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Investigating the Mechanism of Chufan Yishen Formula in Treating
Depression through Network Pharmacology and Experimental
Verification
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ABSTRACT: Objective: To investigate the antidepressant effect and potential mechanism of =~ [ chum Yihen | e
the Chufan Yishen Formula (CFYS) through network pharmacology, molecular docking, and ) ‘ He‘lm"lcun"o]
experimental verification. Methods: The active ingredients and their target genes of CFYS were [ Tese D
identified through Traditional Chinese Medicine Systems Pharmacology (TCMSP) and >
TCM-ID. We obtained the differentially expressed genes in patients with depression from the
GEO database and screened out the genes intersecting with the target genes of CFYS to m—
construct the PPI network. The key pathways were selected through STRING and KEGG. I J
Then, molecular docking and experimental verification were performed. Results: A total of 113 [ I T
effective components and 195 target genes were obtained. After intersecting the target genes e
with the differentially expressed genes in patients with depression, we obtained 37 differential |
target genes, among which HMOX1, VEGFA, etc., were the key genes. After enriching the I =
differential target genes by KEGG, we found that the “chemical carcinogenesis-reactive oxygen
species” pathway was the key pathway for the CFYS antidepressant effect. Besides, VEGFA
might be a key marker for depression. Experimental verification found that CFYS could significantly improve the behavioral
indicators of rats with depression models, including improving the antioxidant enzyme activity and increasing VEGFA levels. The
results are consistent with the network pharmacology analysis. Conclusions: CFYS treatment for depression is a multicomponent,
multitarget, and multipathway complex process, which may mainly exert an antidepressant effect by improving the neuron
antioxidant stress response and regulating VEGFA levels.
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1. INTRODUCTION

Depression is a mental illness characterized by persistent low
mood and cognitive dysfunction, including symptoms such as
anhedonia, inattention, sleep disorders, reduced appetite, and
recurring suicidal thoughts." In China, the number of people
with depression exceeds 95 million, making depression the
second most significant national disease burden. It has a high gory.

mainly consist of antidepressants and other drugs with
antidepressant effects. The most commonly used in clinical
practice are the newer antidepressants, which regulate the
functions of monoamine neurotransmitters in the brain, such as
5-HT, dopamine (DA), and noradrenaline (NA). In China, the
most frequently used antidepressants belong to this cate-
719 Though Western medications act quickly, they often

disability and mortality rate, severely affecting the health of the
population.”?

The etiology and pathogenesis of this disease are still unclear.
Based on extensive clinical research, it is believed that genetic
factors, neurobiochemical factors, psychological factors, and
social factors all have a significant impact on its onset.*® The
neurobiochemical factors mainly include a deficiency in 5-
hydroxytryptamine (S-HT) synthesis, changes in the hypo-
thalamic—pituitary—adrenal (HPA) axis, neuroplasticity and
neurogenesis, and alterations in the brain structure and
function. Western medicine treatment consists of non-
pharmacological and pharmacological approaches. Typical
nonpharmacological treatments include psychotherapy and
physical exercise. While these treatments do not have drug-
related side effects, they act slowly and can be easily influenced
by patients’ subjective feelings.” Pharmacological treatments
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lead to side effects, such as gastrointestinal reactions, dizziness,
and blurred vision. Additionally, they can lead to drug resistance,
and their long-term efficacy is questionable. Clinical studies
show that even among patients who respond to treatment, the
recurrence rate of depression can be as high as 70%."" Therefore,
there is an urgent need to understand the mechanisms of
depression and find more effective treatments to improve
clinical outcomes.
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Traditional Chinese medicine (TCM) has shown notable
clinical efficacy in treating depression, with certain advantages
over Western medicine in terms of side effects and long-term
efficacy.”'> When combined with Western medication, TCM
not only enhances the antidepressant effect but also mitigates
some side effects. Furthermore, TCM offers a holistic treatment
approach, with multicomponent and multitarget action, which is
a key feature of its clinical application.'”'* The Chufan Yishen
Formula (CFYS) is an in-hospital formulation of our institution
(approval number: Su Medicine System Z04001408), with
effects such as resolving both the exterior and interior and
calming the mind. It has proven to be effective in clinical practice
for treating depression. However, due to the complexity of the
active components in TCM, understanding their exact
mechanisms remains a challenge.

