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Quantum entanglement 
maintained by virtual excitations 
in an u​ltr​ast​ron​gly​‑co​upl​ed‑​
oscillator system
Jian‑Yong Zhou1,2,3, Yue‑Hui Zhou1,2,3, Xian‑Li Yin1,2,3, Jin‑Feng Huang1,2,3* & 
Jie‑Qiao Liao1,2,3*

We study the effect of quantum entanglement maintained by virtual excitations in an ultrastrongly-
coupled harmonic-oscillator system. Here, the quantum entanglement is caused by the 
counterrotating interaction terms and hence it is maintained by the virtual excitations. We obtain the 
analytical expression for the ground state of the system and analyze the relationship between the 
average excitation numbers and the ground-state entanglement. We also study the entanglement 
dynamics between the two oscillators in both the closed- and open-system cases. In the latter case, 
the quantum master equation is microscopically derived in the normal-mode representation of the 
coupled-oscillator system. This work will open a route to the study of quantum information processing 
and quantum physics based on virtual excitations.

The ultrastrong coupling (USC) physics1,2 has recently attracted much attention from the communities of quan-
tum physics, quantum optics, and condensed matter physics. Great advances have been made in both theory3–15 
and experiments in various physical platforms, including semiconductor cavity quantum electrodynamical 
(QED) systems16–18, superconducting circuit-QED systems19–24, coupled photon-2D-electron-gas25–27, light-
molecule28, 29, and photon-magnon systems30. In the USC regime1, 2, the coupling strength is comparable to 
the transition frequencies in the system, and then the rotating-wave approximation (RWA) is invalid, namely 
the counterrotating (CR) terms should be kept in the interactions. It has been demonstrated that the CR terms 
could produce some unpredictable physical phenomena3 and have wide applications in quantum information 
processing31, 32. In particular, the development of the ultrastrong coupling field promotes various studies in 
quantum optics topics beyond the RWA such as the quantum Rabi model33–39.

One of the interesting effects associated with the CR terms in the USC regime is the generation of virtual 
excitations. In the presence of the CR terms, the ground states of some typical quantum systems possess virtual 
excitations. For example, in the quantum Rabi model, it has been shown that virtual photons exist in the ground 
state11. These virtual photons cannot be detected directly even if this absorber is placed inside the cavity, except 
with very small probability at short times set by the time-energy uncertainty40. On the basis of these properties, 
the ground-state photons in the USC system are considered virtual photons2. However, even though these virtual 
photons cannot be detected directly, there are still ways to probe them. One proposal is to measure the change 
that they produce in the Lamb shift of an ancillary probe qubit coupled to the cavity41. Another proposal is to 
detect the radiation pressure that they give rise to if the cavity is an optomechanical system42. These proposals rely 
on the rapid modulation of either g (light–matter coupling strength) or the atomic frequency. Then the virtual 
photons can be converted into real ones and extracted from the system3, 4, 9, 43–48.

In this paper, we propose to study another quantum effect, quantum entanglement, associated with the virtual 
excitations. Here the quantum entanglement is created by the CR terms and hence it is maintained by the virtual 
excitations. We note that the relationship between quantum entanglement and the CR terms has been previously 
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considered in the quantum Rabi model8. In addition, the role of the CR terms in the creation of entanglement 
between two atoms has been investigated in Ref.49. We consider an ultrastrongly-coupled two-harmonic-oscillator 
system. We study the ground state entanglement of the two oscillators and analyze the average excitation numbers 
in the system. We also study the entanglement dynamics of the system when it is initially in the zero-excitation 
state and hence all the excitations are created by the CR terms. The influence of the environment dissipations 
on the system is analyzed based on a microscopically derived quantum master equation in the normal-mode 
representation.

The rest of this paper is organized as follows. Firstly, we present the physical model of two coupled harmonic 
oscillators and the Hamiltonian, we also analyze the property of the parity chain in this system. Secondly, we 
obtain the exact analytical eigensystem of the coupled two-oscillator system. Thirdly, the average virtual exci-
tation numbers are calculated analytically and the quantum entanglement of the ground state is analyzed by 
calculating the logarithmic negativity. Fourthly, we study the dynamics of the average virtual excitation numbers 
and quantum entanglement between the two oscillators in both the closed- and open-system cases. Finally, we 
present a brief conclusion.

