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ABSTRACT

Biological robustness, defined as the ability to
maintain stable functioning in the face of various
perturbations, is an important and fundamental
topic in current biology, and has become a focus
of numerous studies in recent years. Although
structural robustness has been explored in several
types of RNA molecules, the origins of robustness
are still controversial. Computational analysis
results are needed to make up for the lack of
evidence of robustness in natural biological sys-
tems. The RNA structural robustness evaluator
(RSRE) web server presented here provides a
freely available online tool to quantitatively evaluate
the structural robustness of RNA based on the
widely accepted definition of neutrality. Several
classical structure comparison methods are
employed; five randomization methods are imple-
mented to generate control sequences; sub-optimal
predicted structures can be optionally utilized to
mitigate the uncertainty of secondary structure
prediction. With a user-friendly interface, the web
application is easy to use. Intuitive illustrations are
provided along with the original computational
results to facilitate analysis. The RSRE will be
helpful in the wide exploration of RNA structural
robustness and will catalyze our understanding of
RNA evolution. The RSRE web server is freely
available at http://biosrv1.bmi.ac.cn/RSRE/ or
http://biotech.bmi.ac.cn/RSRE/.

INTRODUCTION

Biological robustness, a fundamental and ubiquitous
phenomenon observed in biological systems, is broadly
understood as the ability to maintain stable functioning in
the face of various perturbations. Depending on whether
the perturbations are inheritable or not, robustness is
characterized as genetic (mutational) or environmental

robustness (1). Genetic robustness describes insensitivity
of a phenotype facing genetic mutations, and the
insensitivity to environmental factors is called environ-
mental robustness. Biologists have a long-standing interest
in biological robustness, going back to Fisher’s work on
dominance (2–4) and Waddington’s developmental cana-
lization research (5,6). Robustness has become a focus of
numerous studies in recent years, and has been found at
various levels of biological systems, including gene
expression, protein folding, metabolic flux, physiological
homeostasis, development and even organism fitness (7).
Hiroaki Kitano argued that the requirements for robust-
ness and evolvability are similar, since robustness facil-
itates evolution and evolution favors robust traits (8). A
proper understanding of the origins of robustness in
biological systems will catalyze our understanding of
evolution (9).

The secondary structure of RNA is a suitable test bed
for studying biological robustness. Wagner and Stadler
provided evidence that robustness of RNA viruses to
mutational changes in secondary structure has evolved
(10). Mutational robustness has also been found in viroids
(11,12). By examining microRNA genes of serveral
species, Borenstein and Ruppin (13) recently showed
that the structure of miRNA precursor stem-loops
exhibits a significantly high level of genetic robustness,
compared with random sequences with similar stem-loop
structures as native miRNAs which were generated by
inverse folding algorithm, indicating that this excess
robustness of miRNA went beyond the intrinsic robust-
ness of the stem-loop hairpin structure. Furthermore,
they demonstrated it was not the by-product of a base
composition bias. Their findings suggest that the excess
robustness of miRNA stem-loops is the result of direct
evolutionary pressure toward increased robustness (13).

Although the mechanisms of robustness have been
widely explored (13–15), to date, the evolutionary origins
of robustness are still controversial, which is partly due
to the difficulty in providing evidence for robustness in
natural biological systems (16). Addressing this challenge,
a convenient computational tool for the structural
robustness evaluation is strongly needed.
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The RNA structural robustness evaluator (RSRE)
presented here is a web tool developed for RNA structural
robustness evaluation, both for genetic robustness and
environmental robustness. By using classical RNA struc-
tural distance measurement methods, the robustness of
a given RNA and its control sequences can be evaluated
quantitatively based on a generalized definition of
neutrality. The RSRE web server will finally give
statistical significances of the robustness differences
between the given RNA and its control sequences. The
RSRE will facilitate wide exploration on the origins
of robustness and catalyze our understanding of RNA
evolution.

METHODS

Control sequence generation

Random sequences are used to extract statistical signifi-
cance for properties from biological sequences, providing
the ‘back-ground noise’ to differentiate the real biological
information (17). However, a simple randomization
method of RNA sequence obscures the frequencies of
the mononucleotides and dinucleotides, which are biased
and crucial for the physical stability of the secondary
structure (18–21). It is consequently essential to rule
out the bias of base compositions in the robustness
analysis. To this end, we can generate additionally four
types of random sequences preserving the exact or nearly
exact mononucleotide and dinucleotide base compositions
as the native sequence, besides the pure random
sequences. The five randomization methods used in
RSRE are described in detail as follows:

� Pure random. This method produces pure random
sequences with the same length as the original.
The mononucleotide and dinucleotide frequencies are
completely distorted using this method.

� Shuffling based on zero-Markov model. The mononu-
cleotide frequencies, P(b), for the native biological
sequence are calculated and used to generate a random
sequence in which bases were simply chosen at random
from P(b) until the length of the native sequence is
reached.

� Mono-shuffling. This type of shuffling is done by
permuting the nucleotides of the sequence at
random. The dinucleotide frequencies are completely
distorted using this method.