The rapid development of network pharmacology in recent
years has provided a novel approach to studying TCM. This
interdisciplinary field leverages databases, high-throughput
omics technologies, bioinformatics, and network visualization
tools to build multidimensional biological network models. By
analyzing these networks, researchers can identify key nodes and
understand how drugs intervene with disease-causing networks,
paving the way for predicting active components, targets, and
potential mechanisms of action."”™"” Given its compatibility
with the multicomponent nature of TCM, network pharmacol-
ogy can offer a new perspective on understanding and validating
efficacy and safety. Therefore, this research intends to explore
the mechanisms of CFYS in treating depression from a modern
medical perspective using network pharmacology and exper-
imental verification. This will provide a foundation for further
promotion of the clinical application of CFYS.

2. MATERIALS AND METHODS

2.1.Data Collection. The GSE76826 transcriptome data set
of blood samples from depression patients was downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
for analysis. The GSES4570 depression data set was also
downloaded for diagnosis efficiency validation. The GEO data
set was processed according to the following standards: probes
were converted into symbols based on the corresponding
relationship on each platform. Probes that corresponded to
multiple genes were removed, and if multiple probes
corresponded to the same symbol, the average was taken. The
GSE76826 data set contains transcriptome data from 20 patients
with depression and 12 healthy individuals. The GSE54570 data
set includes transcriptome data from 13 patients with depression
and 13 healthy individuals.

2.2. Identification of Active Ingredients. The chemical
components and targets of CFYS, which contains nine types of
Chinese herbs (Bupleurum, Paeonia lactiflora, Rehmannia,
Chuanxiong, Angelica, Dragon bone, Opyster, Alisma, and
Licorice), were obtained using the Traditional Chinese
Medicine Systems Pharmacology Database and Analysis Plat-
form (TCMSP, https://tcmsp-e.com/tcmsp.php). No informa-
tion about dragon bone and oyster was found in the TCMSP
database. Five components of oyster were obtained from the
TCM-ID database (https://www.bidd.group/TCMID/), four
of which had OB values below 30% in the TCMSP; one
component (TCM-ID: TCMC2018) was predicted by
SwissADME (http: //www.swissadme.ch/), only one of the
five drug properties (Lipinski, Ghose, Veber, Egan, and
Muegge) was “yes”, and the GI absorption was low, indicating
that it is not an active substance. One component of dragon

bone was obtained from the TCM-ID database, which is the
same as one of the components in oyster (TCM-ID:
TCMC2018), indicating that it is not an active substance.
Therefore, we analyzed only the seven Chinese herbs
(Bupleurum, Paeonia lactiflora, Rehmannia, Chuanxiong,
Angelica, Alisma, and Licorice) in CFYS. The target genes
were converted from targets using the protein gene
correspondence in the Uniprot database.

2.3. Construction of Network of Active Components
and Corresponding Target Genes. The association network
was visualized using Cytoscape v3.9.1 software using the
effective components and corresponding target gene data from
the TCMSP database.

2.4. Disease-Related Differentially Expressed Genes
and Enrichment Analysis. The limma package in R was used
to determine differentially expressed genes in depression
patients. Genes that were differentially expressed between the
disease group and the normal group were screened based on a
significance threshold p-value <0.05. GO analysis is a primary
bioinformatics tool for gene annotation and its products,
including three categories: cellular components (CCs),
molecular functions (MFs), and biological pathways (BPs).
KEGG is a collection of databases, which contains information
about genomes, biological pathways, diseases, and chemicals.
The clusterProfiler package was used to perform GO functional
enrichment and KEGG pathway analysis on the differentially
expressed genes to predict their potential molecular functions. A
p-value <0.05 was considered statistically significant.

2.5. Screening for Potential Key Pathways. KEGG is a
collection of databases, including information on genomes,
biological pathways, diseases, and chemicals. The clusterProfiler
package was used to perform KEGG pathway analysis on the
differential target genes of CFYS, screening for potential key
pathways of drug action. A p-value <0.05 was considered
statistically significant.