Results
Model and hamiltonian.  We consider an ultrastrong coupling system, in which two harmonic oscillators 
are ultrastrongly coupled to each other through the so-called “position–position” type interaction (Fig. 1). This 
system is described by the Hamiltonian

where x1 ( x2 ) and p1 ( p2 ) are, respectively, the coordinate and momentum operators of the first (second) oscilla-
tor with the resonance frequency ω1 ( ω2 ) and mass µ , the parameter η is the coupling strength between the two 
oscillators. By expanding the interaction term, Hamiltonian (1) can be expressed as

where we introduce the renormalized frequencies and coupling strength as

By introducing the following creation and annihilation operators

Hamiltonian (2) becomes

with C = (�ωa + �ωb)/2 being a constant term. Here a† (a) and b† (b) are, respectively, the creation (annihila-
tion) operators of the two oscillators with the corresponding resonance frequencies ωa and ωb . In Eq. (5), the 
first two terms and the constant term represent the free Hamiltonian of the two oscillators. The parameter 
g = −ξ/(2µ

√
ωaωb) denotes the coupling strength between the two oscillators. We note that this interaction 

includes both the rotating-wave and CR terms. In general, in the case of weak coupling and near resonance, the 
rotating-wave approximation can be made by discarding the CR terms. In this paper, we consider the ultrastrong-
coupling case in which the CR terms cannot be discarded. In the presence of the CR terms, the ground state of 
the system will include excitations and hence quantum entanglement will exist in the ground state. Note that an 
ultrastrongly-coupled two-mode system has recently been realized in superconducting circuits50. 
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Figure 1.   Schematic diagram of the coupled two-harmonic-oscillator system. Two harmonic oscillators with 
resonance frequencies ωa and ωb are coupled to each other via a “position–position” type interaction with the 
coupling strength g. The parameters γa and γb are the decay rates associated with the heat baths in contacted 
with the oscillators a and b, respectively.
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In this two-oscillator system, we introduce the parity operator as P = (−1)a
†a+b†b , which has the standard 

properties of a parity operator, such as P2 = I , P†P = I , and P† = P7, 51. The Hamiltonian H in Eq. (5) remains 
invariant under the transformation P†HP = H , based on the relations P†aP = −a , P†a†P = −a† , P†bP = −b , 
and P†b†P = −b† . The Hilbert space of the system can be divided into two subspaces with different parities: odd 
and even. The basis states of the odd- and even-parity subspaces are, respectively, given by

and

The eigenvalues of the parity operator P corresponding to the odd and even parity states are −1 and 1, respectively.

Eigensystem of the coupled two‑oscillator system.  To study the quantum entanglement of the 
eigenstates, we need to diagonalize the Hamiltonian H in Eq. (2). To this end, we introduce the transformation 
operator52

where the mixing angle θ is defined by

In terms of the transformation, the Hamiltonian in Eq. (2) can be diagonalized as

where the resonance frequencies are defined by

with ξ = −2µg
√
ωaωb . By introducing the annihilation and creation operators

Hamiltonian (10) can be expressed as

The relations between the operators A ( A† ), B ( B† ), a ( a† ), and b ( b† ) can be obtained as

Here the concrete forms of coefficients fi ( i = 1, 2, . . . , 7, 8 ) have been given by 

Based on Eq. (13), we know the eigenstates of the system in the representation associated with A†A and B†B as

where the eigenvalues are given by

It is obvious that the ground state of the two-oscillator system is |0�A|0�B . To study the virtual excitations in the 
system, we need to know the eigenstates which are expressed in the representation associated with a†a and b†b . 
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It implies that we need to diagonalize the Hamiltonian H̃ in the representation of a and b. To this end, we express 
Hamiltonian (10) with the bosonic creation (annihilation) operators a† (a) and b† (b) as

where we introduce the coupling strengths

To diagonalize Hamiltonian (18), we introduce the squeezing operators

where the two real squeezing parameters are defined by

The transformed Hamiltonian can be written as

where the unitary operator U can be expressed with the operators a and b as

The eigenstates of the Hamiltonian H ′ can be obtained as

where the eigenvalues are defined in Eq. (17). The eigensystem of the Hamiltonian H can be obtained as

As a result, the ground state of the system can be expressed as

In general, it is hard to write out the ground state in the number state representation. However, we can obtain a 
number-state expansion of the ground state in the degenerate two-oscillator case53, i.e., ωa = ωb = ωb . In this 
case, we have U = exp[−(π/4)(a†b− ab†)] and the ground state becomes

By expanding the squeezing operators, we then have

In terms of the relations 
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It can be seen that the superposition components in the ground state are even parity states. This property can 
be confirmed because the transform U conserves the excitation number and the squeezing operators change the 
excitation number two by two, without changing the parity.

Ground‑state entanglement and quadrature squeezing.  We study the ground-state entanglement 
in this system by calculating the logarithmic negativity. For the two-oscillator system, if the coupling is suf-
ficiently weak, i.e., g ≪ {ωa,ωb} , the interaction Hamiltonian between the two oscillators can be reduced by 
the RWA as HI ≈ g(a†b+ b†a) , which conserves the number of excitations. In this case, the ground state of the 
system is a trivial direct product of two vacuum states |0�a|0�b , which does not contain excitations. In the pres-
ence of the CR terms, the |0�a|0�b is not an eigenstate of the system and the ground state will possess excitations. 
Below, we use numerical method to obtain the ground state of Hamiltonian (5) and calculate the ground state 
entanglement between the two oscillators. In the presence of the CR terms, the ground state of the two-oscillator 
system can be expressed as

where these superposition coefficients are given by Cm,n = a�m| b�n|G� , which should be solved numerically. 
The �G|a†a|G� �= 0 and �G|b†b|G� �= 0 reveal that the ground state of the system contains excitations. These 
excitations in the ground state are called virtual excitations because these excitations cannot be extracted from 
the system.