� Shuffling based on first-Markov model. This method
derives as first-order Markov model from the condi-
tional probabilities P(a|b) of nucleotide a given b,
which is found from the frequencies of all possible
pairs ab in the biological sequences. A random
sequence is generated by first choosing a random
nucleotide x1, and then, a sequence is generated by
choosing each nucleotide xiþ1 from the probability
P(xiþ1|xi). The process will stop when the sequence
has exactly the same length as that of the native.
This method produces shuffled sequences with dinu-
cleotide frequencies close to the original sequences.
Mononucleotide frequencies are not preserved.

� Dishuffling. In this method, a sequence is shuffled while
keeping the dinucleotide distribution (or frequency)
constant. A similar implementation of the Erikson–
Altschul algorithm (18,19) was used. The dinucleotide
and mononucleotide frequencies are exactly preserved.

Considering that certain secondary structures may be
inherently more robust than others, random sequences
with both phenotypically similar configurations and
similar base compositions as native RNAs are also
needed to control the effects of secondary structure in
some researches (13). However, it is difficult to provide
such control sets by most computational servers, due to
the high computational cost (13). With the development of
fast RNA inverse folding algorithms, we will find
approaches to provide this kind of control sets in the
future version of our web server.

Robustness evaluation

Experimental researches have demonstrated that the
secondary structure of some RNAs are tolerant to some
mutational changes (11–13,22–25). To reflect this flex-
ibility in sequence/structure requirements, at a given
threshold Tj, we defined the robustness � j as follows:

�j ¼ NjðdÞ
� �

, j ¼ 0,1,2, . . . ,9, 1

where d is the secondary structure distance between the
original RNA and its mutant, and Nj(d) is the number of
mutants with structure distance lesser than or equal to the
threshold Tj. �j is the average of Nj(d) over all 3�L one-
mutant neighbors at the threshold Tj. The maximum value
of the secondary structure distances between the random
sequences and their mutants was used as a baseline value
to evaluate the threshold level of each distance metric
(Supplementary Figures S1 and S2). The threshold Tj,
j¼ 0,1,2,. . .,9 was set to 0, 10, 20,. . ., 90% of the
maximum value of the metric, respectively. At threshold
T0, robustness is reduced to the definition of neutrality
(13). The larger value of the robustness � j at threshold Tj

indicated a relatively higher level of robustness.
A variety of distance measures for secondary structures

(26–29) realized by RNAdistance in the Vienna RNA
package (version 1.6) (27,30) were used to compare the
secondary structures between the wild-type and its
mutants, including tree-edit distance, string distance and
base-pair distance (27,31,32).
The RNAfold and RNAsubopt (32) in the Vienna RNA

package (version 1.6.1) (27,30) were utilized with default
parameter values T¼ 378C to predict the secondary
structures. The former is a variation of the Zuker and
Stiegler’s (33,34) minimum free energy algorithm, while
the latter is for the calculation of all sub-optimal
structures within a user-defined energy range above the
minimum free energy (MFE). In order to mitigate
the uncertainty of the MFE structure, sub-optimal
structures of mutants within 1 kcal/mol (the default setting
of RNAsubopt) above the MFE are considered.
A synthetic estimation method is used to estimate the
differences between the structures of the wild-type R and
possible structure set of the mutants �� ¼ fR�

1,R
�
2, . . . ,R

�
ng,

Nucleic Acids Research, 2007, Vol. 35,Web Server issue W315



where R�
i represents the ith predicted structure of

the mutant. It is given by summing the contributions
of all structures weighted by their Boltzmann probabil-
ities, which is similar to the methods used in
other researches (35). In this case, the distance is
given by d0ðR,��Þ ¼

Pn
i¼1 wi � dðR,R

�
i Þ=

Pn
i¼1 wi, where

wi ¼ expf�½EðRi
�Þ � EðR�

MFEÞ�=ktg.
To explore the evolutionary origins of genetic robust-

ness, we also examined the thermodynamic stability
of RNAs in an analogous manner to the method used
in previous researches (18,19,36), due to the possible
correlation between the thermodynamic stability
(environmental robustness) of the minimum free
energy structure of a given sequence and its genetic
robustness (32).

Statistical significance analysis of robustness

At each threshold Tj, we evaluated the robustness �i of the
inputting sequence and �j ¼ f�ci

j ,i ¼ 1,2, . . . ,Ng of the
corresponding control sequence set X (N is the number of
sequences in the control set X), and then compared � i with
Wj. The Z-score and P-value were then computed to
determine whether the secondary structure of the input-
ting RNA molecular showed significantly more robustness
than the control sequences. The Z-score is defined as:

Z �j
� �

:¼
�j

� �
� �j

� �j

� � , j ¼ 1,2, . . . ,7 2

where �h i and �(�)denote the mean and the standard
deviation of Wj, respectively. The P-value of �j is the
fraction of sequences in X having robustness greater than
the inputting RNA molecular, defined as:

p �j
� �

:¼
M

Nþ 1
, j ¼ 1,2, . . . ,7 3

where M is the number of sequences with more robustness
than the inputting RNA molecular in X.
The statistical significance analysis of environmental

robustness was similar to that done for genetic robustness,
in which the robustness �j at threshold Tj was replaced by
free energy of the sequences.

