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Abstract

Background: Although mutated HLA ligands are considered ideal cancer-specific immunotherapy targets, evidence
for their presentation is lacking in hepatocellular carcinomas (HCCs). Employing a unique multi-omics approach
comprising a neoepitope identification pipeline, we assessed exome-derived mutations naturally presented as HLA
class I ligands in HCCs.

Methods: In-depth multi-omics analyses included whole exome and transcriptome sequencing to define individual
patient-specific search spaces of neoepitope candidates. Evidence for the natural presentation of mutated HLA
ligands was investigated through an in silico pipeline integrating proteome and HLA ligandome profiling data.

Results: The approach was successfully validated in a state-of-the-art dataset from malignant melanoma, and despite
multi-omics evidence for somatic mutations, mutated naturally presented HLA ligands remained elusive in HCCs. An
analysis of extensive cancer datasets confirmed fundamental differences of tumor mutational burden in HCC and
malignant melanoma, challenging the notion that exome-derived mutations contribute relevantly to the
expectable neoepitope pool in malignancies with only few mutations.

Conclusions: This study suggests that exome-derived mutated HLA ligands appear to be rarely presented in
HCCs, inter alia resulting from a low mutational burden as compared to other malignancies such as
malignant melanoma. Our results therefore demand widening the target scope for personalized immunotherapy
beyond this limited range of mutated neoepitopes, particularly for malignancies with similar or lower mutational
burden.
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Background
Hepatocellular carcinoma (HCC) is among the malig-
nancies with the highest death toll on a global scale [1]
and with very limited therapeutic options. Particularly in
advanced stage, long-term survival is uncommon [2]. Al-
though it has been shown that the microenvironment of
the liver is tolerogenic and impairs immune responses
[3], antigen-specific T cell responses do occur [4]. Since
infiltration of HCCs with T cells [5] and spontaneous
immune responses correlate with longer survival [6] but
mostly prove weak and insufficient on their own, im-
munotherapies unleashing the immune system hold
great promise.
Immune checkpoint (ICP) inhibitors demonstrating

the potency and effectiveness of the immune system to
fight malignancy [7] have set the stage for cancer im-
munotherapies. In contrast to established cytostatic
treatments for cancer, this new class of drugs has en-
abled long-term survival in advanced and metastatic dis-
ease previously considered incurable [8]. However,
although in some malignancies ICP inhibitors have
proven highly effective, results for other cancers remain
disappointing. One probable mode of action for ICP in-
hibitors is the induction and/or restoration of T cell ef-
fector functions against individual somatic tumor
mutations presented by HLA molecules (i.e., mutated
neoepitopes) [9]. Since these mutated HLA ligands were
unacquainted to the immune system before carcinogen-
esis, they have been proposed as ideal tumor-specific tar-
gets [10, 11].
In malignant melanoma (Mel), where ICP inhibitors

were established first, mutational load was shown to
strongly correlate with survival [12]. This has been cor-
roborated in lung cancer [13] and colorectal carcinoma,
where in the latter impressive survival benefits remained
strictly limited to mismatch repair-deficient carcinomas
featuring very high numbers of mutations [14]. As ele-
vated somatic mutation rates raise the odds for generat-
ing neoantigens, this supports the notion they may be
critical for ICP inhibitor effectiveness [15]. Another line
of evidence suggests that neoantigens recognized by T
cells can generate impressive clinical effects, when
identified and exploited for therapeutic purposes. This
has been shown in remarkable case reports inter alia
in advanced Mel [16] and metastatic cholangiocarci-
noma [17].
With current affordable next-generation sequencing

(NGS) and bioinformatics, an array of approaches pre-
dicting HLA-restricted neoantigens from virtually any
tumor has emerged [18–20]. Indeed, at present most at-
tempts are restricted to in silico analyses, lacking actual
proof that the predicted neoantigens are relevant or even
exist. So far, tangible evidence is scarce and mainly re-
stricted to T cell recognition [21]. Therefore, one

frequently missing link is proof of neoantigen presenta-
tion on native tumor tissue. Such an endeavor is very
challenging and has been shown feasible in mouse
models [22] and cell lines [23] but in human solid tu-
mors hitherto merely in Mel at low numbers using
mass spectrometry (MS), defining the current
state-of-the-art [24, 25].
Since both individual cancer traits and mutational load

vary strongly between different tumor entities [26, 27],
these properties may ultimately restrict the foreseeable
success and feasibility of neoantigen-targeted precision
cancer medicine. In HCCs, only a small proportion of
about 10% of patients showed mutations potentially ac-
cessible for drug therapy [28], whereas preliminary data
for ICP inhibitors showed objective response rates in
15–20% of patients combined with a manageable safety
profile [29], making neoantigens in principle an interest-
ing case for precision cancer medicine and the use of
NGS.
Hence, we performed unprecedented in-depth multi-

omics analyses encompassing whole exome and tran-
scriptome sequencing, combined with proteome and
HLA ligandome profiling in selected HCC patients aim-
ing to obtain evidence for the natural presentation of
exome-derived mutated HLA ligands, employing various
strategies.

Materials and methods
Clinical specimens
Clinical specimens from patients (n = 16; median age: 74
years; min.–max. 55–85 years; 75% men) undergoing
liver resection for hepatocellular carcinomas (HCCs),
encompassing both non-malignant and malignant liver
tissue as well as peripheral blood, were obtained directly
after surgery and cryopreserved (for patients’ tumor
characteristics, see Additional file 1: Table S1). HCC
diagnosis and predominant tumor fraction within sam-
ples were histologically confirmed by an expert patholo-
gist. All included patients were negative for chronic viral
hepatitis (hepatitis B and C) and without systemic pre-
treatment for their malignancy.