The effect of the virtual excitations can be seen from the probability amplitudes in the ground state. The 
distribution of these probability amplitudes can also exhibit the parity of the ground state. As the ground state 
is an even parity state, and hence these probability amplitudes associated with the odd parity basis states will 
disappear. In Fig. 2, we show the absolute values of these probability amplitudes |Cm,n| . Here we can see that the 
values of |Cm,n| decrease with the increase of m and n and that there is a symmetric relation |Cm,n| = |Cn,m| . In 
addition, the values of these odd-parity probability amplitudes Cm,n with m+ n being an odd number are zero, 
which is a consequence of the fact that the ground state is an even-parity state.

We also calculate the average excitation numbers 〈a†a〉 and 〈b†b〉 in the ground state |G� as

where we have used the formula, 

In Fig. 3a, we show the average excitation numbers 〈a†a〉 and 〈b†b〉 in the ground state |G� as functions of the 
scaled coupling strength g/ωr in the degenerate oscillator case ωa = ωb = ωr . These results show that the average 
excitation numbers of the two modes are identical (two curves overlap each other). This is because the corotating 
terms conserve the excitations and the CR terms create simultaneously the excitations in the two modes. The 
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Figure 2.   The absolute values |Cm,n| of the probability amplitudes for the ground state G in the degenerate two-
oscillator case when the coupling strength takes (a) g/ωr = 0.2 and (b) g/ωr = 0.5.
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average excitation numbers increase with the coupling strength since a larger coupling strength corresponds to 
a faster excitation creation. 

The degree of entanglement between the two oscillators a and b in the ground state of the system can be 
obtained by calculating the logarithmic negativity. Combining with Eq. (31), the density matrix of the ground 
state can be written as

The degree of entanglement of the ground state can be quantized by calculating the logarithmic negativity54, 55. 
For a bipartite system described by the density matrix ρ , the logarithmic negativity can be defined by

where Tb denotes the partial transpose of the density matrix ρ of the system with respect to the oscillator b, and 
the trace norm ‖ρTb‖1 is defined by

Using Eqs. (34), (35), and (36), the logarithmic negativity of ground state of the two coupled oscillators can be 
obtained. In Fig. 3b, we show the logarithmic negativity N as a function of the coupling parameter g/ωr . The 
curve shows that the degree of entanglement between the two oscillators in the ground state monotonically 
increases over the entire range of g. This is because the CR terms in Hamiltonian (5) cause the virtual excitations 
in the ground state of the system and maintain the quantum entanglement between the two oscillators. If the CR 
terms are discarded, then the ground state of the system becomes a separate state |0�a|0�b.

We also study the quadrature squeezing in the ground state by calculating the fluctuations of the rotated 
quadrature operators. We introduce the rotated quadrature operators for the two modes as

The commutation relation of the above two rotated quadrature operators is

According to the uncertainty relation, we have

Then the quadrature squeezing appears along the angle θo if the variances of the rotated quadrature operators 
satisfy the relation56

For the ground state |G� given in Eq. (27), the variances of the rotated quadrature operators can be obtained as

When we exchange the subscripts a and b in Eq. (41), the expression does not change for a given rotating angle. 
This means that, in the resonance case ωa = ωb = ωr , the squeezing is the same for the two bosonic modes in 
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Figure 3.   (a) The average excitation numbers 〈a†a〉 , 〈b†b〉 and (b) the logarithmic negativity in the ground state 
|G� of the degenerate two-oscillator system as functions of the ratio g/ωr.
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the ground state. This point can also be seen from Hamiltonian (5), which is symmetric under the exchange of 
the subscripts and operators for the two modes in the resonance case. 

In Fig. 4a, we show the variance �X2
a (θa) as a function of the rotating angle θa in the resonance case 

ωa = ωb = ωr . Here we can see that the variance �X2
a (θa) is periodic function of θa and that the minimum of 

�X2
a (θa) is obtained at θa = π/2 and 3π/2 . Note that in the present case (sinh ra cosh ra + sinh rb cosh rb) < 0 . We 

also show the variance �X2
a (π/2) as a function of the coupling strength g/ωr in the resonance case ωa = ωb = ωr , 

as shown in Fig. 4b. We observe that the squeezing increases with the scaled coupling strength g/ωr . This is 
because the quadrature squeezing is caused by the CR interaction terms.