2.6. Molecular Docking. The structures of the active
components were obtained from the TCMSP database. Charges
were adjusted, and torsion keys were detected using
AutoDocktools, and they were saved as pdbqt files. The three-
dimensional structure of the protein was obtained from the
RCSB (https://www.rcsb.org/), prioritizing structures obtained
via X-ray method, high-resolution, and having a ligand. The
original ligand small molecule was removed by using PyMol to
facilitate docking with other molecules. AutoDocktools was then
used on this protein to dehydrate and hydrogenate, calculate
charge, add atomic types, and save as a pdbqt file. Molecular
docking was carried out using AutoDock vina, and the binding
action diagram of the active components and proteins was
displayed using PyMol.

2.7. Diagnostic Efficiency of Key Markers. The
diagnostic efficiency of target genes of the potential pathway
of drug action on disease was analyzed. The pROC package in R
was used to analyze the diagnostic efficiency of target genes on
depression. The same method was used for validation in the
GSES54570 data set.

2.8. Experimental Verification. 2.8.1. Animal Grouping,
Drug Administration, and CUMS Model Establishment. After
1 week of adaptive feeding, rats were divided into control group
(Control), model group (DP), and high-dose (DP + CFYS-S g/
kg), medium-dose (DP + CFYS-2.5 g/kg), and low-dose groups
(DP + CFYS-1.25 g/kg) with six rats per group based on a
random number table method. CUMS modeling was carried out
in reference to the literature.'®'? Stimuli included: 12 h of food
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Figure 1. Herb-effective component-target network. The circles represent the herbal materials, the hexagons around the herbal materials represent the
unique effective components of this kind of herbal material, and the independent hexagons (A1, A2, B1, C1, D1, E1, and F1) represent the effective
components shared by two or more kinds of herbal materials. The diamonds in the middle represent the target genes, and the size of the figures

represents the degree value.

deprivation, 12 h of water deprivation, reverse day and night, 8 h
of wet padding, 1 h of 60 Hz noise stimulation, 2 min of tail
clamping, 15 min of cage shaking, 5—10 min of swimming in 4
°C ice water, and 2 h of restraint. Two of the nine types of stimuli
were randomly chosen each day, without repetition within 3
days, and the stimulus lasted 11 weeks. Drug intervention began
in the seventh week of CUMS intervention, and the drug was
continuously administered for 5 weeks. After S weeks of
administration, behavioral tests were performed. After the
behavioral tests, all rats were fasted overnight, euthanized with
inhaled CO,, and the entire brain tissue was removed. The right
brain tissue was quickly frozen in liquid nitrogen and stored at

—80 °C for later use, while the left-brain tissue was fixed in 4%
polyformaldehyde and embedded in paraffin.

The CFYS ingredients were obtained from the Preparation
Room for TCM in our hospital after quality control. The main
procedure was the following: Bupleurum 100 g, Paeonia
lactiflora 100 g, Rehmannia 100 g, Ligusticum striatum 100 g,
Angelica sinensis 100 g, Dragon bone (Fossilia Ossis Mastodi)
300 g, Oyster shell (Concha Ostreae) 300 g, Alisma plantago-
aquatica 100 g, and Licorice (Glycyrrhiza) 100 g. Soak in 5000
mL of water and simmer for 1 h, then retrieve the medicinal
solution and add another 3000 mL of water, simmer for another
hour, combine the medicinal solutions, filter, and let stand

https://doi.org/10.1021/acsomega.3c08350
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Figure 2. Differential expression analysis. (A) Volcano plot of the differential expression analysis; green represents downregulated genes, red
represents upregulated genes, and gray represents genes with nonsignificant expression; (B) heatmap of differential gene clustering.
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Figure 3. Enrichment analysis. (A) Biological process (BP) enrichment, (B) cellular component (CC) enrichment, (C) molecular function (MF)
enrichment, and (D) KEGG pathway analysis.
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overnight, and then take the supernatant and concentrate to 950
mL. Stir while it is hot; add 4.0 g of sodium benzoate, let it settle
for 48 h, and then add the solution of hydroxybenzoate dissolved
in ethanol, add water to reach 1000 mL, stir, divide, and sterilize
to obtain CFYS.

2.8.2. Behavioral Evaluation. Open field experiment: after
the drug intervention, the rat’s activity during a S min open field
experiment was recorded, and the rat’s immobility time, total
movement distance, and number of grid crossings in the central
area within the last 3 min were analyzed.

Forced swim test: food was restricted 12 h before the
experiment without restricting water, and rats were placed in a
swimming tank. The time rats remained immobile in the water
for S min was recorded, i.e., the time when the rats stopped
struggling and floated or only made minor limb movements to
keep their heads above the water.