IMPLEMENTATION

The core module of RSRE is written in Cþþ and the web
interface is implemented in PHP and JavaScript. RSRE
runs on two work stations with dual AMD X64 CPUs, 4G
memory and Linux operating system.

Input and options

With a step-by-step style input interface (Figure 1), the
RSRE web server is easy to use. A valid email address
is required for each job. The sequence of an RNA
molecule can be inputted either by pasting raw sequence
or by uploading sequence file in FASTA format. The
sequence should be a string of unmodified RNA/DNA
bases (A, U/T, G and C), any other character in the
sequence will be edited out. Multi-FASTA (MFA)
format sequence file is also supported to facilitate users.

The inputting limit is set to 10 sequences for a job and 200
bases for each sequence. The analysis scheme is designed
to be custom-built for users. The methods for using the
sub-optimal structures can be selected by users. Users can
also choose any one of the randomization methods
described above and the number of control sequences
according to their analysis requirements. Evaluation of
either type of robustness (environmental robustness and
genetic robustness) or both of them can be selected by the
user. In the case of genetic robustness, users can select the
algorithms for computing structure distance.

Output

To illustrate how our web applications can be helpful to
the evaluation of the RNA structural robustness, the
Caenorhabditis elegans let-7 microRNA precursor, one of
the founding members of the microRNA family (37,38),
was submitted to RSRE. A notification email containing a
URL linked to the output page (Figure 2A) was sent to
the user when the job was completed. This URL remains
valid for 48 h. To make the analysis results intuitive, the
statistical distributions of free energy and robustness value
� j at threshold Tj, j¼ 0,1,2,. . .,9 are calculated and
illustrated as histograms. By selecting the content item
and clicking the ‘view’ button on the output page, the
details of the results can be viewed as graphic representa-
tions. Figure 2B is the distribution histogram of free
energy of cel-let-7 with its corresponding control
sequences preserving the dinucleotide frequencies.
Figure 2C is the distribution histograms of the robustness
values at different threshold levels. With a hyperlink
located at the bottom of the output page (Figure 2A), the
output page offers download of the results as a single
packed file in ‘.gz’ format for off-line analysis. In addition
to the robustness distribution histograms (in ‘PNG’image
format), the corresponding P-value and Z-score of let-7 at
different thresholds (in ‘TXT’text format), the correspond-
ing control sequences (in MFA format) and the robustness
values at all the 10 threshold levels of let-7 and its
corresponding 1000 control sequences (in ‘TXT’ text
format) are also included in the result file (Figure 2D).
The result file name is in the form ‘yymmddhhmmss.no’,
where ‘yy’ is year, ‘mm’ is month, ‘dd’ is day, ‘hh’ is hour,
‘mm’ is minute, ‘ss’ is second and ‘no’ is serial number.

Performance of the web server

To test the computational efficiency of RSRE, 10 groups
of random sequences with 8 different lengths (from 25 to
200 with step 25) were submitted. All types of structure
distance measurement are used in these tests. The CPU
time of the 10 groups’ tests is illustrated in Supplementary
Figure S3. Since June 2006, the two sites have been active
for several months and served over 1000 submissions.

CONCLUSION

The RSRE web server we presented here provides a
freely available online tool for RNA structural robust-
ness evaluation. The sufficient control data and the
widely accepted definition of neutrality give high
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Figure 1. Web interface of RSRE.
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reliability to the estimation results. The sub-optimal
predicted RNA structures can also be optionally involved
to mitigate the uncertainty of secondary structure
prediction. Intuitive illustrations are provided along
with the original computational results in the output

page of RSRE to facilitate analysis. RSRE will facil-
itate a wide range of studies on RNA structural
robustness, and therefore, will be helpful in RNA evolution
exploration, artificial RNA design and other related
research.

Figure 2. Robustness analysis results of Caenorhabditis elegans let-7 microRNA precursor. Both the environmental robustness and genetic robustness
with base-pair distance metric were evaluated. The number of control sequences that preserved the dinucleotide frequency with let-7 is 1000.
(A) Output page of RSRE. (B) Free energy distribution histogram. (C) Robustness distribution histograms at different threshold levels. (D) In
addition to the histogram figures, the Z-score and P-value of let-7 at different threshold levels (in ‘TXT’ text format), the corresponding 1000 control
sequences (in ‘MFA’ format), and the robustness values at all 10 levels of let-7 and its corresponding 1000 control sequences (in ‘TXT’ text format)
can be downloaded through a hyperlink located at the bottom of the output page.
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FUTURE PLANS

To provide a wide basis for RNA robustness exploration,
our future works will focus on increasing the computa-
tional ability of the web server. By using a supercomput-
ing blade system, the limit of inputting sequence length
will be eased to meet the need of ncRNA robustness
analysis in more cases. Also, in the future, we will provide
more randomization methods, including the method-
generating random sequences with both phenotypically
similar configurations and similar base compositions as
native RNAs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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