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Abstract

Objectives

The primary objective of this pilot study was to investigate whether the therapeutic drug

monitoring of imipenem could be performed with spent effluent instead of blood sampling

collected from critically ill patients under continuous renal replacement therapy.

Methods

A prospective open-label study was conducted in a real clinical setting. Both blood and efflu-

ent samples were collected pairwise before imipenem administration and 0.5, 1, 1.5, 2, 3, 4,

6, and 8 h after imipenem administration. Plasma and effluent imipenem concentrations

were determined by reversed-phase high-performance liquid chromatography with ultravio-

let detection. Pharmacokinetic and pharmacodynamic parameters of blood and effluent

samples were calculated.

Results

Eighty-three paired plasma and effluent samples were obtained from 10 patients. The Pear-

son correlation coefficient of the imipenem concentrations in plasma and effluent was 0.950

(P<0.0001). The average plasma-to-effluent imipenem concentration ratio was 1.044 (95%

confidence interval, 0.975 to 1.114) with Bland-Altman analysis. No statistically significant

difference was found in the pharmacokinetic and pharmacodynamic parameters tested in

paired plasma and effluent samples with Wilcoxon test.

Conclusion

Spent effluent of continuous renal replacement therapy could be used for therapeutic drug

monitoring of imipenem instead of blood sampling in critically ill patients.
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Introduction
Serious infections, including sepsis, remain major cause of morbidity and mortality in critically
ill patients [1–6]. Imipenem has been extensively used to treat serious infections when the
main suspected pathogens are Gram-negative bacteria, due to its broad spectrum of coverage
and highly potent therapeutic effects [7, 8]. It has been highlighted that early, appropriately
dosed antibiotics is beneficial for critically ill patients [9–13]. However, appropriate antibiotic
dosing in critically ill patients is still challenging, because of the rapidly dynamic physiology,
decreasing levels of susceptibility of bacteria and unpredictable pharmacokinetic characteristics
[14–16]. In addition, there are indications of high incidence of suboptimal antibiotic concen-
trations and therapeutic failure of β-lactams in critically ill patients, due to the wide pharmaco-
kinetic variability of imipenem [13, 15, 17, 18]. As a β-lactam, therapeutic drug monitoring
(TDM) of imipenem has not been widely investigated as a routine intervention because of the
wide therapeutic window [19, 20]. Nevertheless, it has been illustrated that TDM is associated
with optimal β-lactam concentrations and improved clinical outcomes in critically ill patients
[20–22].

Continuous renal replacement therapy (CRRT), particularly continuous venovenous haemo-
filtration (CVVH) and continuous venovenous haemodiafiltration (CVVHDF), are increasingly
used in the routine clinical management of critically ill patients [23, 24]. CRRT plays a signifi-
cant role in critically ill patients with acute kidney injury (AKI), and has also been used for the
treatment of some non-renal indications, such as severe sepsis [23–26]. The use of CRRT
makes the design of the optimal dosage regimen for the critically ill patients more complicated.
Patients receiving CRRTmight be underdosed with published dosing recommendations due to
variability, and currently used CRRTmay be more efficient than that reported by the literatures
[27]. Moreover, lower than anticipated or desired systemic antimicrobial exposure, therapeutic
failure, and the emergence of breakthrough resistance are indicated for critically ill patients
receiving CRRT [28–31]. Hence, TDM of β-lactams is suggested as a desirable intervention for
this population [32]. However, blood sampling is commonly necessary for traditional TDM,
and the problem of diagnostic blood draws in critically ill patients has been addressed, which
may contribute to anemia and be associated with morbidity [33]. Moreover, antibiotic concen-
trations are usually measured by high-pressure liquid chromatography (HPLC), and blood sam-
ple preparation can lead to long latency time and low throughput for TDM [34].

Previous study has showed that there is a strong correlation between plasma free and dialy-
sate effluent piperacillin concentrations in patients receiving continuous venovenous hemodi-
alysis (CVVHD) [34], which suggests that an equilibrium may be achieved between plasma
and dialysate. If this inference is justified, spent effluent of CVVHDmay be a noninvasive
alternative to blood sampling for TDM of small molecules. Moreover, effluent sample is ready
for analysis without further preparation, which simplifies sample preparation and promotes
the productivity of TDM. However, it is unclear whether this could be extrapolated to other
drugs and other types of CRRT in critically ill patients. The primary objective of this study was
to develop and clinically validate a method of analyzing imipenem in spent effluent in critically
ill patients with CRRT. The present study also aimed to conduct preliminary evaluation of the
pharmacokinetic and pharmacodynamic characteristics of imipenem in these patients.