Next-generation sequencing
DNA and RNA were extracted from fresh frozen tissue
and PBMCs, respectively (a sample and analysis over-
view is provided in Additional file 1: Table S2). After
sample preparation and enrichment, paired-end whole
exome sequencing (WES) and whole transcriptome se-
quencing were performed on an Illumina system (details
are provided in Additional file 2).

HLA typing
Typing at four-digit resolution using WES data was per-
formed by OptiType [30] for HLA class I alleles (see
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Additional file 1: Table S3) as previously described [31]
and confirmed in selected cases by molecular HLA typ-
ing (using clinically validated LUMINEX and
sequence-based typing) during clinical routines.

Isolation of naturally presented HLA ligands from tissues
for HLA ligandomics
HLA class I-peptide complexes were isolated from HCC
and corresponding (non-malignant) liver tissue samples
by immunoaffinity purification using the pan-HLA class
I-specific monoclonal antibody W6/32 [32] (produced
in-house at the Department of Immunology, Tübingen,
Germany) and eluted using 0.2% trifluoroacetic acid as
described previously [33].

Analysis of HLA ligands by liquid chromatography-
coupled tandem mass spectrometry (LC-MS/MS)
HLA class I ligand extracts were measured once or in
multiple technical replicates, as described previously [33,
34]. Samples were separated by UHPLC and eluting pep-
tides were analyzed using collision-induced dissociation
(CID) in an online coupled Orbitrap mass spectrometer.
In addition to data-dependent acquisition (DDA), se-
lected ion monitoring (SIM) and parallel reaction moni-
toring (PRM) targeted tandem MS (tMS2) was
performed for selected samples to enhance the sensitiv-
ity and robustness of neoantigenic peptide identification
(details are provided in Additional file 2).

HLA ligandomics data analysis
MS data obtained from HLA immunoprecipitates was ana-
lyzed using tools of the open-source software library for
LC/MS OpenMS (2.3) [35]. Identification and post-scoring
were performed using the OpenMS adapters to Comet
2016.01 rev. 3 [36] and Percolator 3.1.1 [37] at a peptide
spectrum match (PSM) false discovery rate (FDR) threshold
of 5%. Database search was performed against a personal-
ized version of the human reference proteome (Swiss-Prot,
reviewed UP000005640), including the patient-specific
mutanome without enzymatic restriction and methionine
oxidation as the only variable modification.

Database matching
HLA ligandome database queries refer to the in-house
database (maintained at the Department of Immun-
ology) encompassing > 300,000 unique HLA class
I-eluted peptides identified through LC-MS/MS in di-
verse tissues (non-malignant samples as well as sam-
ples with pathologies including malignancies). Database
matching was carried out using rSQL, querying for an
exact string match of a wild-type ligand (WTlig) corre-
sponding to the respective predicted mutated neoepitope
(PNE). All HLA class I allotypes of the HCC and Mel
cohort were covered by respective samples in the

database. Each sample containing the WTlig was counted
as a separate match (further details are provided in
Additional file 2). Besides neoepitopes, we additionally
screened our HCC HLA class I ligandome dataset
against cancer-testis antigens (CTAs) as deposited in the
CTDatabase (http://www.cta.lncc.br; [38]).

Protein in-gel digestion for shotgun protein identification
Sample lysates were separated by SDS-PAGE.
Coomassie-stained gel pieces were digested using tryp-
sin. Peptides were desalted using C18 Stage tips and sub-
jected to LC-MS/MS analysis.

Shotgun protein tandem mass spectrometry
Liquid chromatography-coupled tandem mass spectrom-
etry (LC-MS/MS) analyses were performed on an
EasyLC nano-HPLC system (Proxeon Biosystems, Ros-
kilde, Denmark) coupled to an LTQ Orbitrap Elite mass
spectrometer (ThermoFisher) (additional details are pro-
vided in Additional file 2).

Proteomic data analysis
MS data were processed with MaxQuant software suite
v.1.5.2.8 [39]. Database search was performed using the
Andromeda search engine [40], integrated into the Max-
Quant framework. The human reference database was
obtained from UniProt (taxonomy ID 9606, containing
91,646 protein entries and 285 commonly occurring la-
boratory contaminants) and concatenated with the
patient-specific mutanome. Endoprotease trypsin was
fixed as enzyme with a maximum of two missed cleav-
ages. Oxidation of methionines and N-terminal acetyl-
ation were specified as variable modifications, whereas
carbamidomethylation of cysteines was defined as a fixed
modification. Initial maximum allowed mass tolerance
was set to 6 ppm. Re-quantify was enabled. A FDR of
1% was applied at peptide and protein level.

Bioinformatics
Data management and bioinformatic analysis was per-
formed through the qPortal instance at the Quantita-
tive Biology Center (QBiC), Tübingen, if not stated
otherwise [41].

Variant calling
Reads were processed using the megSAP pipeline
(https://github.com/imgag/megSAP) and the ngs-bits
package (https://github.com/imgag/ngs-bits) by the De-
partment of Medical Genetics and Applied Genomics
(Tübingen, Germany). Reads were mapped against the
Genome Reference Consortium Human Build 37
(GRCh37) using BWA-mem [42]. Somatic variant calling
was performed using Strelka and Strelka2 [43, 44] or
with a proprietary software (CeGaT GmbH, Tübingen,
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Germany). Somatic mutations were annotated using
SnpEff 4.1 k [45]. Further details are provided in
Additional file 2.

Gene expression analysis
Gene expression values were calculated as fragments per
kilobase of exon per million reads mapped (FPKM) of
the corresponding transcripts and RNA tumor sequen-
cing depth at the corresponding variant position. Map-
ping of RNA reads was done using TopHat 2 (v2.0.12)
[46]. Details are provided in Additional file 2.

