previous

studies across a range of toxicity end points by achieving a
well-balanced performance in sensitivity, specificity, AUC, and
F1 score. For end points such as inhalation toxicity, dermal
toxicity, and skin sensitization, the model’s higher specificity
compared to sensitivity makes it particularly effective at
correctly identifying nontoxic or nonsensitizing cases, reducing
the occurrence of false positives. This balance is crucial in
applications where accurately identifying nonhazardous sub-
stances is essential. The model’s strong AUC and F1 scores
across these end points highlight its reliability in achieving
both accuracy and stability, capturing toxicity complexities
more effectively than StopTox.
Conversely, for skin irritation, eye irritation, and oral

toxicity, the model demonstrates sensitivity higher than
specificity, excelling at detecting cases that could pose risks.
This high sensitivity ensures that true toxic or irritant cases are
not missed, which is a priority for safety evaluations. At the
same time, balanced specificity reduces the likelihood of
misclassifying safe substances as toxic, supported by strong F1
scores that indicate consistent and accurate detection of true
cases. The model’s elevated AUC scores across these end
points underscore its strong discriminative power, enhancing
prediction accuracy compared to StopTox’s approach.
For respiratory irritation, where balanced sensitivity and

specificity are crucial, our model performs consistently,

reflecting an ability to reliably distinguish between irritant
and nonirritant cases. This balance, along with robust AUC
and F1 scores, reinforces the model’s versatility and
adaptability, establishing it as a reliable tool in toxicological
assessments across diverse end points and a significant
improvement over RespiraTox.
In conclusion, the integration of fingerprint descriptors and

physicochemical properties, coupled with a consensus
approach, significantly enhances the performance of QSAR
classification models. This study provides a robust framework
for improving toxicity predictions, demonstrating that the
consensus method is superior to that of individual descriptors
and machine learning models alone. The higher overall
enhanced performance metrics validate the effectiveness of
our approach, offering valuable insights for future QSAR
modeling efforts.
While the results are promising, the study has several certain

constraints. First, the models were evaluated using a specific set
of descriptors and toxicity end points; expanding these to
include additional descriptors and a wider range of end points
could yield a more comprehensive understanding of model
performance. Second, the consensus approach used an equal
weighting of model predictions, which may not be optimal in
all contexts. Future research could explore dynamic weighting
strategies to further enhance the prediction accuracy.
In addition, incorporating explainable AI (XAI) techniques,

such as SHapley Additive exPlanations (SHAP), would allow
for the identification of significant molecular features,
Improving the clarity and understanding of the model’s
predictions. By pinpointing which descriptors contribute
most to each end point, XAI methods could help clarify the
relationships between molecular structure and toxicity, offering
a more transparent model framework. Finally, applying these
models to larger, more diverse data sets could help validate
their utility in real-world scenarios, providing a stronger
foundation for their adoption in QSAR modeling.

■ MATERIALS AND METHODS
Data Set Curation: Collection and Preparation. In this

study, we curated data sets from previous studies, including
STopTox, RespiraTox, and DMFGAM.34 The STopTox
database was mainly gathered from Registration, Evaluation,
Authorization, and Restriction of Chemicals (REACH).34

REACH is a regulation of the European Union established to
enhance the protection of human health and the environment
from the hazards associated with chemicals.39 Furthermore,
there is European Chemicals Agency (ECHA) as the
regulatory agency responsible for implementing REACH. It
manages the regulation’s technical, scientific, and adminis-
trative aspects, including the collection, evaluation, dissem-
ination, and restriction of chemical data.40 Moreover, the
Organization for Economic Cooperation and Development
(OECD) provides guidelines and frameworks to support the
implementation of REACH.41 These include internationally
harmonized test methods and assessment strategies to ensure
consistent and reliable data on the properties of the chemicals.
For collecting six-pack toxicity end points, including