Materials and Methods

Study Design
This prospective open-label study was conducted in the intensive care unit (ICU) of Beijing
Friendship Hospital, Beijing, China. Patients were eligible for inclusion if the following criteria
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were met: 1) adult; 2) admission to ICU; 3) treatment with imipenem and CRRT simulta-
neously. Patients who were judged inappropriate to get frequent blood samples by the attend-
ing physician were excluded from this study. The study protocol was approved by the Research
Ethics Committee of Beijing Friendship Hospital. All of the eligible patients or their legal
guardians were informed the essentials of this study, and written informed consent was
obtained before enrolling each patient into this study.

Medications
Patients enrolled into this study received imipenem-cilastatin (500mg/500mg, Merck Sharp &
Dohme Corp., USA) as part of their medical care. Dosage regimen was determined by the
attending physicians according to clinical indication and institutional dosing guidelines. Dos-
ages represented by the quantity of imipenem of 500 mg every 6 h, 500 mg every 8 h and 1 g
every 8 h were commonly prescribed. Both of the doses of 500mg and 1 g were suspended and
transferred to 100 ml of an appropriate infusion solution, and administered by intravenous
infusion pump over 1 h. Detailed dosage regimen and specific administration time were
recorded for each enrolled patient.

CRRT Procedures
All patients were treated with CRRT using the Gambro PrismaFlex system with Gambro Pris-
maflex M100 AN-69 hemofilter sets. Vascular access was obtained by introduction of an
ARROW Two-Lumen Hemodialysis Catheterization Set (12Fr, 20cm, Arrow International
Inc., USA) into the jugular vein or an ARROW Large-Bore Multi-lumen Central Venous Cath-
eterization Set (12Fr, 16cm, Arrow International Inc., USA) into the femoral vein. The type
and dosing of CRRT were managed by the attending physicians. The parameters such as blood
flow rate, dialysate rate and ultrafiltration rate were set and adjusted by therapeutic needs.
Replacement fluids were delivered by a combination of pre and post filter. The extracorporeal
circuit was anticoagulated with sodiumcitrate. The uptime of the hemofilter sets was generally
24–48 h. The types and parameters of CRRT were recorded for each patient in detail. Urine
output was obtained from the nursing records.

Sample Collection and Storage
In order to obtain plasma imipenem concentrations at or near steady state, sampling was per-
formed at least 24 h after initiation of the CRRT and imipenem therapy [35]. Blood and efflu-
ent samples were collected pairwise before and 0.5, 1, 1.5, 2, 3, 4, 6, and 8 h (for the dose of 1 g
every 8 h) after imipenem administration. Blood samples (0.6 mL) were drawn from the red
access port of the central line for CRRT, and collected into tubes containing heparin as antico-
agulant. Effluent samples (approximately 1.2 mL) were collected from the CRRT apparatus
directly into polypropylene tubes. All of the samples were placed in ice box immediately, and
processed within 2 h. Because imipenem is rapidly hydrolyzed in plasma through a pH-depen-
dent reaction [36], morpholinopropanesulfonic acid (MOPS, ultra pure grade; Amresco, USA)
buffer (0.126 M, pH 6.8) was served as stabilizing solution. Blood samples were centrifuged
(3,000×g, 10 min) and aliquots of plasma were mixed 1:1 with stabilizing solution [37]. Effluent
samples were directly mixed 1:1 with stabilizing solution. Stabilized plasma and effluent sam-
ples were stored at -70°C until analysis. If CRRT was interrupted, sampling was halted, and
resampling was allowed after CRRT was reestablished. Complete profiles of medical history,
physical examination and laboratory tests were obtained and reviewed prior to collection of
samples.
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Sample Analysis and Validation
Analysis of imipenem concentrations in plasma and effluent were based on previously vali-
dated high performance liquid chromatography—ultraviolet detection (HPLC-UV) methods
[37–39] with a few modifications. Chromatography was performed on a ZORBAX SB-C8 col-
umn (5μm, 4.6 x 250 mm; Agilent, USA), maintained at 30°C. The ultraviolet detector was set
at 298 nm. A gradient elution of ammonium acetate buffer (0.5 M, pH 6.8) and acetonitrile was
used as the mobile phase with a flow rate of 1 mL/min. Imipenem monohydrate (I1K226, 0.932
mg/mg; USP) was used for the preparation of standard solutions, and ceftazidime was used as
the internal standard.