Protein quantification analysis of shotgun proteomics
data
Label-free protein quantification was done using Max-
Quant v1.5.00 [39]. Parameter groups were defined for
non-malignant tissue- and tumor-derived raw files, re-
spectively. The multiplicity was set to one. Protein
N-terminal acetylation as well as oxidation of methio-
nine residues were selected as variable modifications,
whereas carbamidomethylation of cysteine residues was
set as fixed modification. Trypsin was selected as prote-
ase with a specific digestion mode. Further, we specified
the match type as MatchFromAndTo and set the num-
ber of MaxMissedCleavages to two. Requantification and
matching between runs were enabled. As a reference, we
specified the Swiss-Prot reviewed human proteome (ver-
sion UP000005640, derived: 02/16/2016).

Peptide prediction
To define the sample-specific mutated peptide search
space (PSS), peptides of 8–11 amino acid length were con-
structed by sliding a shifting window of the peptide length
over the affected mutated positions. Resulting peptides
were filtered against the human proteome (UniProt
UP000005640, derived: 02/29/16) and the Ensembl prote-
ome reference (release 84, 04/27/2016) to exclude pep-
tides contained within wild-type proteins. Transcript
information was retrieved via BioMart, based on the
stable database version of GRCh37 (http://feb2014.arch-
ive.ensembl.org). HLA-binding prediction was performed
with SYFPEITHI [47], netMHC 4.0 [48, 49], and
netMHCpan 3.0 [50, 51]. The workflow was implemented
using FRED2 [52] (see Additional file 2 for further details).

Differential gene expression analysis and pathway
analysis
Differential gene expression analysis was performed
using the R package DESeq2 [53]. Expression data of
HCC datasets from TCGA were retrieved and analyzed
with the recount2 package [54].
Pathway analysis was carried out using clusterProfiler

[55] and Pathview [56]. Differentially expressed genes

were categorized using DAVID [57]. Details are provided
in Additional file 2.

Results
A multi-omics approach to detect mutated HLA ligands in
HCCs
We performed analyses of malignant and non-malignant
liver tissue, resected during surgery for HCCs
(Additional file 1: Table S1 & Table S2), by a multi-omics
approach encompassing analyses on exome (n = 16), tran-
scriptome (n = 16), shotgun proteome (n = 7), and HLA
ligandome level (i.e., HLA-presented peptides; n = 16).
Multi-allelic HLA class I expression was confirmed in all
patients of our HCC cohort (results are provided in
Additional file 1: Table S3). The overall aim of our re-
search was to identify individual exome-derived somatic
tumor mutations resulting in natural HLA ligands pre-
sented to T cells.

Detection of somatic variants (mutations) in HCCs
On average, we detected 151 ± 40 somatic variants (Var)
per HCC, including single nucleotide variants, small in-
sertions/deletions, and frameshift variants; thereof, 44%
(66 ± 19) cause changes in the amino acid sequence of
the encoded protein (i.e., non-synonymous variants;
Varns - a glossary of abbreviations and terminology used
is provided as Table 1), when referenced against DNA
from blood. From these Varns, on average about half
were also detectable on transcript level (44 ± 10%;
Fig. 1a). Across all patients, we observed 1039 unique
Varns in total, affecting 864 different genes and 45% of
them (n = 392) with additional evidence on RNA level
(Varexp). This translates to an average tumor mutational
burden (TMB; estimated as previously described [58]) of
1.89 ± 0.49 per megabase observed in our HCC cohort
(see Additional file 1: Table S4).
Assessing mutational hotspots, we observed alterations

(Varexp) in β-catenin (CTNNB1; 50%) and in neuroblast-
oma breakpoint family, member 1 (NBPF1; 38%), but also
in genes encoding proteins typically expressed in the liver,
such as albumin (ALB; 19%), apolipoprotein b (APOB;
13%), and γ-glutamyltransferase (GGT1; 19%) (Fig. 1b).
Varexp frequently affected the HLA class II loci HLA-
DRB1 (6%), HLA-DQA1 (13%), and HLA-DRB5 (19%).
However, due to the highly polymorphic nature of the
HLA locus [59], variant detection in these regions is par-
ticularly error-prone and results should be cautiously
interpreted as potential artifacts. For HLA class I loci, suit-
able computational pipelines for mutation detection are
available [60], whereas for HLA class II to the best of our
knowledge this is not the case. Overall, only 1.5% (6/392)
of Varexp-containing genes were shared among > 2 pa-
tients and only one single mutation (in NBPF1; Chr.
1:16891365 G>T) reoccurred identically in three patients.

Löffler et al. Genome Medicine           (2019) 11:28 Page 4 of 16

http://feb2014.archive.ensembl.org
http://feb2014.archive.ensembl.org


Considering established driver mutations included in the
Cancer Gene Census ( [61]; https://cancer.sanger.ac.uk/
census), we observed respective Varns in most of the HCCs
(n = 9; 1–3 Varns per patient), foremost the previously
mentioned gene CTNNB1 (n = 8) but also the androgen
receptor, mediator complex subunit 12 (MED12), nuclear
receptor corepressor 1 (NCOR1), neurogenic locus notch
homolog protein 1 (NOTCH1) (all n = 2), and NOTCH2/
PIK3CA (n = 1). Nevertheless, except from CTNNB1,

Varns comprised in the Cancer Gene Census appeared ra-
ther infrequently among the examined HCCs.