2.8.3. Detection of Oxidative Stress Indicators. Appropriate
brain tissue was taken and washed with cold saline. A tissue
homogenate (10% (w/v)) was prepared by homogenizing the
tissue in cold saline (pH 7.0). The contents of Cu/Zn-
superoxide dismutase (SOD), Mn-SOD, SOD, glutathione
peroxidase (GSH-PX), catalase (CAT), glutathione (GSH), and
malondialdehyde (MDA) were detected using test kits and
measured under a fluorescence spectrophotometer.

2.8.4. Detection of VEGFA Content by ELISA. Appropriate
brain tissue was taken, and phosphate-buffered saline (PBS) was
added at a mass/volume ratio of 1:9. After grinding on ice with a
hand-held homogenizer, it was centrifuged at a low temperature
at 14,000 rpm for 15 min, and the supernatant was taken. The
total protein in the supernatant was quantified using a BCA kit,
and then the standard dilution, sample addition, and processes
of incubation, washing, enzyme addition, incubation, washing,
color development, and reaction termination were completed in
strict accordance with the ELISA kit instructions. The optical
density (OD) values of VEGFA in the rat brain tissue of each
group were measured in order at a wavelength of 450 nm using
an enzyme marker.

2.8.5. Statistical Analysis. Data were analyzed using SPSS
24.0 and presented as mean + standard deviation (x + s). One-
way analysis of variance was used for intergroup comparison,
and LSD-t test was used for multiple comparisons between
groups. P < 0.05 was considered statistically significant.

3. RESULTS

3.1. Compound-Target Network and Analysis. Effective
components of the seven herbs in CFYS, Bupleurum, Paeonia
lactiflora, Rehmannia, Ligusticum wallichii, Angelica, Alisma,
and Licorice were obtained from the TCMSP database. Effective
components were screened through OB > 30% and DL > 0.18,
and a total of 113 effective components and 195 target genes
were obtained. Based on the relationship among the 7 herbs in
CFYS, 113 effective components, and 195 potential target genes,
a herb-effective component-target network (Figure 1) was
constructed. The results showed that the effective components
quercetin (MOL000098) and kaempferol (MOL000422) had
the most target genes and may play a more important role.

3.2. Differential Expression Analysis and Function
Enrichment. In order to study the differences in gene
expression between patients with depression and normal people,
we used the “limma” package to perform differential expression
analysis between different samples, with a differential gene
screening condition of p-value <0.0S. We obtained 5031 genes
that are differentially expressed in patients with depression, of

which 3039 are upregulated genes and 2042 are downregulated
genes (Figure 2). We then used clusterProfiler for enrichment
analysis. The results showed that these differentially expressed
genes were mainly enriched in vesicle membrane, transcriptional
regulatory complexes, interacting with transcription coregula-
tory factor activity, ubiquitin-like protein ligase binding,
participating in the proteasome protein degradation metabolic
process, precursor metabolites, energy production, etc. (Figure
3A—C). KEGG analysis results showed that differentially
expressed genes are mainly enriched in various neurologically
relevant diseases, such as neurodegenerative diseases, Alz-
heimer’s disease, etc. (Figure 3D).

3.3. Differential Target Genes. The intersection of
differential genes (DEGs) and CFYS target genes (X-TGs)
resulted in 37 CFYS acting as differential target genes (Figure 4).

37

Figure 4. Differential target genes of CFYS.

To explore the interaction of differential target genes, we used
the String database to construct a PPI network based on
differential target genes (Figure SA). We used Cytoscape v3.9.1
software to visualize the PPI network. Since genes GABRA1 and
ABAT have no interaction with other genes, the PPI network
only has interaction relations with 35 genes. The MCODE was
used to identify key modules, and based on the submodules
(Figure SB,C), it can be known that genes such as HMOXI,
VEGEFA, etc,, are key genes among the differential target genes.

3.4. Key Pathway of CFYS. To explore the key pathway of
CFYS, we used clusterProfiler to conduct KEGG pathway
analysis on the 37 differential target genes. A total of 120
pathways were enriched (p < 0.05). We sorted by the size of the
P-value and selected the top 15 pathways for display (Figure 6).
In addition, the pathway related to depression, “chemical
carcinogenesis-reactive oxygen species”, is one of the top 15
pathways."”