Two hundred microliters of stabilized plasma and effluent samples were mixed with 20 μL
of 500 μg/mL ceftazidime, respectively. The effluent samples were injected directly into the
HPLC system. The plasma samples were deproteinized using Amicon Ultra-0.5 centrifugal fil-
ters (3 kDa, Millipore, USA), and the filtrates were injected into the HPLC system.

The lower limit of quantification (LOQ) was 0.3 μg/mL for both of the plasma and effluent
samples. The linearity of the standard curve was assessed with 1/x2 weighting over a concentra-
tion range of 0.3 to 200.0 μg/mL. Accuracy and precision were evaluated with quality control
samples at concentrations of 0.5, 2.0, 30.0, and 75.0 μg/mL in triplicate. Stability was assessed
by storing stabilized quality control samples (2.0, 30.0, and 75.0 μg/mL) at −70°C and 20°C for
30 days and 6 h, respectively. The stability of patients’ samples stored in ice box (2–8°C) for 2 h
was also evaluated.

Pharmacokinetic and Pharmacodynamic Analysis
Pharmacokinetic analysis was performed by Drug and Statistics (DAS, version 2.0, Mathemati-
cal Pharmacology Professional Committee of China, Shanghai, China) using non-compart-
ment model [40]. As a β-lactam, the pharmacodynamic predictor of clinical efficacy and risk of
developing microbial resistance to imipenem is commonly indicated by the percentage of free
drug concentrations remain above the minimum inhibitory concentration (MIC) of the patho-
gen (f T>MIC), and a target of at least 40% was recommended [7, 41–43]. For critically ill
patients, the pharmacodynamic predictor of the β-lactams was not clearly defined. It was indi-
cated that f T> 4–5 × MIC could maximize the likelihood of clinical cure in patients with
severe infections [19, 20], and the target of at least of 60% is suggested for bolus infusion [44].
Therefore, both of f T>MIC and f T> 4 × MIC were calculated according to the methods of
Fish, et al [35]. For the patient without an identified pathogen or without the MIC for imipe-
nem, the pharmacodynamic predictor was not calculated.

Statistical Analysis
In the process of analytical method validation, bias was defined as the difference between the
analytical concentrations and the nominal concentrations, expressed as a percentage. The efflu-
ent analysis was clinically validated by comparing the imipenem concentrations in paired
plasma and effluent samples from patients by Passing-Bablok regression and Bland-Altman
analysis using MedCalc, version 11.4.2 (MedCalc Software, Ostend, Belgium). Furthermore,
the Pearson correlation was calculated to determine the correlation between the concentrations
in plasma and effluent samples. The Wilcoxon test for paired samples was applied to the com-
parisons of pharmacokinetic and pharmacodynamic parameters. A P value of<0.05 was con-
sidered statistically significant.
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Results

Subject Characteristics
A total of 10 patients were enrolled in this study and completed the scheduled sampling. The
median age and weight of the patients were 64 years (range, 32 to 87 years) and 70 kg (range,
45–90 kg), and 8 patients (80.0%) were male. The characteristics of the patients are summa-
rized in Table 1. Eight of the patients were diagnosed with severe sepsis, and the other two
patients were diagnosed with serious abdominal infection and severe acute pancreatitis,
respectively. Eight of the patients were diagnosed with acute kidney injury. Half of the
patients were with hypoalbuminaemia. The isolated pathogens were Enterobacter aerogenes
in 2 patients, Acinetobacter baumannii in 2 patients (20.0%), Escherichia coli in 2 patients
(20.0%), Klebsiella pneumoniae in 1 patient (10.0%), Pseudomonas aeruginosa in 1 patient
(10.0%), and not specified in 3 patients (30.0%). The dosages of imipenem were 500 mg every
6 h in 7 patients (70.0%), 1 g every 8 h in 2 patients (20.0%) and 0.5 g every 8 h in 1 patient
(10.0%).