inhalation toxicity, dermal toxicity, oral toxicity, skin irritation,
skin sensitization, eye irritation, the STopTox procedure
consisted of entailing meticulous data cleaning, standardiza-
tion, and unit harmonization across various data sets.25,33,34 To
transform the data into binary toxicity categories, we applied
the classification criteria outlined by the Globally Harmonized
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System of Classification and Labeling of Chemicals (GHS)
standards. Acute systemic end points falling under GHS classes
1−4 were labeled as “toxic”, whereas class 5 was labeled “not
classified”. Each end point followed specific GHS criteria: for
example, in skin irritation, classes 1−3 were identified as skin
irritants; in eye irritation, classes 1−2B as causing eye irritation,
and class 1 as a sensitizer for skin sensitization. This extensive
data curation process aligned both chemical and biological data
with standardized protocols, eliminating inconsistencies to
enhance data quality.25,33,34

The STopTox approach excluded the data that did not
adhere to Organization for Economic Cooperation and
Development (OECD) guidelines, lacking multiconcentration
testing, and could not be assigned to GHS categories.
Measurements that differed from standard protocols for the
six-pack end points were treated specifically: standardized
toxicity measurements such as LD50 (lethal dose, 50%) for
systemic end points, the effective concentration at the third
percentile (EC3) was applied for measuring skin sensitization,
considered mean score of erythema and edema along with
reversibility data for skin irritation and considered corneal and
iritis gradings with reversibility details for eye irritation, all in
alignment with the GHS procedure.34

After biological data were curated, chemical structures were
refined by removing mixtures, inorganic compounds, and
organometallic substances. Salts were neutralized, specific
chemotypes standardized, and duplicate records addressed as
follows: (a) for duplicates with the same binary outcome, only
one record was retained; (b) for duplicates with a majority
binary outcome and one exception, the majority outcome
record was kept; and (c) for duplicates with conflicting binary
outcomes, all records were excluded.25,33,34

Furthermore, respiratory irritation assessment used Respira-
Tox database which was collected from Fraunhofer RepDose,
ChemIDplus (https://chem.nlm.nih.gov/chemidplus/),
Chemicalbook (https://www.chemicalbook.com), European
Chemicals Agency Chemical Database (ECHA CHEM), and
Hazardous Substances Data Bank (HSDB) databases.25 Only
high-quality acute toxicological studies from ECHA CHEM,
specifically those conducted on rodents or dogs, were selected.
Lower-quality studies and those based on the weight of
evidence rather than direct experimental data were excluded.
Meanwhile, the DMFGAM for cardiotoxicity database was

collected from the CHEMBL v29 database (https://www.ebi.
ac.uk/chembl)33 and various literature-derived data.42−45 Each
compound’s chemical structure was standardized using Python
packages RDKit and Molecular Validation and Standardization
(MolVS), which consisted of extracting the largest fragment,
removing explicit hydrogens, adjusting ionization states, and
determining stereochemistry.33 The half-maximal inhibitory
concentration (IC50) was used as a measure of activity, with
compounds classified as hERG blockers if their IC50 was
below 10 μM and nonblockers if IC50 was 10 μM or higher.33

To enhance classification, IC50 values were converted to
pIC50, a negative logarithmic scale, as it provides a clearer
representation of the inhibitory activity. Compounds with
pIC50 values below 5 were classified as hERG blockers, while
those with pIC50 values of 5 or above were labeled as
nonblockers. Following filtering, the final number of
compounds retained for each end point with the source of
the data set is presented in Table 1.

Descriptor Calculation. Each compound was represented
by a SMILES code, which was converted into a molecular

structure for further processing with cheminformatics tools.
From these structures, a diverse set of molecular descriptors
and physicochemical properties were computed, enhancing the
model’s capability to generalize across multiple toxicity end
points by capturing a broad spectrum of molecular features.
Instead of tailoring specific descriptors to individual end point,
this approach leverages a broad spectrum of molecular features,
improving flexibility and predictive accuracy across diverse
toxicological profiles. The fingerprint and molecular descrip-
tors with physicochemical properties, as detailed in Table 2
were independently evaluated, utilizing the highest-performing
model for each descriptor contributing to the consensus
prediction.
The Morgan circular fingerprint is a form of molecular

fingerprint that was computed to capture the circular
neighborhoods of atoms within each molecule. This method
generates a binary- or integer-based fingerprint by analyzing
substructures centered around each atom within a defined
radius. By encoding the presence or absence of specific atom-
centered substructures, Morgan fingerprints are highly effective
in identifying essential molecular patterns relevant to chemical
behavior. This makes them particularly useful for tasks such as
similarity searching, clustering, and structure−activity relation-
ship (SAR) studies, where understanding substructural motifs
is crucial for predicting toxicity.
We also calculated the Molecular ACCess System