Discovery of mutation-derived HLA ligands on different
omics levels
Exome
In a first step, we sought to assess the number of neoepi-
topes (PNE) per patient predicted to bind to each indi-
vidual set of HLA class I alleles, using established

Table 1 Glossary of relevant abbreviations used

Var Somatic variant (single nucleotide variant [SNV], insertion/deletion [InDel], frameshift variant)

Varns Non-synonymous somatic variant (i.e., somatic mutation)

Varexp Expressed non-synonymous somatic variant

PNE Predicted mutated neoepitope

PNEexp Predicted mutated neoepitope with evidence on transcript level

PNEprot Predicted mutated neoepitope with evidence on proteome level

NElig Mutated neoantigen with evidence on HLA ligandome level (HLA class I)

WTlig Wild-type peptide corresponding to PNE with evidence on HLA ligandome level (HLA class I)

neoantigen/neoepitope Mutated HLA-presented peptide (potentially) recognizable by (T cells of) the immune system

TMB Tumor mutational burden (non-synonymous somatic variants per megabase)

Fig. 1 Characterization of somatic variants and their potential for HLA presentation in HCC. a Numbers of somatic variants across HCC patients
(n = 16). Numbers are shown for all variants passing initial filtering (Var), coding non-synonymous variants (Varns), and coding non-synonymous
variants with RNA level evidence (Varexp). Boxplots show means ± SD. b Varexp shared among HCC patients. Varexp affecting identical genes in ≥ 3
patients are displayed in gray. Varexp observed at identical genomic positions are displayed in red (the shown HLA-DR variants should be cautiously
interpreted as potential artifacts). c Correlation between Varns and predicted HLA-binding neoepitopes (PNE) (left; blue). Correlation between Varexp and
expressed PNE (PNEexp) (right; orange). d Scatter plot of numbers of Varns and PNE in HCC patients (blue) and a benchmarking dataset of
melanoma (Mel) patients (red) as previously described by Bassani-Sternberg et al. [24]
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binding predictions. On average, 244 ± 77 PNE per HCC
patient were predicted from 66 ± 19 Varns, exceeding the
respective binding thresholds (Fig. 1c; left panel). The
observed increase in PNE numbers compared to Varns

is explained by the fact that Varns may give rise to
multiple PNE due to the shifting window approach
used with different peptide lengths (8–11 amino
acids) as well as the HLA-binding prediction for up
to six individual HLA alleles. Comparing the numbers
of PNE to the numbers of protein-altering variants
(Varns), this resulted in a very weak correlation (Pear-
son’s correlation coefficient r = 0.38).

Transcriptome
When accounting for supplemental evidence for PNE on
RNA level, numbers of predicted peptides (PNEexp) de-
creased by half (49 ± 8% of PNE), yielding an average of
118 ± 40 PNEexp per patient. The correlation between
expressed protein-changing genomic variants (Varexp)
and PNEexp also remained moderate (Pearson’s correl-
ation coefficient r = 0.50) (Fig. 1c; right panel).

Proteome
In order to gain additional protein level evidence for
PNEexp, we annotated all PNE with log2-intensities from
shotgun proteome data (n = 7) of HCCs. In this way for
a total of 159 PNE (17 ± 14% of PNEexp), supportive pro-
tein level data was available (on average for 23 ± 21 PNE
per patient), mapping to various source proteins (see
Additional file 1: Table S5). Only in one patient, no evi-
dence for PNE corresponding to any detected source
protein was found (HCC034), yet on average a fraction
of 10% (9.8 ± 8.6%) of PNE were supported by additional
evidence for occurrence of their source proteins (n = 33)
on shotgun proteome level.

HLA ligandome
To directly assess the presence of mutated HLA ligands,
we used the well-established technique of UHPLC-
coupled MS/MS to identify naturally presented HLA li-
gands from HCCs and non-malignant liver tissues. These
analyses yielded on average 1403 ± 621 HLA class
I-associated peptides from HCC and 1159 ± 525 peptides
from non-malignant liver tissue (FDR 5%, length 8–11
amino acids; see also Additional file 3: Figure S1). On
average, 51 ± 11% of these peptides were shared between
matching malignant and non-malignant liver tissue. When
predicting HLA class I binding affinities and filtering for
MS-detected peptides exceeding the respective binding
threshold for the patients’ HLA allotypes (see Add-
itional file 1: Table S3), on average 1026 ± 451 peptides
per tumor (73 ± 10%) and 867 ± 450 peptides per
non-malignant liver sample (72% ± 11%) showed HLA-
binding properties. This filtering step was performed to

enrich for high probability HLA class I ligands, excluding
contaminant peptides from downstream analyses. On
average, 58 ± 12% of those peptides occurred both in
matched malignant and non-malignant liver tissues.
Importantly, we did not find any evidence for naturally

presented mutated HLA ligands (NElig) in HCCs, inde-
pendent of filtering criteria. However, in two HCC pa-
tients, we identified one wild-type sequence HLA ligand
(WTlig) each, corresponding to a PNE.

Benchmarking HCC and melanoma (Mel) HLA ligandomics
datasets
To demonstrate the high sensitivity of our neoepitope
identification pipeline, we additionally processed a pub-
licly available dataset of somatic variants from five Mel
patients as a reference [24]. The numbers of Varns and
PNE in Mel (Fig. 1d; red dots) showed remarkable differ-
ences from our HCC dataset (blue dots). Whereas in
two cases, Mel samples showed comparable properties
to the HCCs analyzed with respect to the numbers of
Varns and resulting PNE (Mel8, Mel16), these counts
were substantially higher in the majority of Mel samples
(Mel5, Mel12, Mel15). This resulted in an average num-
ber of 531 Varns in Mel in comparison to only 66 Varns

in HCC, corresponding to an eightfold increased mu-
tated peptide search space (PSS) in Mel. Derived pre-
dicted neoepitopes amount to an average of 243 PNE in
HCC in contrast to 1550 PNE in the Mel data (Fig. 2a),
resulting from a tenfold increased TMB in Mel (on aver-
age: 19.06 ± 13.97 per megabase; see Additional file 1:
Table S4).
On a per patient basis (Fig. 2b), the HCC dataset

proved much more homogenous (PSS: ~ 2500 to
10,000; PNE: 111 to 382) than the Mel data, where the
PSS ranged from 4000 to 84,000 (PNE: 169 to 3717).
This was corroborated by analyzing datasets from The