3.5. Active Ingredient and Target Gene Affinity.
Through Figures 3D and 6, we can confirm that the “chemical
carcinogenesis-reactive oxygen species” pathway is a key
pathway in depression. Therefore, we further studied the
combination activity of 10 “chemical carcinogenesis-reactive
oxygen species” pathway-enriched genes and their correspond-
ing 52 CFYS active ingredients, including GSTM2, CHUK,
GSTM1, HMOX1, NFKBIA, VEGFA, MAPK1, CYP1Bl,
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Figure S. PPI network. (A) CFYS acting differential target gene interaction network and (B,C) two key submodules identified by MCODE in
Cytoscape software; red represents differential upregulated genes, blue represents differential downregulated genes, and the area of the node represents

the degree value.

MAPK14, and IKBKB. We carried out 64 docking combina-
tions. In the AutoDock vina results, the smallest score indicates
the best binding. The conformation with the smallest binding
energy in each gene was selected for display (Figure 7).

3.6. Diagnostic Efficacy of Key Markers. Based on the 37
differential target genes acted on by CFYS, we used the pROC
package to calculate the marker’s diagnostic effect on depression
and plotted the ROC curve. The same method was used in the
validation set GSE54570 to validate the marker’s diagnosis. The
ROC is a curve composed of the true positive rate and false
positive rate, and the AUC value represents the probability that
the true positive is greater than the false positive. The results
showed that VEGFA has a good predictive ability for depression
(Figure 8).

3.7. Effect of CFYS on CUMS Rats. The results are listed in
Table 1. It can be seen that the immobility time of the depressed
model rats significantly increased in the open field test, while the
total movement distance shortened, and the number of grid
crossings in the central area decreased, indicating that the model
was successfully constructed. After intervention with CFYS, the
aforementioned behavioral indicators of depressed rats sig-
nificantly improved.

As shown in Figure 9, the results show that in the model
group, the activity of antioxidant enzymes in rats significantly
decreased, including the levels of SOD, Mn-SOD, Cu/Zn-SOD,
GSH, GSH-PX, and CAT decreased (Figure 9A—F), while the
MDA level increased (Figure 9G). Intervention with CFYS
could significantly reverse these changes and show a dose-
dependent relationship. Also, the study found that iron ion levels
were significantly increased in the model group (Figure 9H),
and CFYS could improve the VEGFA level in a dose-dependent

manner. These results suggest that CFYS may treat depression
by antagonizing oxidative stress.

4. DISCUSSION

In this study, we explored the mechanism of CFYS in the
treatment of depression through network pharmacology and
experimental verification. First, we used the method of network
pharmacology to obtain the effective components and target
genes of CFYS from the TCMSP database. The analysis results
show that two effective components, quercetin (MOL000098)
and kaempferol (MOL000422), have the most target genes.
Existing research confirms that quercetin can play a neuro-
protective role through its antioxidant, anti-inflammatory,
antiapoptotic properties, and anticalcium overload.”' =’ It can
exert antidepressant effects through various mechanisms,
including regulating the imbalance of triggering receptors
expressed on myeloid cells 1/2 (TREM1/2)** and nuclear
factor E2-related factor 2 (Nrf2) signaling pathways.”
Kaempferol can exert a neuroprotective effect by regulating
various proinflammatory signaling pathways, such as nuclear
factor kB (NF-kB) and p38 mitogen-activated protein kinase
(p38MAPK).”° Kaempferol can exert an antidepressant effect by
mediating neuroinflammation and oxidative stress responses
through the AKT/f-catenin pathway.”” Therefore, the effective
components in CFYS, including quercetin and kaempferol, may
be the main material basis for its antidepressant effects.