Dynamics of quantum entanglement.  The phenomenon of quantum entanglement accompanied with 
virtual excitations can also be seen by analyzing the entanglement dynamics of the system. We consider the case 
in which the system is initially in the zero-excitation state |0�a|0�b . In the closed-system case, a general state of 
the system can be written as

By substituting Eqs. (5) and (42) into the Schrödinger equation, the equations of motion for these probability 
amplitudes Am,n(t) are obtained as

For the initial state |0�a|0�b , the initial condition of these probability amplitudes reads Am,n(0) = δm,0δn,0 . By 
numerically solving Eq. (43) under this initial condition, the evolution of these probability amplitudes can be 
obtained. Using Eqs. (35), (36), and (42), we can calculate numerically the average excitation numbers 〈a†a〉 and 
〈b†b〉 and the logarithmic negativity of the state |ψ(t)�.

In Fig. 5a, we show the time evolution of the average excitation numbers 〈a†a〉 and 〈b†b〉 in modes a and 
b. Here we can see that, similar to the ground state case, the average excitation numbers in the two modes are 
identical (the two curves overlap each other). In addition, the average excitation numbers experience a periodic 
oscillation. In Fig. 5b, we show the time dependence of the logarithmic negativity N(t) of the state |ψ(t)� . The 
curve shows that logarithmic negativity between the two oscillators also experiences a periodic oscillation. Here 
we choose the initial state of the system as |0�a|0�b , the existence of the CR terms still causes the appearance of 
virtual excitations, which leads to entanglement between the two oscillators. This result is different from that in 
the RWA case in which the CR terms are discarded in the two oscillators under the same initial state. When we 
discard the CR terms and choose the initial state as |0�a|0�b , which is the eigenstate of the corotating interaction 
term g(a†b+ b†a) , the system will stay this state. Then there are no virtual excitations in the system and no 
quantum entanglement between the two oscillators.

We also study the influence of the environment dissipations on the dynamics of the system. As we consider the 
ultrastrong-coupling regime of the coupled system, we derive the quantum master equation in the normal-mode 
representation of these two coupled oscillators. We employ the standard Born–Markov approximation under 
the condition of weak system-bath couplings and short bath correlation times to derive the quantum master 
equation. The secular approximation is made by discarding these high-frequency oscillating terms including 
exp(±iωAt) , exp(±iωBt) , and exp[±i(ωA ± ωB)t] . The quantum master equation in the normal-mode repre-
sentation of Hamiltonian (5) can be written as

(42)|ψ(t)� =
∞
∑

m,n=0

Am,n(t)|m�a|n�b.

(43)
Ȧm,n(t) = −i(ωam+ ωbn)Am,n(t)− ig

[

√

(m+ 1)(n+ 1)Am+1,n+1(t)+
√
mnAm−1,n−1(t)

+
√

m(n+ 1)Am−1,n+1(t)+
√

(m+ 1)nAm+1,n−1(t)
]

.

(a) (b)

Figure 4.   (a) The variance �X2
a (θa) of the rotated quadrature operators as a function of the angle θa in the 

resonant case ωa = ωb = ωr when g/ωr = 0.01 , 0.2, and 0.4. (b) The variance �X2
a (π/2) as a function of the 

coupling strength g/ωr in the resonant case ωa = ωb = ωr.
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with the effective decay rates

In Eq. (44), the dissipator

is the standard Lindblad superoperator that describes the dampings of the oscillators. The parameters γa and γb 
are the decay rates relating to the heat bath in contact with the oscillators a and b, respectively. Here we consider 
the zero temperature environments such that the thermal excitation effect can be excluded.

In our simulations, we need to calculate the evolution of the system in the bare-mode representation, i.e., 
{a, b} . The relationship between the density matrix ρ̃s(t) in the normal-mode representation ( {A,A†,B,B†} ) and 
the density matrix ρs(t) in the bare-mode representation ( {a, a†, b, b†} ) is determined by the transformation 
ρ̃s(t) = Uρs(t)U

† . Combining with Eq. (10), the quantum master equation in the bare-mode representation 
can be obtained as

The transformation relations between the operators {A,A†,B,B†} and {a, a†, b, b†} are

where the forms of these coefficients Fi ( i = 1, 2, . . . , 7, 8 ) are given by 

 By substituting Eqs. (46), (48), and (49) into Eq. (47), we obtain

where we introduce the superoperator as

The coefficients introduced in Eq. (50) are defined by 

(44)
d

dt
ρ̃s(t) = i[ρ̃s(t), H̃] + α1D[A]ρ̃s(t)+ α2D[B]ρ̃s(t),

(45)α1 = (f1 + f2)
2γa + (f5 + f6)

2γb, α2 = (f3 + f4)
2γa + (f7 + f8)

2γb.

(46)D[o]ρ̃s(t) = oρ̃s(t)o
† − [o†oρ̃s(t)+ ρ̃s(t)o

†o]/2

(47)ρ̇s(t) = i[ρs(t),H] + α1U
†
D[A]ρ̃s(t)U + α2U

†
D[B]ρ̃s(t)U .