Urine output and details of CRRT of the patients were illustrated in Table 2. Eight patients
received CRRT because of AKI, two for severe sepsis. Nine patients were treated with
CVVHDF, and one with CVVH.

Table 1. Characteristics of the patients.

Patient Age
(yr)

Sex a Wt
(kg)

APACHE II
Score b

Principal diagnosis Isolated pathogen
(imipenem MIC in
μg/mL)

Imipenem
dosing

Outcome

1 33 M 80 15 Pneumonia, severe sepsis, hypoproteinemia Enterobacter aerogenes
(1)

0.5g q6h Died

2 59 M 80 17 Abdominal infection, severe sepsis, shock Klebsiella pneumoniae
(1)

0.5g q6h Survived

3 69 M 70 13 Pneumonia, acute kidney injury, severe sepsis,
myocardial injury, acute liver injury, hypoproteinemia

None 0.5g q6h Survived

4 74 F 45 20 Pneumonia, severe sepsis, acute kidney injury, acute
liver injury, shock, acute myocardial ischemia,
hypoproteinemia

Acinetobacter baumannii
(1)

0.5g q6h Died

5 47 M 90 16 Abdominal infection, acute kidney injury, acute liver
injury

Escherichia coli (1) 1g q8h Survived

6 32 M 70 20 Severe acute pancreatitis, acute kidney injury, acute
liver injury, myocardial injury, hypoproteinemia

None 1g q8h Died

7 87 M 70 23 Pneumonia, severe sepsis, shock, acute liver injury,
acute kidney injury

Escherichia coli (16) 0.5g q6h Died

8 50 M 70 26 Pneumonia, severe sepsis, shock, acute liver injury,
chronic renal insufficiency accompanied with acute
kidney injury, acute left heart failure

None 0.5g q6h Died

9 76 F 75 26 Multiple organ dysfunction syndrome, acute left heart
failure, acute liver injury, acute kidney injury,
pneumonia, severe sepsis, shock

Pseudomonas
aeruginosa (1)

0.5g q6h Survived

10 78 M 60 15 Pneumonia, severe sepsis, shock, chronic renal
insufficiency accompanied with acute kidney injury,
hepatic dysfunction, hypoproteinemia

Acinetobacter baumannii
(16)

0.5g q8h Died

APACHE, Acute Physiology and Chronic Health Evaluation; MIC, minimum inhibitory concentration.
a F, female; M, male.
b During or near the day of sampling.

doi:10.1371/journal.pone.0153927.t001
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Validation of Analytical Methods
The plasma and effluent analytical method showed a good linearity over the imipenem concen-
tration range. Correlation coefficients were within the range of 0.9990 to 1.0000 for the entire
process of analysis. The mean measured concentrations were between 93.96% and 105.25% of
the nominal concentration for plasma and between 97.24% and 106.48% for effluent. The
within-day variations were between 1.04% and 3.03% for plasma and between 0.31% and
1.73% for effluent, and the day-to-day variations were between 0.63% and 5.11% for plasma
and between 0.63% and 1.13% for effluent. Both stabilized plasma and effluent samples were
stable at −70°C and 20°C for 30 days and 6 h, respectively. The patients’ samples were stable in
ice box for 2 h. All variations were well within the desired limits of 15%.

Clinical Validation
Eighty-three paired plasma and effluent samples from 10 patients were included in the clinical
validation of the effluent analysis. The Pearson correlation showed a correlation coefficient of
0.950 (P<0.0001) for the imipenem concentrations in plasma and effluent. Passing-Bablok
regression between the plasma and effluent imipenem concentrations showed a proportional
bias of 0.997 (95% confidence interval [CI], 0.935 to 1.078) and a constant bias of -0.039 (95%
CI, -0.514 to 0.247) (Fig 1). A linear relationship between plasma and effluent imipenem con-
centrations was indicated by the Cusum linearity test (P>0.10). Bland-Altman assessment
showed a good agreement between analyses of imipenem concentrations in plasma and efflu-
ent, with 4.8% (4/83) of observations for imipenem falling outside 95% limits of agreement
(Fig 2). The observed bias for the mean plasma-to-effluent imipenem concentration ratio ver-
sus the mean concentration in plasma and effluent was 1.044 (95% CI, 0.975 to 1.114, Fig 2).