(MACCS) keys, which provide a binary representation of the
presence or absence of 166 predefined structural features
commonly found in chemical compounds. Each key corre-
sponds to a specific molecular substructure with its presence or
absence encoded as a binary value (1 or 0). MACCS keys
simplify the identification and comparison of structural motifs
across molecules, offering a streamlined method for compound
screening, classification, and database searching. By providing
structural alerts linked to specific toxicity risks, MACCS keys
allow the model to detect potentially hazardous compounds
based on established structural patterns.
In addition, Mordred descriptors were calculated to generate

an extensive set of chemical descriptors that encompass a wide
range of molecular properties, including topological, geometric,
electronic, and hybrid characteristics. These descriptors offer a
detailed and varied representation of the molecular structure,
capturing intricate details essential for in-depth molecular
analysis, QSAR modeling, and various machine learning
applications in cheminformatics. The inclusion of Mordred
descriptors provides the model with a nuanced view of the
molecule’s structural and electronic features, enhancing a more
thorough analysis of molecular interactions that may influence
toxicity.
Furthermore, physicochemical properties were computed

using RDKit and Chemistry Development Kit (CDK), both
open-source cheminformatics tools. RDKit provided a range of
properties, such as the count of aromatic atoms, log P
(partition coefficient), and the number of hydrogen bond
donors and acceptors, which are critical for predicting a
compound’s behavior in biological systems. CDK comple-
mented RDKit by calculating additional properties, including
atomic partial charges, labute accessible surface area, and the
topological polar surface area. These physicochemical proper-
ties contribute insights into the compound’s chemical
behavior, solubility, and bioavailability, which are essential
for assessing interactions within biological environments.
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By combining all of these descriptor types across multiple
end points, the model benefits from a comprehensive
molecular representation. This integrative approach allows
the model to capture both detailed structural attributes and
general chemical behaviors, improving flexibility and predictive
accuracy across various toxicity end points. This broad-
spectrum use of descriptors ultimately supports a more robust
prediction of toxicological profiles, making the model well
suited to evaluate complex chemical and biological relation-
ships across multiple end points.

Data Set Splitting. The data set was subsequently divided
into 80% of the data set as a training set and 20% as a test set.
The training set was employed to build and optimize our
machine learning models, and the test set was provided to
evaluate the performance of these models. This splitting
ensures that the models are assessed on data that they have not
encountered during training, providing a more accurate
measure of their predictive capabilities.

Machine Learning Model. This study employs descrip-
tors as input to the hybrid machine learning models to predict
the conditions of chemical compounds, utilizing three distinct
machine learning models: Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and Support Vector Machines
(SVM) are presented in Figure 1a. Each model undergoes
optimization through grid search using 5-fold cross-validation
approach to determine the best hyperparameters, ensuring that
the models are fine-tuned for optimal performance and
mitigating the risk of overfitting by accounting for variability
within the training data. Subsequently, the models are fitted on
the training data set, which includes specific descriptors and
physicochemical properties critical to the prediction task.
Random Forest (RF) as shown in Figure 1b is a learning

technique that builds several decision trees throughout the
training process and merges their results to obtain a more
accurate and stable prediction.46,47 Key hyperparameters for
RF include the number of trees in the forest (n_estimators) set
to 300 as the best number of trees in the forest. Furthermore,
the optimal number of features is using all of the features as
input to the RF. Optimizing these hyperparameters ensures
that the RF model can capture the complexity of the data.
eXtreme Gradient Boosting (XGBoost) as illustrated in