(48)U†AU = F1a+ F2a
† − F3b− F4b

†, U†BU = F5a+ F6a
† + F7b+ F8b

†,

(49a)F1,2 =
1

2

cos (θ)
√
ωaωA

(ωA ± ωa), F3,4 =
1

2

sin (θ)
√
ωbωA

(ωA ± ωb),

(49b)F5,6 =
1

2

sin (θ)
√
ωaωB

(ωB ± ωa), F7,8 =
1

2

cos (θ)
√
ωbωB

(ωB ± ωb).

(50)

α1U
†
D[A]ρ̃s(t)U + α2U

†
D[B]ρ̃s(t)U

= β1D[a]ρs(t)+ β2D[b]ρs(t)+ β3D[a†]ρs(t)+ β4D[b†]ρs(t)
+ β5

(

S[a, a]ρs(t)+ S[a†, a†]ρs(t)
)

+ β6
(

S[b, b]ρs(t)+ S[b†, b†]ρs(t)
)

+ β7
(

S[a, b†]ρs(t)+ S[b, a†]ρs(t)
)

+ β8
(

S[a, b]ρs(t)+ S[b†, a†]ρs(t)
)

+ β9
(

S[a†, b†]ρs(t)+ S[b, a]ρs(t)
)

+ β10
(

S[a†, b]ρs(t)+ S[b†, a]ρs(t)
)

,

(51)S[o, o′]ρs(t) = oρs(t)o
′ − [o′oρs(t)+ ρs(t)o

′o]/2.

(52a)β1 =α1F
2
1 + α2F

2
5 , β2 = α1F

2
2 + α2F

2
6 ,

(a) (b)

Figure 5.   Dynamics of (a) the average excitation numbers 〈a†a(t)〉 , 〈b†b(t)〉 and (b) the logarithmic negativity 
when the degenerate two-oscillator system is initially in the state |0�a|0�b . The used parameter is g/ωr = 0.2.
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 Note that the cross terms between the two modes a and b in Eq. (50) are induced by the interaction between 
the two oscillators.

For below calculations, we express the density matrix of the two-oscillator system in the bare-mode repre-
sentation as

with the density matrix elements ρm,n,j,k(t) = a�m|b�n|ρs(t)|j�a|k�b . For an initial state |0�a|0�b , the nonzero 
density matrix element is ρ0,0,0,0(0) = 1 . By numerically solving Eq. (47) under the initial condition, the time 
evolution of the density matrix ρs(t) can be obtained.

Below we study the dynamics of the average excitation numbers and quantum entanglement in this system. 
Based on Eq. (47), the expressions of the average excitation numbers 〈a†a(t)〉 and 〈b†b(t)〉 can be expanded as

Therefore, the average excitation numbers 〈a†a(t)〉 and 〈b†b(t)〉 can be obtained by solving the equations of 
motion for these density matrix elements in the number-state representation.

In Fig. 6a, the dynamics of the average excitation numbers 〈a†a(t)〉 and 〈b†b(t)〉 is shown in the open-system 
case with different time t. We observe that the two excitation numbers 〈a†a(t)〉 and 〈b†b(t)〉 overlap each other 
and initially experience a large oscillation. With the increase of time t, the oscillation amplitudes of the average 
excitation numbers decrease gradually. In the long-time limit t ≫ 1/γa,b , the average excitation numbers will 
reach steady values due to the dissipations.

(52b)β3 =α1F
2
3 + α2F

2
7 , β4 = α1F

2
4 + α2F

2
8 ,

(52c)β5 =α1F1F2 + α2F5F6, β6 = α1F3F4 + α2F7F8,

(52d)β7 =α2F5F7 − α1F1F3, β8 = α2F5F8 − α1F1F4,

(52e)β9 =α2F6F7 − α1F2F3, β10 = α2F6F8 − α1F2F4.

(53)ρs(t) =
∞
∑

m,n,j,k=0

ρm,n,j,k(t)|m�a|n�b a�j|b�k|,

(54)�a†a(t)� = Tr[a†aρs(t)] =
∞
∑

m,n=0

mρm,n,m,n(t), �b†b(t)� = Tr[b†bρs(t)] =
∞
∑

m,n=0

nρm,n,m,n(t).

(a) (b)

(c) (d)

Figure 6.   Dynamics of (a, c) the average excitation numbers 〈a†a(t)〉 , 〈b†b(t)〉 and (b, d) the logarithmic 
negativity as functions of the evolution time t when the system is initially in the state |0�a|0�b . The parameters 
used are g/ωr = 0.2 and γa/ωr = γb/ωr = 10−2 . The results in panels (a) and (b) [(c) and (d)] are calculated 
with the microscopic quantum master equation (the phenomenological quantum master equation).
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The entanglement of the density matrix ρs(t) can be quantified by calculating the logarithmic negativity. In 
terms of Eqs. (35), (47), and (53), the logarithmic negativity of the state ρs(t) can be obtained numerically. In 
Fig. 6b, we show the logarithmic negativity N(t) of the density matrix ρs(t) versus the time t. The result shows 
that the logarithmic negativity oscillates very fast due to the free evolution of the system. We also find that the 
envelope of the logarithmic negativity converges gradually with the evolution time t and eventually reaches a 
stable value due to the dissipations. The time scale of the oscillation-pattern decay for the logarithmic negativity 
is very similar to that of the excitations created by the CR interaction terms. In particular, we find that there exists 
steady-state entanglement due to the presence of the CR interaction terms in this system.