Pharmacokinetic and Pharmacodynamic Evaluation
Plasma and effluent concentration-versus-time profiles for imipenem during CRRT for each
patient are shown in Fig 3. Pharmacokinetic parameters of imipenem in plasma and effluent
are displayed in Table 3. The Wilcoxon test for paired samples showed no statistically

Table 2. Urine output and details of continuous renal replacement therapy.

Patient Urine output a

(mL/24 h)
CRRT
Type

Blood flow rate a

(mL/min)
Dialysate rate b

(mL/h)
Ultrafiltration rate b

(mL/h)
Duration of filter
(h)

1 1940 CVVHDF 150 1000 1380 56

2 2125 CVVHDF 150 1000 1800 61

3 1220 CVVH 150 - 2520 8

4 260 CVVHDF 150 1000 1310 68

5 40 CVVHDF 150 500 1950 37

6 55 CVVHDF 150 1000 1440 31

7 65 CVVHDF 150 1500 920 20

8 0 CVVHDF 150 1000 1400 11

9 500 CVVHDF 150 1000 1180 2

10 30 CVVHDF 150 1000 1500 47

CRRT, continuous renal replacement therapy; CVVHDF, continuous venovenous hemodiafiltration; CVVH, continuous venovenous hemofiltration.
a During the day of sampling.
b Documented at the initiation of sampling, could be adjusted based on the patient’s condition.

doi:10.1371/journal.pone.0153927.t002
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significant difference between medians of all pharmacokinetic parameters in plasma and efflu-
ent samples.

Pharmacodynamic parameters of imipenem for the patients are displayed in Table 4. No
statistically significant difference was found between medians of f T>MIC or f T>4 × MIC in
plasma and effluent samples, respectively. Both of f T>MIC in plasma and effluent samples
showed that the pathogens with a MIC of 1 μg/mL would be adequately treated with the doses
of 0.5 g every 6 h and 1 g every 8 h. However, when f T>4 × MIC was used, only 2 patients
(50.0%) with the doses of 0.5 g every 6 h and the patient with the dose of 1 g every 8 h were ade-
quately treated. It was also found that these were the only three patients survived, the other two
patients predicted undertreated by f T>4 × MIC both passed away. For the pathogens with a
MIC of 16 μg/mL, neither of the two patients (with the doses of 0.5 g every 6 h and 1 g every 8
h, respectively) was adequately treated based on the values of both f T>MIC and f T>4 × MIC,
and both passed away.

Fig 1. Scatter plot with Passing-Bablok fit of plasma and effluent concentrations in mg/liter (n = 83). Identity lines are presented as dashed lines, and
regression lines are depicted as solid lines. The regression line of the imipenem plasma/effluent concentration ratio has a slope of 0.997 (95%CI, 0.935 to
1.078) and an intercept of -0.039 (95%CI, -0.514 to 0.247).

doi:10.1371/journal.pone.0153927.g001
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Discussion
To our knowledge, this is the first study to investigate the possibility of using spent effluent of
CRRT to perform TDM of imipenem for critically ill patients instead of blood samples. We
found the imipenem concentration in effluent samples was in good agreement with the plasma
imipenem concentration. The mean ratio of effluent and plasma imipenem concentrations was
approximately 1. It has been shown that the drug concentration in ultrafiltrate or dialysate
divided by that in plasma was mainly influenced by plasma protein binding of the drugs [24,
45, 46]. Therefore, this result may be explained by the low plasma protein binding of imipe-
nem, which is showed as 9% in healthy volunteers [47]. Hypoproteinemia is very common in
critically ill patients, and even lower protein binding of imipenem may be expected [24, 48].
Previous study illustrates a strong correlation between plasma free and dialysate piperacillin
concentrations in patients receiving CVVHD [34]. Protein binding of piperacillin is about 20–
30% in healthy volunteers and patient populations [49]. Taking these into account, it may be