Cancer Genome Atlas (TCGA; https://cancergenome.
nih.gov/) for both entities, showing a mean number (±
SD) of Varns of 90 ± 100 for HCC (n = 363) and 461 ±
761 for Mel (n = 467) (Additional file 3: Figure S2).
Assessing only the fraction of tumors with > 100 Varns

as suggested previously [12], this amounted to a share of
26% in HCC vs. 77% in Mel. Selecting the share of ma-
lignancies that exhibits a high TMB as defined by Good-
man et al., we observed merely 1.5% of high TMB
tumors among HCC vs. 32% among Mel [62] (Fig. 3).
Employing our HLA ligandomics identification pipeline,

we were able to reconfirm all of the NElig that had been
discovered previously by Bassani-Sternberg et al. in their
MS dataset (Mel5 (n = 2); Mel8 (n = 1); Mel15 (n = 8)) [24,
63]. Furthermore, we discovered one additional NElig for
Mel12 and three additional NElig for Mel15 that could be
validated by matching spectra from synthetic peptides (see
Additional file 1: Table S6). Only one of those NElig was
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discovered in a sample (Mel8) with properties com-
parable to our HCC cohort. Importantly, all other
NElig identified on MS level (10/11) were identified
on Mel with high TMB (Fig. 2b). Therefore, it can
be stated that our comparatively homogenous HCC
cohort, for which no NElig could be discovered, dif-
fers substantially (by at least one order of magni-
tude concerning TMB) from the properties of Mel
patients previously published [24]. This notion is
supported by a thorough comparison of both data-
sets as shown in Fig. 2, as well as by comparisons
with comprehensive TCGA datasets (Fig. 3 and
Additional file 3: Figure S2).

Evidence for mutated proteins on shotgun proteome
level
To obtain the best available evidence for the presence of
mutated proteins, in absence of tangible data on HLA
ligandome level (NElig), we employed shotgun

proteomics in HCC tissue samples. To this end, we
used a tryptic digest of cell lysates, aware that de-
tection of respective variants is difficult and
technology-related sensitivity limitations apply [64]
that are governed by a variety of influencing factors
and the fraction of genomic alterations detectable
on protein level by this approach was reported to
be about 2% [65]. Indeed, we discovered one som-
atic mutation in albumin (ALBK375E) on proteome
level represented by the tryptic peptide LAETYET-
TLEK in HCC025 (Fig. 4a), which was corroborated
on both exome (Varns) and transcriptome (Varexp)
levels. Strikingly, we not only detected the tryptic
wild-type peptide LAKTYETTLEK but unexpectedly
also the mutation-derived peptide LAETYETTLEK
in the proteome of non-malignant liver tissue. To
investigate the source of this unexpected finding,
we obtained two additional serum samples at differ-
ent time points from the patient and performed

Fig. 2 Numbers of predicted neoepitopes with evidence on different omics levels. a Numbers of somatic variants and non-synonymous somatic
variants (Var and Varns), respectively; peptide search space (PSS), predicted HLA-binding neoepitopes (PNE), and PNE on the different available
omics levels: expressed PNE (PNEexp), PNE with evidence on shotgun proteome level (PNEprot), and neoepitopes observed as natural HLA ligands
(NElig) are shown for the HCC dataset (left; n = 16) and the Mel dataset (right; n = 5) published previously by Bassani-Sternberg et al. [24]. Numbers
are given as mean ± SD. b Numbers of peptides after processing with our neoepitope identification pipeline are shown on a per patient basis
according to the different omics levels as observed in the HCC dataset (left) as well as the Mel dataset (right). For each patient, total counts of
predicted peptides (PSS) are annotated in black, numbers of NElig for Mel patients are shown in red (median = 1.0)
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shotgun proteomics on them. Patient HCC025
showed tumor recurrence and active disease at both
time points and the mutated peptide was detected
in both samples, proving that the tumor synthesized
a mutated ALB protein secreted into circulation.
For HCC026, a Varexp in the ATP-dependent DNA
helicase Q1 (RECQL; H19R) could be verified based
on an additional tryptic cleavage site introduced
through the arginine gained by mutation, which re-
sulted in the proteotypic peptide AVEIQIQELTER.
This peptide was not detected in the corresponding
non-malignant liver tissue (Fig. 4b).

Targeted mass spectrometry for discovery of mutated
HLA ligands
As NElig could not be confirmed in HLA ligandomics data
of HCC obtained by data-dependent acquisition mode

tandem mass spectrometry (DDA-MS/MS), we adopted
measures to avoid limitations by missing values and
semi-random sampling inherent to this approach [66].
Thus, we attempted to corroborate the PNEprot observed
in ALB and RECQL by targeted MS approaches as well as
other carefully selected PNEexp in three chosen patients.
We selected sets of PNE from three HCCs (HCC025–27)
for a selected ion monitoring (SIM) approach using heavy
isotope-labeled peptides as a reference to increase the sen-
sitivity for the MS/MS method and improve the probabil-
ity of detection (Additional file 1: Table S7). Nevertheless,
we could not validate any of the candidates and compari-
sons of low confidence annotations with synthetic pep-
tides did not yield evidence for peptide presentation.
Since peptides harboring the mutations confirmed by

proteomics (PNEprot) seemed of particular interest (i.e.,
ALBK375E in HCC025 and RECQLH19R in HCC026), we

Fig. 3 Comparison of the mutational burden in Mel and HCC. a Number of mutations (# Varns) of TCGA cases in Mel (n = 476). b Number of
mutations (# Varns) of TCGA cases in HCC (n = 363). The data were retrieved from Genomics Data Commons Data Portal (https://portal.gdc.cancer.
gov/, access date: 2018-09-16). Variants were filtered for missense variants, frameshift variants, inframe deletions, inframe insertions, and coding
sequence variants. Variants that were called by Mutect2 are considered. The number of mutations was assessed with respect to high tumor
mutational burden (> 400 Varns, red) and the fraction of tumors with > 100 Varns (blue)