In this work, we consider the ultrastrong-coupling regime and hence the quantum master equation is derived 
in the normal mode representation. For comparison, we show in Fig. 6c,d the evolution of the average excitation 
numbers and the logarithmic negativity calculated by solving the phenomenological quantum master equation, 
which is obtained by adding the dissipators of two free bosonic modes into the Liouville equation,

The initial state of the system is the same as that considered in the microscopic quantum master equation. We 
see from Fig. 6 that, for the average excitation numbers, though these results can approach steady-state values, 
the envelop and the oscillation amplitude are different for the results obtained with two different quantum 
master equations. However, for the logarithmic negativity, we find that the difference between the two results 
exists but is small when g/ωr = 0.2 . We checked the fact that the difference will increase as the increase of the 
ratio g/ωr . Therefore, the microscopic quantum master equation should be used in the ultrastrongly-coupled-
oscillator system.

Conclusion
In conclusion, we have studied quantum entanglement in an ultrastrongly-coupled two-harmonic-oscillator 
system. Concretely, we have studied the ground-state entanglement by calculating the logarithmic negativity of 
the ground state. Here, the quantum entanglement is maintained by the virtual excitations generated by the CR 
terms and bounded in the ground state. We have also studied the dynamics of quantum entanglement of the 
system. By microscopically deriving a quantum master equation in the normal-mode representation of the two 
oscillators, we analyzed the influence of the dissipations on the entanglement dynamics and found that there 
exists steady-state entanglement in this system.

Received: 5 January 2020; Accepted: 22 May 2020

References
	 1.	 Kockum, A. F., Miranowicz, A., Liberato, S. D., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 

1, 19 (2019).
	 2.	​ Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 

91, 025005 (2019).
	 3.	 Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 

(2005).
	 4.	 Liberato, S. D., Ciuti, C. & Carusotto, I. Quantum vacuum radiation spectra from a semiconductor microcavity with a time-

modulated vacuum Rabi frequency. Phys. Rev. Lett. 98, 103602 (2007).
	 5.	 Bourassa, J., Gambetta, J. M., Abdumalikov, A. A., Jr., Astafiev, O., Nakamura, Y. & Blais, A. Ultrastrong coupling regime of cavity 

QED with phase-biased flux qubits. Phys. Rev. A 80, 032109 (2009).
	 6.	 Anappara, A. A., Liberato, S. D., Tredicucci, A., Ciuti, C., Biasiol, G., Sorba, L. & Beltram, F. Signatures of the ultrastrong light–

matter coupling regime. Phys. Rev. B 79, 201303(R) (2009).
	 7.	 Casanova, J., Romero, G., Lizuain, I., Garcia-Ripoll, J. J. & Solano, E. Deep strong coupling regime of the Jaynes-Cummings model. 

Phys. Rev. Lett. 105, 263603 (2010).
	 8.	 Ashhab, S. & Nori, F. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical 

states. Phys. Rev. A 81, 042311 (2010).
	 9.	 Beaudoin, F., Gambetta, J. M. & Blais, A. Dissipation and ultrastrong coupling in circuit QED. Phys. Rev. A 84, 043832 (2011).
	10.	 Ballester, D., Romero, G., García-Ripoll, J. J., Deppe, F. & Solano, E. Quantum simulation of the ultrastrong-coupling dynamics in 

circuit quantum electrodynamics. Phys. Rev. X 2, 021007 (2012).
	11.	 Huang, J.-F. & Law, C. K. Photon emission via vacuum-dressed intermediate states under ultrastrong coupling. Phys. Rev. A 89, 

033827 (2014).
	12.	 Pedernales, J. S. et al. Quantum Rabi model with trapped ions. Sci. Rep. 5, 15472 (2015).
	13.	 Kockum, A. F., Miranowicz, A., Macrì, V., Savasta, S. & Nori, F. Deterministic quantum nonlinear optics with single atoms and 

virtual photons. Phys. Rev. A 95, 063849 (2017).
	14.	 Garziano, L., Macrì, V., Stassi,  R., Stefano, O. D., Nori, F. & Savasta, S. One Photon can simultaneously excite two or more atoms.  

Phys. Rev. Lett. 117, 043601 (2016).
	15.	 Stassi, R., Macrì, V., Kockum, A. F., Stefano, O. D., Miranowicz, A., Savasta, S. & Nori, F. Quantum nonlinear optics without photons.  