We further analyzed the expression differences of these target
genes in depression and the biological processes and pathways in
which they participated. Enrichment analysis revealed that the
biological processes participated by differential genes, such as
vesicle membrane, transcriptome regulation complex, protea-
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Figure 6. KEGG pathway analysis.
some protein degradation metabolic process, etc. These successfully constructed a PPI network, among which
pathways all play a certain role in the progression of HMOXI1 and VEGFA showed higher degrees of association
depression.”*™*° This may be one of the mechanisms by and were key nodes in this network, indicating that the
which CFYS treats depression. In addition, the study antidepressant effect of CFYS active ingredients is related to
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Figure 7. Typical molecular docking diagram. (A) The conformation has the smallest binding energy of CHUK and quercetin (—7.6), (B) the
conformation with the smallest binding energy of CYP1B1 and quercetin (—10.0), (C) the conformation with the smallest binding energy of GSTM1
and kaempferol (—6.0), (D) the conformation with the smallest binding energy of GSTM2 and kaempferol (—6.9), (E) the conformation with the
smallest binding energy of HMOX1 and kaempferol (—7.2), (F) the conformation with the smallest binding energy of IKBKB and kaempferol (—9.4),
(G) the conformation with the smallest binding energy of MAPK1 and licochalcone a (—8.4), (H) the conformation with the smallest binding energy
of MAPK14 and (E)-3-[3,4-dihydroxy-S-(3-methylbut-2-enyl)phenyl]-1-(2,4-dihydroxyphenyl) prop-2-en-1-one (—9.2), (I) the conformation with
the smallest binding energy of NFKBIA and quercetin (—6.6), and (J) the conformation with the smallest binding energy of VEGFA and quercetin
(=5.0).
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Figure 8. Diagnostic efficacy of VEGFA. (A) ROC curve of the VEGFA gene diagnosing depression in the training set GSE76826, (B) ROC curve of

the VEGFA gene diagnosing depression in the validation set GSE54570.

Table 1. Effect of CFYS on the Behavior of Depression Model Rats (x + s)“

groups dose (g/ kg) immobility time total moving distance central area grid crossings nonmovement time
control 56.28 + 823 802.33 + 37.21 21.42 + 4.36 26.06 + 9.55
DP 13233 + 1147 416.91 + 24.07* 11.82 + 3.85° 71.12 + 6.73*
DP-1.25 125 117.23 + 9.38%® 519.92 + 22.25% 14.83 + 3.44 53.92 + 6.37%
DP-2.5 2.5 93.06 + 8.30% 565.84 + 24.12 17.39 + 4.06™ 43.72 + 7.46"
DP-§ 5 82.58 + 7.26" 662.40 + 25.38 18.93 + 4.17° 35.13 + 5.057
DP + EXT 87.74 + 7.54% 573.59 + 28.56™ 16.92 + 3.63% 4294 + 7.83%

“Compared with the control group, °P < 0.05; compared with the model group, *P < 0.05.

these targets. HMOXI1 is an important metabolic enzyme for
iron metabolism and antioxidative stress.”"*> HMOX1 plays an
important role in the antidepressant effect of traditional Chinese
medicine under the assistance of NADPH and cytochrome P450
reductase, consuming O, to catalyze the degradation reaction of
heme.”** According to the neurotrophic depression hypoth-
esis, VEGF may participate in the progression of depression.”
VEGFA is one of the most effective angiogenic growth factors in
the human body, whose basic mechanism is to promote
angiogenesis and increase blood supply.’® Increasing numbers
of studies have shown that VEGFA can affect neurogenesis in
multiple ways. VEGFA can bind to its receptor VEGFR2,
mediate the expression of downstream effector genes, and
promote the survival, migration, and proliferation of hippo-
campal neurons.””*® VEGFA also extensively participates in the
signal transduction of hippocampal nerve cells and plays an
important role in the proliferation, survival, and functional
maintenance of hippocampal nerve cells.”” The diagnosis of
depression by differential target genes through the ROC curve
analysis also found that VEGFA has a good predictive power for
depression. This suggests that the study of the mechanism of the
CFYS antidepressant effect may be related to oxidative stress
and neuronal function regulation mechanisms.

Using clusterProfiler to perform KEGG pathway analysis on
the 37 differential target genes, we found that the “chemical
carcinogenesis-reactive oxygen species” pathway might be the
key route in the CFYS treatment of depression. ROS and its
mediated neuronal function regulation play significant roles in
the progression of depression.”’~** This result aligns with the
results of the previous target gene analysis. Further molecular
docking study of 10 genes enriched in the “chemical carcino-