Löffler et al. Genome Medicine           (2019) 11:28 Page 8 of 16

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


additionally performed parallel reaction monitoring
(PRM) targeted tandem MS (tMS2) measurements
targeting the best ranking PNE as well as corre-
sponding wild-type HLA ligands (WTlig), covering
the mutation site (for details, see Additional file 2).
Despite a high number of HLA class I peptides in
DDA-MS/MS (HCC025 malignant: 5063; HCC025
non-malignant: 1497; HCC026 malignant: 3678;
>HCC026 non-malignant: 3197), PRM tMS2 could
not corroborate any of the PNEprot (Fig. 4) as naturally
presented HLA ligands in HCC (Additional file 1: Table
S8 & Table S9).

Prioritizing predicted mutated HLA ligands in absence of
HLA ligandome evidence
Lacking detection of mutated HLA ligands (NElig) does
not equal their absence due to several reasons: inter alia
(1) detection limits of the LC-MS/MS instrumentation,
(2) lacking ionizability of respective peptides, (3) particu-
larly strongly hydrophilic and hydrophobic peptides may
be missed by the UHPLC method, (4) unknown tem-
poral dynamics of the HLA ligandome [67]. As one way

for PNE prioritization, we propose a knowledge-based
approach using previously measured wild-type HLA li-
gands (WTlig). Hence, we assumed that the more fre-
quently a WTlig was already detected as a natural HLA
ligand by MS the more likely its corresponding NElig

counterpart should exist, provided that the mutation
does not negatively impact its HLA-binding affinity, or
the respective HLA allele was lost. To this end, we com-
pared the number of database matches of all WTlig in
HCC and Mel to an in-house database of HLA ligands
measured over the last decades (Fig. 5, Additional file 1:
Table S10 & Table S11). Almost all of the malignancies
assessed carry at least one mutation (Varns) that could
potentially give rise to a PNE whose corresponding
WTlig was previously measured multiple times as an
HLA-eluted ligand by MS. Interestingly, four of the
15 MS-detected NElig in Mel support this approach,
since also their corresponding WTlig produced mul-
tiple hits in our database, including GA-binding pro-
tein alpha chain (GABPA; 20 matches), synaptotagmin
like 4 (SYTL4; 8 matches), nucleoporin 153 (NUP153;
2 matches), and outstandingly septin 2 (SEPT2; 298

Fig. 4 Evidence for mutated proteins in the shotgun proteome and database matching. a Annotated spectra of albumin (ALB) showing
sequences of wild-type (LAKTYETTLEK; top) and mutated (LAETYETTLEK; bottom) protein measured by LC-MS/MS. b Annotated spectra of RecQ
like helicase (RECQL) showing sequences of the peptide AVEIQIQELTER resulting from an additional tryptic cleavage side added directly in front of
this sequence through a mutation from histidine to arginine, evidenced in HCC tissue only. c Database matching of natural HLA ligands with
wild-type peptide sequence (with diverse HLA restrictions) covering the exact position evidenced as mutated in ALB. d Database matching of
natural HLA ligands with wild-type peptide sequence (with diverse HLA restrictions) covering the exact position evidenced as mutated in RECQL
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matches). Moreover, the two pinpointed PNEprot in
ALB (59 matches) and RECQL (17 matches) give rise
to the two most frequently contained WTlig of the re-
spective patients in our database. In addition, WTlig

tensin 1/3 (TENS1/3; 54 matches; HCC027) and
SPECC1L-ADORA (33 matches; HCC028) were de-
tectable in the respective tumor HLA immunoprecipi-
tates, proving that at least the wild-type sequence
peptide is processed and presented on HLA. Specula-
tively, this might favor the presentation of their NElig

counterparts on HLA ligandome level, although it
could not be detected by us. The four mentioned
WTlig from HCC (ALB; RECQL; TENS1/3;
SPECC1L-ADORA) and two from Mel (SEPT2;
SYTL4) have also been documented in the immune
epitope database (https://www.iedb.org/ access date:
September 2018), which might also guide the way. Ul-
timately, these results may question HLA ligandome
level detection depth and call for establishing large
community-based HLA peptidomics databases [67,
68], since individual attempts do not seem reasonable,
given the extent of this task.

Narrowing the scope on alternative (immunological)
targets
As alternative targets among HLA ligands with potential
therapeutic relevance, we screened our HCC dataset for
proteins previously described as cancer-testis antigens
(CTA) and found eight different HLA class I ligands map-
ping to six CTA. These few CTA encompass ARMC3
(Q5W041), ATAD2 (Q6PL18), MAEL (Q96JY0), PRAME

(P78395), proteins of the SSX family, and TFDP3
(Q5H9I0) (Table 2).
Further, we identified a limited number of CTA

among different patients on shotgun proteome level
(Additional file 1: Table S12).
Additionally, gene expression analysis revealed 213 dif-

ferentially expressed (DE) genes, resulting from compari-
son of autologous tumor and non-malignant tissues. All
but one DE gene showed downregulation when compared
to matching non-malignant liver (Additional file 3: Figure
S3). Respective results indicate apparent differences in the
underlying gene expression patterns of tumor and
non-malignant liver samples, corroborating the separation
of the tumor and non-malignant liver samples in the PCA
(on principal component one level; Additional file 3: Fig-
ure S4). Visualization by heatmaps and accompanying
dendrograms clearly support these observations and show