Phys. Rev. A 96, 023818 (2017).
	16.	 Günter, G., Anappara, A. A., Hees, J., Sell, A., Biasiol, G., Sorba, L., De Liberato, S., Ciuti, C., Tredicucci, A., Leitenstorfer, A. & 

Huber, R. Sub-cycle switch-on of ultrastrong light–matter interaction, Nature 458, 178 (2009).
	17.	 Todorov, Y. et al. Ultrastrong light–matter coupling Regime with polariton dots. Phys. Rev. Lett.105, 196402 (2010).
	18.	 Geiser, M. et al. Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells. Phys. Rev. Lett. 

108, 106402 (2012).
	19.	 Niemczyk, T., Deppe, F., Huebl, H., Menzel, E. P., Hocke, F., Schwarz, M. J., García-Ripoll, J. J., Zueco, D., Hümmer, T., Solano, E., 

Marx, A. & Gross, R. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010).
	20.	 Forn-Díaz, P. et al. Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. 

Rev. Lett. 105, 237001 (2010).
	21.	 Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S. & Semba, K. Superconducting qubit-oscillator circuit beyond the 

ultrastrong-coupling regime. Nat. Phys. 13, 44 (2017).

(55)ρ̇s(t) = i[ρs(t),H] + γaD[a]ρs(t)+ γbD[b]ρs(t).



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12557  | https://doi.org/10.1038/s41598-020-68309-3

www.nature.com/scientificreports/

	22.	 Forn-Díaz, P., García-Ripoll, J. J., Peropadre, B., Orgiazzi, J.-L., Yurtalan, M. A., Belyansky, R., Wilson, C. M. & Lupascu, A. 
Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 13, 39 
(2017).

	23.	 Chen, Z., Wang, Y., Li, T., Tian, L., Qiu, Y., Inomata, K., Yoshihara, F., Han, S., Nori, F., Tsai, J. S. & You, J. Q. Single-photon-driven 
high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system. Phys. Rev. A 96, 012325 
(2017).

	24.	 Bosman, S. J. et al. Multi-mode ultra-strong coupling in circuit quantum electrodynamics. npj Quant. Inf 3, 46 (2017).
	25.	 Scalari, G., Maissen, C., Turcinkova, D., Hagenmuller, D., De Liberato, S., Ciuti, C., Reichl, C., Schuh, D., Wegscheider, W., Beck, 

M. & Faist, J. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323 (2012).
	26.	 Maissen, C., Scalari, G., Valmorra, F., Beck, M., Faist, J., Cibella, S., Leoni, R., Reichl, C., Charpentier, C. & Wegscheider, W. 

Ultrastrong coupling in the near field of complementary split-ring resonators. Phys. Rev. B 90, 205309 (2014).
	27.	 Zhang, Q., Lou, M., Li, X., Reno, J. L., Pan, W., Watson, J. D., Manfra, M. J. & Kono, J. Collective non-perturbative coupling of 2D 

electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005 (2016).
	28.	 Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. 

Lett. 106, 196405 (2011).
	29.	 Gambino, S., Mazzeo, M., Genco, A., Di Stefano, O., Savasta, S., Patanè, S., Ballarini, D., Mangione, F., Lerario, G., Sanvitto, D. & 

Gigli, G. Exploring light–matter interaction phenomena under ultrastrong coupling regime. ACS Photon. 1, 1042 (2014).
	30.	 Goryachev, M. et al. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 54002 (2014).
	31.	 Felicetti, S. et al. Dynamical casimir effect entangles artificial atoms. Phys. Rev. Lett.113, 093602 (2014).
	32.	 Romero, G., Ballester, D., Wang, Y. M., Scarani, V. & Solano, E. Ultrafast quantum gates in circuit QED. Phys. Rev. Lett.108, 120501 

(2012).
	33.	 Braak, D. Integrability of the Rabi Model. Phys. Rev. Lett. 107, 100401 (2011).
	34.	 Chen, Q.-H., Wang, C., He, S., Liu, T. & Wang, K.-L. Exact solvability of the quantum Rabi model using Bogoliubov operators. 

Phys. Rev. A 86, 023822 (2012).
	35.	 Zhong, H., Xie, Q., Batchelor, M. & Lee, C. Analytical eigenstates for the quantum Rabi model, J. Phys. A 46, 415302 (2013).
	36.	 Xie, Q.-T., Cui, S., Cao, J.-P., Amico, L. & Fan, H. Anisotropic Rabi model. Phys. Rev. X 4, 021046 (2014).
	37.	 Huang, J.-F. & Law, C. K. Phase-kicked control of counter-rotating interactions in the quantum Rabi model. Phys. Rev. A 91, 023806 

(2015).
	38.	 Klimov A. B. & Chumakov, S. M. A Group-Theoretical Approach to Quantum Optics: Models of Atom-Field Interactions (Wiley-VCH, 

Weinheim, 2009), Chapter 8.
	39.	 Zheng, H., Zhu, S. Y. & Zubairy, M. S. Quantum zeno and anti-zeno effects: Without the rotating-wave approximation. Phys. Rev. 