Fig 2. Bland-Altman plot of plasma/effluent concentration ratios compared to average plasma and effluent concentrations (n = 83). The line
representing the bias is presented as a solid line, and the 95% limits of agreement are presented as dashed lines. The bias is 1.044 (95%CI, 0.975 to 1.114),
and the lower and upper 95% limits of agreement are 0.417 (95% CI, 0.298 to 0.537) and 1.671 (95%CI, 1.552 to 1.791).

doi:10.1371/journal.pone.0153927.g002
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Fig 3. Plasma and effluent concentrations of imipenem during continuous renal replacement therapy for 10 patients. The X axis represents
postinfusion times.

doi:10.1371/journal.pone.0153927.g003
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possible to use the effluent of CRRT to perform TDM of other drugs with low or moderate
plasma protein binding, especially for critically ill patients.

Moreover, though the mean ratio of effluent and plasma imipenem concentrations was
approximately 1, the limits of agreement of the ratio were between 0.417 and 1.671, which had
a discrepancy of approximately 3-fold, and a larger bias was seen in the plasma-to-effluent con-
centration ratio in the low-concentration area. The bias may be mainly explained by the factors

Table 3. Pharmacokinetic parameters of imipenem in plasma and effluent samples.

Patient Imipenem
dosing

CRRT
Type

Cmax (μg /mL) Cmin (μg /mL) AUC0-t (μg�h/mL) t1/2 (h) CL (mL/min/kg) Vd (L/kg)

Plasma Effluent Plasma Effluent Plasma Effluent Plasma Effluent Plasma Effluent Plasma Effluent

1 0.5g q6h CVVHDF 17.79 15.34 0.50 0.47 35.27 32.72 0.86 0.84 2.92 3.14 0.22 0.23

2 0.5g q6h CVVHDF 26.11 21.75 4.66 2.97 81.11 69.76 2.50 2.28 1.01 1.22 0.22 0.24

4 0.5g q6h CVVHDF 13.61 14.64 1.47 1.39 38.25 38.62 1.84 1.88 4.28 4.25 0.68 0.69

7 0.5g q6h CVVHDF 18.58 17.16 2.12 1.71 59.56 45.01 2.60 1.37 1.52 2.46 0.34 0.29

8 0.5g q6h CVVHDF 23.75 24.81 1.96 1.79 74.70 75.74 1.69 1.96 1.42 1.33 0.21 0.23

9 0.5g q6h CVVHDF 15.49 18.51 2.47 3.02 49.88 60.42 7.20 2.24 1.04 1.50 0.65 0.29

Median
(range)

18.19
(13.61–
26.11)

17.84
(14.64–
24.81)

2.04
(0.50–
4.66)

1.75
(0.47–
3.02)

54.72
(35.27–
81.11)

52.72
(32.72–
75.74)

2.17
(0.86–
7.20)

1.92
(0.84–
2.28)

1.47
(1.01–
4.28)

1.98
(1.22–
4.25)

0.28
(0.21–
0.68)

0.27
(0.23–
0.69)

5 1g q8h CVVHDF 41.66 40.34 3.24 3.16 123.40 107.16 2.07 2.00 1.39 1.60 0.25 0.28

6 1g q8h CVVHDF 23.23 26.15 4.00 4.91 86.09 91.77 2.72 2.22 2.40 2.36 0.57 0.45

Median
(range)

32.45
(23.23–
41.66)

33.25
(26.15–
40.34)

3.62
(3.24–
4.00)

4.04
(3.16–
4.91)

104.75
(86.09–
123.40)

99.47
(91.77–
107.16)

2.40
(2.07–
2.72)

2.11
(2.00–
2.22)

1.90
(1.39–
2.40)

1.98
(1.60–
2.36)

0.41
(0.25–
0.571)

0.37
(0.28–
0.45)

3 0.5g q6h CVVH 6.02 8.95 0.46 0.84 23.79 32.27 4.57 2.79 2.80 2.74 1.11 0.66

10 0.5g q8h CVVHDF 33.11 36.34 1.95 2.37 85.41 95.31 1.91 2.31 1.53 1.33 0.25 0.27

P value a 0.625 0.922 0.846 0.160 0.232 0.557

CRRT, continuous renal replacement therapy; CVVHDF, continuous venovenous hemodiafiltration; CVVH, continuous venovenous hemofiltration.
a P values were calculated by the Wilcoxon test.

doi:10.1371/journal.pone.0153927.t003

Table 4. Pharmacodynamic parameters of imipenem in plasma and effluent samples.