Fig. 5 Number of database matches of wild-type ligands (WTlig) corresponding to predicted mutated neoepitopes (PNE). PNE with additional
evidence in HCC and Mel [24] are highlighted: (1) black: wild-type sequence of PNE contained in database; (2) yellow: wild-type sequence
peptide corresponding to PNE confirmed in autologous tissue as natural HLA ligand by mass spectrometry; (3) blue: mutated protein confirmed
by shotgun proteomics - PNEprot; (4) red: PNE confirmed as natural HLA ligand by mass spectrometry - NElig

Table 2 Cancer-testis antigens covered by HLA ligands detected
in HCC

# CTA (UniprotID) Peptide (HLA-) Sample ID HCC-

1 ARMC3 (Q5W041) EQIEDLAKY (A*26:01) 045

2 ATAD2 (Q6PL18) AYAIIKEEL (A*24:02)
AEFRTNKTL (B*44:03)

023
045

3 MAEL (Q96JY0) MVVLDAGRY (A*26:01) 045

4 PRAME (P78395) SLLQHLIGL (B*08:01) 041

5 SSX1 (Q16384) AFDDIATYF (C*04:01) 035

6 SSX● RLRERKQLV (B*08:01) 041

7 TFDP3 (Q5H9I0) EVVGELVAKF (A*26:01) 045
●Peptide maps to SSX1 (Q16384); SSX2 (Q16385); SSX3 (Q99909); SSX4
(O60224); SSX6 (Q7RTT6); SSX7 (Q7RTT5); SSX9 (Q7RTT3)
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that tumor and non-malignant tissue samples mostly sep-
arate in two distinct clades. This separation is seen in
most tumor samples except for six patients (HCC024/
028/ 034/ 035/ 043/ 045), which rather group with the
non-malignant tissue samples on the heatmap. To bench-
mark results from DE expression analysis to publicly avail-
able RNA-Seq datasets of HCC, we used recount2, a
multi-experiment resource of analysis-ready RNA-Seq
datasets with the R package recount. We performed a sim-
ple pairwise comparison of the TCGA dataset between
non-malignant (n = 50) and tumor (n = 374) samples using
DESeq2. We identified 6044 genes that were DE, based on
a statistical significance that was determined by a
multiple-testing adjusted p value < 0.05 and log2
fold-change > 1 or < − 1. From the 213 DE genes observed
in our HCC cohort, about half (n = 105) were also found
differentially regulated in the TCGA dataset.
Gene functional classification analysis (using DAVID

[69, 70]) pointed to mono-oxygenases (CYP450 enzymes)
as most prominently inhibited class among DE genes. This
gene list was mapped to unique Entrez IDs (n = 115),
which were mapped to 14 significantly enriched pathways
in return (Additional file 1: Table S13).
Finally, we assessed mutations evidenced in our HCC

cohort on transcriptome level (Varexp) regarding their
potential druggability. As previously published [28], also
in our HCC patient cohort, mutations druggable by ap-
proved pharmaceuticals were missing. Instead, we found
one mutation (PIK3CAE542K; HCC041; https://www.
mycancergenome.org/content/disease/lung-cancer/
pik3ca/7/) that has been implicated with lacking drug re-
sponse to anti-epidermal growth factor (EGFR) anti-
bodies [71].

Discussion
Neoepitopes, i.e., unique peptides derived from
tumor-specific mutations presented as natural HLA li-
gands and recognized by T cells, have been suggested as
highly attractive targets for cancer immunotherapy. It is
undisputable that there is mounting (indirect) evidence
to suggest that increased numbers of mutations may
render malignancies more immunogenic through their
neoantigenic repertoire (i.e., mutated HLA ligands) and
ultimately more amenable to immunotherapies [9]. Par-
ticularly for tumors that are characterized by a high
tumor mutational burden (TMB), a correlation with
benefits of ICP inhibition has been shown [12–14, 62].
One of the greatest challenges in understanding and

ultimately harnessing this neoantigenic repertoire of
cancers is the selection and validation of suitable targets
from an array of predicted neoepitopes (PNE) derived
from computational algorithms [72]. In this connection, it
is very plausible to assume that most PNE are irrelevant

and would ultimately fail to make an impact on treatment
outcomes of individual patients. On the other hand, the
selection of a single suitable neoepitope may have unpre-
cedented therapeutic consequences [17, 73] and such a
single neoepitope has already been shown to be a target of
T cells induced by ICP inhibition [22]. Certainly, this no-
tion is not limited to neoepitopes, but it also applies to
tumor-associated antigens, which can possess a compar-
able immunogenicity [74]. Consequently, non-mutated
tumor-specific or highly tumor-associated antigens should
be considered prime choice for personalized immunother-
apy, when they can be individually validated [75]. Al-
though many assumptions regarding mutated neoepitopes
are theoretically and bio-mechanistically plausible [15],
there is a fundamental lack of knowledge concerning the
precise immunological underpinnings behind tumor spe-
cificity [76] and therapeutic implications.
Moreover, biomarkers predicting response to ICP inhib-

itors with higher precision than TMB [62] are sought-after
[77]. A respective biomarker might not only assess the
odds for ICP therapy success but may simultaneously
allow the development of tailored neoantigen-targeted
immunotherapies.
In contrast to the vast array of data available relating

to PNE [78, 79], often derived from data of consortia like
the International Cancer Genome Consortium (ICGC)
or TCGA, current physical evidence for exome-derived
mutated HLA ligands (NElig) seems anecdotal (reviewed
in [63]) and positive examples for finding this proverbial
needle in the haystack are scarce. Hence, to be able to
benchmark our results obtained in HCC, we used the
best evidence available to us, provided by a dataset from
Bassani-Sternberg et al. [24]. Even though this dataset
from malignant melanoma (Mel) differs fundamentally
from HCCs in a variety of aspects, including inter alia a
tenfold increased average TMB and a sixfold higher PNE
count, this approach enabled benchmarking our pipeline
against a dataset containing the required targets
(NElig). This notion was also confirmed on a larger
scale by TCGA data, corroborating that the average
mutation numbers were typically fivefold increased in
Mel vs. HCC and the proportion of tumors with high
TMB (< 100 Varns) was elevated from 1.5% in HCC to
32% in Mel.
Our HCC dataset is characterized by close to 70