Lett. 101, 200404 (2008).
	40.	 Stefano, O. D., Kockum, A. F., Ridolfo, A., Savasta, S. & Nori, F. Photodetection probability in quantum systems with arbitrarily 

strong light–matter interaction. Sci. Rep. 8, 17825 (2018).
	41.	 Lolli, J., Baksic, A., Nagy, D., Manucharyan, V. E. & Ciuti, C. Ancillary qubit spectroscopy of vacua in cavity and circuit quantum 

electrodynamics. Phys. Rev. Lett.114, 183601 (2015).
	42.	 Cirio, M., Debnath, K., Lambert, N. & Nori, F. Amplified optomechanical transduction of virtual radiation pressure. Phys. Rev. 

Lett. 119, 053601 (2017).
	43.	 Liberato, S. D., Gerace, D., Carusotto, I. & Ciuti, C. Extracavity quantum vacuum radiation from a single qubit. Phys. Rev. A 80, 

053810 (2009).
	44.	 Takashima, K., Hatakenaka, N., Kurihara, S. & Zeilinger, A. Nonstationary boundary effect for a quantum flux in superconducting 

nanocircuits. J. Phys. A Math. Theor. 41, 164036 (2008).
	45.	 Werlang, T., Dodonov, A. V., Duzzioni, E. I. & Villas-Bôas, C. J. Rabi model beyond the rotating-wave approximation: Generation 

of photons from vacuum through decoherence. Phys. Rev. A 78, 053805 (2008).
	46.	 Carusotto, I., Liberato, S. D., Gerace, D. & Ciuti, C. Back-reaction effects of quantum vacuum in cavity quantum 

electrodynamics.Phys. Rev. A 85, 023805 (2012).
	47.	 Garziano, L., Ridolfo, A., Stassi, R., Stefano, O. D. & Savasta, S. Switching on and off of ultrastrong light–matter interaction: Photon 

statistics of quantum vacuum radiation. Phys. Rev. A 88, 063829 (2013).
	48.	 Shapiro, D. S., Zhukov, A. A., Pogosov, W. V. & Lozovik, Y. E. Dynamical lamb effect in a tunable superconducting qubit-cavity 

system. Phys. Rev. A 91, 063814 (2015).
	49.	 Ficek, Z., Jing, J. & Lü, Z.-G. Role of the counter-rotating terms in the creation of entanglement between two atoms. Phys. Scr. T 

140, 014005 (2010).
	50.	 Peterson, G. A. et al. Ultrastrong parametric coupling between a superconducting cavity and a mechanical resonator. Phys. Rev. 

Lett. 123, 247701 (2019).
	51.	 Malekakhlagh, M. & Rodriguez, A. W. Quantum Rabi model with two-photon relaxation. Phys. Rev. Lett. 122, 043601 (2019).
	52.	 Wagner, M. Unitary Transformations in Solid State Physics (North-Holland, Amsterdam, 1986).
	53.	 Fan, H.-Y. Density matrix and squeezed state of the two coupled harmonic oscillators. Europhys. Lett. 19, 443 (1992).
	54.	 Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
	55.	 Plenio, M. B. Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).
	56.	 Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

Acknowledgements
J.-F.H. is supported in part by the National Natural Science Foundation of China (Grant no. 11505055), Natu-
ral Science Foundation of Hunan Province, China (Grant No. 2020JJ5345), and Scientific Research Fund of 
Hunan Provincial Education Department (Grant no. 18A007). J.-Q.L. is supported in part by National Natural 
Science Foundation of China (Grants nos. 11822501, 11774087, and 11935006), Natural Science Foundation 
of Hunan Province, China (Grant no. 2017JJ1021), and Hunan Science and Technology Plan Project (Grant 
no. 2017XK2018).

Author contributions
J.-Q.L. provided the idea, contributed to the analyses of theory and data, and wrote the manuscript. J.-F.H. 
contributed to the analyses of theory and data, and modified the manuscript. J.-Y.Z. performed the numerical 
calculations, and contributed to the interpretation of the numerical results and the writing of the manuscript. 
Y.-H.Z. contributed to some theoretical calculations and checked the results. X.-L.Y. checked the theoretical 
calculations. All authors reviewed the manuscript.



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12557  | https://doi.org/10.1038/s41598-020-68309-3

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.-F.H. or J.-Q.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantum entanglement maintained by virtual excitations in an u​ltr​ast​ron​gly​-co​upl​ed-​oscillator system
	Anchor 2
	Anchor 3
	Results
	Model and hamiltonian. 
	Eigensystem of the coupled two-oscillator system. 
	Ground-state entanglement and quadrature squeezing. 
	Dynamics of quantum entanglement. 

	Conclusion
	References
	Acknowledgements