Patient Imipenem
dosing

CRRT
Type

MIC (μg
/mL)

%f T>MIC %f T>4×MIC Outcome

Plasma Effluent Plasma Effluent

1 0.5g q6h CVVHDF 1 59.32# 55.32# 30.75 27.24 Died

2 0.5g q6h CVVHDF 1 196.29# 168.55# 112.88# 92.68# Survived

4 0.5g q6h CVVHDF 1 115.41# 121.24# 54.13 58.62 Died

9 0.5g q6h CVVHDF 1 474.38# 157.24# 234.38# 82.55# Survived

Median
(range)

155.85 (59.32–
474.38)

139.24 (55.32–
168.55)

83.51 (30.75–
234.38)

70.59 (27.24–
92.68)

5 1g q8h CVVHDF 1 139.47# 133.52# 87.63# 83.46# Survived

7 0.5g q6h CVVHDF 16 9.35 2.31 -77.39 -43.44 Died

10 0.5g q8h CVVHDF 16 25.11 34.17 -22.76 -23.58 Died

P value a 0.297 0.578

CRRT, continuous renal replacement therapy; CVVHDF, continuous venovenous hemodiafiltration; CVVH, continuous venovenous hemofiltration; MIC,

minimum inhibitory concentration.
a P values were calculated by the Wilcoxon test.
#Target was achieved.

doi:10.1371/journal.pone.0153927.t004
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of potential adsorption by filter membrane and the disparity of filter duration for each patient
[45, 50, 51]. It is indicated that a proteinaceous secondary membrane is formed when blood
exposes to the filter, possibly as soon as the first few minutes of CRRT [52]. And the formation
of the proteinaceous membrane over the filter may hinder convective solute removal and
reduce transmembrane clearance as the proteinaceous membrane thickens [51]. The time lim-
its for the filters are typically set at 24–48 h. However, we may extend the duration of filters up
to 96 h in the spirit of cost containment for some patients, unless of clotting. Limited impor-
tance is attached to the issue of filter performance over time, because of the difficulty to assess.
The ratio of effluent and plasma urea nitrogen is commonly recommended as a surrogate
marker of filter performance [53]. However, effluent creatinine/serum creatinine is suggested
to be a better marker than the ratio of urea nitrogen in a recent study, because of a better sensi-
tivity for filter performance [51]. It is a pity that we did not evaluate the performance of the fil-
ter in this study. This will be included in our further studies to verify that effluent is well
equilibrated with plasma.

In this study, we found no statistically significant difference between medians of all pharma-
cokinetic and pharmacodynamic parameters in plasma and effluent samples, which further
validated the rationality of using effluent samples to perform imipenem analysis instead of
blood samples. However, it should be noted that pharmacodynamic parameters was signifi-
cantly underestimated by effluent sampling (approximately three times) in one patient (subject
9). The reason for this is not clear, and further investigation is needed. Besides that, we found f
T>4×MIC may be a better indicator of clinical efficacy for imipenem in critically ill patients.
For the pathogens with MIC = 16μg/mL, the doses of 0.5 g every 6 h and 1 g every 8 h could
not achieve the therapeutic target and may cause therapeutic failure. Because of the limited
samples in this study, these findings need to be justified by further investigations.

There are a few limitations to be taken in consideration in this study. Limited number of
patients and only the CRRT types of CVVHDF and CVVH were included. Furthermore,
though we tried to limit the influential factors as minimal as possible, the factors, such as the
patient's condition and the duration of the hemofilter were not well controlled, this may cause
the bias.

In conclusion, a method for analyzing imipenem in spent effluent in critically ill patients
with CRRT is developed and clinically validated in this pilot study conducted in a real-world
clinical setting. It suggests that reliable measurement of drug concentrations in spent effluent
of CRRT may facilitate therapeutic drug monitoring of imipenem in this population. Further
investigation is needed to justify the clinical value of our results.
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