amino acid-changing mutations (Varns) on average trans-
lating to a TMB of about two per megabase, numbers
corresponding very well with data from a comprehensive
set of resectable HCCs [80]. These mutations encompass
established hotspots, and a limited number of genes was
found to be recurrently mutated [80], affecting the
well-established CTNNB1 primarily but also NBPF1.
The latter remained the only gene with a repeat identical
mutation in our patient cohort, emphasizing that in
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combination with an individual set of HLA class I allo-
types, a neoepitope-targeted therapy needs to be strictly
personalized [76]. Since in HCCs only about half of the
initially 244 Varns could be corroborated by RNA level
evidence (Varexp), this bisected the computationally pre-
dicted neoepitope numbers to an average of 118
expressed PNE (PNEexp). Further, the correlation of both
PNE and PNEexp numbers with mutation counts,
showed only a weak correlation. This may imply that
there is no direct interconnection between mutation fre-
quency and respective HLA ligands but rather a prob-
abilistic model applies [22], which is governed by the
HLA ligandome with distinct rules of presentation [81].
Since we had shotgun proteomics data available, we also
assessed whether we could establish any additional phys-
ical evidence for the respective source proteins (PNEprot)
constituting the immediate proteomic context of NElig,
which was the case in about one fifth of PNEexp and
comprised about 10% of the initial PNE pool. Neverthe-
less, since this neither implies the actual detection of a
mutation in the proteomics dataset (only the identifica-
tion of at least one tryptic peptide matching the respect-
ive protein), nor the HLA presentation of a NElig, we
assessed the eluted HLA ligands and searched for any
PNE with actual evidence for HLA presentation by
LC-MS/MS. Although the ~ 1400 HLA-bound peptides
detected on average in HCCs are generally comparable
with the numbers previously published in solid cancers
[34, 82], they do fall short of the considerable depth
reached in Mel, particularly in one single exceptional
case, for which more than 20,000 HLA-bound peptides
were reported (Mel15; [24]). Since this Mel dataset was
available to us and could be processed by our pipeline,
we can prove that we would be able to discover NElig

when MS/MS spectra are acquired. In this way, we cor-
roborated all NElig previously reported [24], as well as
four additional NElig previously unidentified, validated
by matching spectra from synthetic peptides. However,
in this direct comparison, it becomes particularly clear
that Mel and HCC, despite both representing solid tu-
mors, feature fundamental differences on a variety of
biological levels. Those differences may imply disparities
in antigenicity, determining the odds for immunotherapy
success [15]. This notion is confirmed by an extensive
analysis of 30 cancer types using comprehensive sequen-
cing data from ICGC and TCGA [26], with striking dif-
ferences concerning the PNE pool between HCCs and
Mel or lung and colorectal cancer [79]. Indeed, we only
found a single case with comparable Varns counts among
Mel [24] similar to our relatively homogeneous HCC co-
hort, where a NElig could be verified. Hence, chances for
presentation of exome-derived NElig in HCC may be
commonly very low, possibly due to cancer immunoedit-
ing [83], and this limited target scope may need to be

widened to better estimate the odds of neoantigen tar-
geted immunotherapy success in HCC.
This notion is supported by our findings in two out of

seven patients where we could confirm a mutation in
the proteome, once directly and in the other case
through the introduction of an additional tryptic cleav-
age site by mutation. A comparable approach has been
published for rhabdomyosarcoma xenografts, claiming
this might be a way to infer relevance for PNE deter-
mined by bioinformatics algorithms [78].
Searching for alternatives, we assessed cancer-testis

antigens contained among HLA ligands in HCC, which
was unrewarding. Furthermore, the odds for administer-
ing targeted therapies available to HCC patients in our
cohort remained small as previously encountered [28],
so we additionally assessed RNA expression and bench-
marked data to TCGA datasets to pinpoint signaling
pathways that might be harnessed for therapeutic pur-
poses in the future.

Conclusions
We failed to confirm any exome-derived mutated HLA
ligands with sophisticated (targeted) MS approaches in
HCC, supporting the assumption that in malignancies
with low TMB immunoediting may be a relevant driving
force shaping the HLA ligand landscape [84]. Certainly,
LC-MS/MS comes with specific limitations that must be
considered and HLA ligands may be missed, but it re-
mains the best tool currently available.
Paying close attention to the rules of HLA presen-

tation is important and may support choosing suit-
able NElig candidates. We therefore screened our
HLA ligand database and found that respective
knowledge may indeed guide selection. Undoubtedly,
since the HLA ligandome is very complex and our
data are limited, the required knowledge needs to be
generated in a community effort [85]. Even though
our results do suggest there may be relevant value in
this approach, the attempt will evidently not solve
the underlying probabilistic issues encountered with
rare NElig in HCC. As the scope of our work was
primarily focused on simple NElig, derived from
exome-derived low complexity variants, our analyses
suggest this is only a narrow subset of potential tar-
gets that might be used for personalized immuno-
therapies. Among interesting avenues to be pursued
in the future are non-mutated neoantigens [86] and
tumor alterations influencing the HLA ligandome
composition of malignancies [34], as well as RNA
editing and splicing [87, 88], post-translational modi-
fications [89, 90] and targets beyond the exome [91].
In this regard, we may curb the enthusiasm for sim-
ple NElig in HCC, simultaneously suggesting that
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there is a wide array of alternatives available, which
is not even tapped remotely today.
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