Figure 1c is a powerful gradient boosting technique that
enhances model accuracy by sequentially building models to
correct the errors of previous models.47,48 Important hyper-
parameters for XGBoost include (the learning rate = 0.1),
which influences the contribution of each tree to the model;
the maximum tree depth (set to 5), which defines the model’s
complexity; and the number of estimators (n_estimators =
200), specifying the boosting rounds to enhance prediction
accuracy and generalization.
Support Vector Machine (SVM) as presented in Figure 1d is

a robust classification method that identifies the optimal
hyperplane that most effectively separates the data into
classes.49,50 The primary hyperparameters for SVM include
the penalty parameter (C = 10), which balances the trade-off
between minimizing training error and reducing testing error;
the kernel type (e.g., linear, polynomial, radial basis function),
which specifies the transformation applied to project the data
into a higher-dimensional space; radial basis function kernel
was selected to captured nonlinear patterns in the data, and the
kernel coefficient (γ) was set to “scale” which determines the
influence of a single training example. Optimizing these

hyperparameters ensures that the SVM model can effectively
capture the underlying patterns in the data.
Once the best hyperparameters are selected, each model is

fitted using the entire training data, ensuring comprehensive
learning from the data’s relevant features. This training process
incorporates descriptors, including Morgan circular finger-
prints, MACCS keys fingerprints, modified calculations, and
physicochemical properties derived from RDKit and CDK.
The trained models, tailored to these specific descriptors, are
then evaluated on a separate test data set to provide an
unbiased performance estimate. This evaluation step is crucial
as it assesses the models’ ability to generalize to new, unseen
data, thereby validating their predictive accuracy and robust-
ness.

Consensus and Model Evaluation. Incorporating a
consensus approach, where prediction scores from each
descriptor are combined using a weighted average of the best
machine learning models, enhances the system’s predictive
performance and robustness.51 By ensuring that each model’s
contribution is unbiased, this method leverages the strengths of
all models and descriptors, leading to a more accurate and
reliable final prediction than relying on any single model.
Mathematically, if PMorgan, PMACCSKey, PModred, and

Pphysicochemical properties represent the predictions from the best
models for Morgan circular fingerprints, MACCS keys
fingerprints, Modred calculation, and physicochemical proper-
ties, respectively, the consensus prediction Pconsensus is
calculated using eq 1.

= + +

+

P P P P

P

1
4

(

)

consensus Morgan MACCSKey Modred

physicochemical properties (1)

Evaluating the consensus model involves several key
performance metrics to ensure a comprehensive assessment
of its predictive capability, including accuracy, sensitivity,
specificity, PPV, NPV, and CCR, which are calculated using eq
2�eq 7 and AUC score.34 In AUC, the curve represents the
Receiver Operating Characteristic (ROC) curve, which
displays the true positive rate (sensitivity) versus the false
positive rate (1 − specificity) across different threshold levels.

= +
+ + +
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TP TN

TP TN FP FN (2)

=
+

sensitivity
TP

TP FN (3)

=
+

specificity
TN

TN FP (4)

=
+

positive predictive value (PPV)
TP

TP FP (5)

=
+

negative predictive value (NPV)
TN

TN FN (6)

= +
correct classification rate (CCR)

sensitivity specificity
2

(7)

Software and Package Information. The QSAR
modeling framework was developed using Python, with a
range of libraries and tools to ensure a comprehensive
descriptor calculation and machine learning implementation.
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Chemical descriptors were generated using RDKit (version
2023.9.5) and CDK (version 0.1.0 released on Jan 16th 2024),
providing a robust set of molecular features for model input.
The machine learning models were implemented using
TensorFlow (version 2.7.0), enabling the efficient training
and tuning of complex algorithms. In addition, essential
Python libraries such as scikit-learn (version 1.3.0) for model
evaluation, NumPy (version 2.7.0) for numerical operations,
and Pandas (version 2.2.1) for data handling were used
throughout the modeling process. These specific package
versions ensure reproducibility and allow others to replicate
the computational environment used in this study.
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