12706

genesis-reactive oxygen species” pathway and their correspond-
ing 52 effective CFYS components showed that these CFYS
effective components could interact favorably with key
regulatory genes in the “chemical carcinogenesis-reactive oxygen
species” pathway. Research has shown that oxidative stress levels
in the brains and peripheral fluids of patients with depression are
elevated.”” An increase in the ROS levels can lead to
neuroinflammation, further exacerbating depressive symptoms.
Chronic oxidative stress can damage cellular DNA, lipids, and
proteins, subsequently affecting the plasticity of neural cells.
This damage can result in impaired synaptic function and
hindered neural regeneration, both of which are associated with
the development of depression.”* ROS can interfere with the
metabolism of neurotransmitters, such as dopamine, cholecys-
tokinin, and S-hydroxytryptamine (serotonin), which might lead
to the onset or exacerbation of depressive symptoms. ROS can
also affect various cellular signaling pathways, such as NF-«B and
MAPK pathways. These pathways play a crucial role in cellular
survival, proliferation, differentiation, and apoptosis, and their
abnormalities may be linked to the onset and progression of
depression.*®

Upon experimental verification, it was discerned that CFYS
markedly ameliorated the behavioral indicators observed in the
depressive model rats. A pivotal aspect of this improvement was
the elevation in the activity of the antioxidant enzymes. Elevated
oxidative stress, often noted by increased levels of ROS as
discussed earlier, has consistently been linked to depression. An
abundance of studies delineates the adverse effects of unchecked
oxidative stress, including cellular damage and impaired
neuronal plasticity, which, in turn, can aggravate depressive
symptoms.””*® Thus, the enhanced activity of antioxidant
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Figure 9. Effect of CFYS on oxidative stress indicators and iron ion levels in the hippocampus of depressed rats. (A) SOD, (B) Mn-SOD, (C) Cu/Zn-
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enzymes, attributable to CFYS, is likely a protective mechanism,
counteracting the detrimental impacts of oxidative stress. This
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observation aligns seamlessly with prior literature that
emphasizes the role of antioxidants in mitigating depressive
pathophysiology.

Moreover, our experimental results noted a reduction in the
MDA levels in the treated rats. MDA, a byproduct of lipid
peroxidation, serves as a tangible marker of oxidative stress and
cellular damage. Elevated MDA levels have been previously
linked with various neuropsychiatric disorders, including
depression.”” Therefore, the ability of CFYS to reduce MDA
levels underpins its potential in curtailing lipid peroxidation and
the associated neurotoxicity, reinforcing its therapeutic pros-
pects. The observed surge in VEGFA levels in CFYS-treated rats
has profound implications. VEGFA, beyond its angiogenic
capabilities, has gained attention for its roles in neurogenesis and
synaptic plasticity. As highlighted in prior sections, VEGFA’s
ability to promote the survival, migration, and proliferation of
hippocampal neurons is of paramount significance in the context
of depression.””® By augmenting VEGFA levels, CFYS might
foster an environment conducive to neuronal regeneration and
synaptic strengthening. This is particularly relevant given the
well-established theories positing impaired neurogenesis as a
contributing factor to depression.

These results are consistent with the network pharmacology
analysis and further support our hypothesis that CFYS might
treat depression by improving the neuronal antioxidant stress
response and regulating VEGFA levels. Unlike conventional
antidepressants, which primarily target neurotransmitter regu-
lation, CFYS offers a broader, more holistic approach. By
potentially modulating oxidative stress responses and targeting
key genes related to neurogenesis and angiogenesis, CFYS offers
a treatment avenue that addresses both the symptoms and the
potential underlying causes of depression. This nuanced
mechanism distinguishes CFYS from other treatments and
might explain its potential efficacy, where other treatments falter.

Despite combining network pharmacology and experimental
verification methods, revealing the possible mechanism of CFYS
in treating depression from multiple angles and providing
important clues for further understanding the scientific basis of
traditional Chinese medicine in treating depression and
developing new treatment strategies for depression, our study
has some limitations. For instance, mechanism research still
needs to be further deepened. Additionally, our study mainly
focuses on the association between the effective components of
traditional Chinese medicine and their potential targets and
depression, but how to effectively use these effective
components and their potential targets in clinical treatment
still needs to be explored more deeply.

5. CONCLUSIONS

In summary, this study retrieved the components and targets of
CFYS from the TCMSP database and, after screening, obtained
113 effective components and 195 target genes. After
intersecting the target genes with the differential genes of
depression patients, we obtained 37 differential target genes.
After KEGG enrichment of differential target genes and animal
experiment verification, we found that CFYS might treat
depression by improving the neuronal antioxidant stress
response and regulating VEGFA levels. Moreover, VEGFA has
the potential for early prediction of depression.
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