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Abstract

Recent developments in the analysis of amino acid covariation are leading to breakthroughs in protein structure pre-
diction, protein design, and prediction of the interactome. It is assumed that observed patterns of covariation are caused
by molecular coevolution, where substitutions at one site affect the evolutionary forces acting at neighboring sites. Our
theoretical and empirical results cast doubt on this assumption. We demonstrate that the strongest coevolutionary signal
is a decrease in evolutionary rate and that unfeasibly long times are required to produce coordinated substitutions. We
find that covarying substitutions are mostly found on different branches of the phylogenetic tree, indicating that they are
independent events that may or may not be attributable to coevolution. These observations undermine the hypothesis
that molecular coevolution is the primary cause of the covariation signal. In contrast, we find that the pairs of residues
with the strongest covariation signal tend to have low evolutionary rates, and that it is this low rate that gives rise to the
covariation signal. Slowly evolving residue pairs are disproportionately located in the protein’s core, which explains
covariation methods’ ability to detect pairs of residues that are close in three dimensions. These observations lead us to
propose the “coevolution paradox”: The strength of coevolution required to cause coordinated changes means the
evolutionary rate is so low that such changes are highly unlikely to occur. As modern covariation methods may lead
to breakthroughs in structural genomics, it is critical to recognize their biases and limitations.
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Introduction
In recent years, several new methods have been developed to
study amino acid covariation within protein sequences
(Marks et al. 2011; Jones et al. 2012; Kamisetty et al. 2013).
These methodological developments have led to a resurgence
of interest in covariation methods, and the promise of wide
application to problems as diverse as de novo protein struc-
ture prediction, analysis of protein complexes, and protein
design (Durani and Magliery 2013; Reynolds et al. 2013; Taylor
et al. 2013). If this promise is realized, it will lead to a step-
change in our ability to interpret genomic data in the context
of protein structure and function.

Covariation in amino acid sequences is a directly observed
phenomenon whereby some pairs of residues co-occur
in multiple sequence alignments more frequently than ex-
pected. Methods to study covariation were initially derived
from information theory, with mutual information (MI) be-
tween sites in a sequence alignment (Korber et al. 1993) his-
torically being the most widely applied method (reviewed by
Ashenberg and Laub 2013). Other early approaches include
the correlation of physicochemical parameters (G€obel et al.
1994), although these approaches were soon proved to be
problematic (Pollock and Taylor 1997). The underlying evo-
lutionary mechanisms that give rise to the observation of
covariation are poorly understood, but is widely assumed to
occur due to an excess of simultaneous (correlated) changes

in pairs of residues on the branches of a tree resulting from
molecular coevolution (Larson et al. 2000; Martin et al. 2005;
Dunn et al. 2008; Brown CA and Brown KS 2010; Capra et al.
2010; Marks et al. 2011; Reynolds et al. 2011; Hopf et al. 2015).
Molecular coevolution occurs when amino acid substitutions
at one position in a sequence affect the rates of substitution
at one (or more) other positions in the sequence (Pollock
et al. 1999). These coevolutionary pressures arise from func-
tional or structural selective pressures acting to maintain
specific subsets of residues at those positions, and as such,
coevolution can also be considered analogous to epistasis
between sites (Fitch and Markowitz 1970; Tufts et al. 2015).

Several methods exist that attempt to model coevolution
directly in the context of a phylogenetic tree (Pollock et al.
1999; Yeang and Haussler 2007), but far more popular are
methods that search for covariation between sites in a tree-
independent manner (Lockless and Ranganathan 1999;
Atchley et al. 2000; Larson et al. 2000; Wollenberg and
Atchley 2000; Tillier and Lui 2003; Dekker et al. 2004;
Martin et al. 2005; Dunn et al. 2008; Brown CA and Brown
KS 2010; Capra et al. 2010; Marks et al. 2011; Reynolds et al.
2011; Ackerman et al. 2012; Jones et al. 2012). This latter group
tends to be less computationally demanding than the coevo-
lutionary explicit models. However, because most covariation
methodologies are tree-independent and do not include an
explicit model of sequence change, it is very difficult to assess
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whether their results are evolutionarily sound. Specifically, it is
difficult to know whether the covariation observed within
sequence alignments arises from coevolution or through
some other mechanism. Covariation approaches face a meth-
odological conundrum: Their theoretical framework is based
on the assumption of coevolution between sites (the se-
quences are expected to share a common ancestor, and the
observed changes are caused by correlated evolutionary pro-
cesses), but the implementations of the methods are “evolu-
tion-independent” and based on simple pairwise similarity
measures between sequences rather than known evolution-
ary relationships.

Here, we investigate the adequacy of the critical assump-
tion of covariation methods: That measures of covariation
capture correlated changes, which occur as a consequence
of molecular coevolution. Our results provide several lines of
evidence that undermine this assumption. We show that
covariation can occur both as a consequence of correlated
changes resulting from molecular coevolution and as the
result of rare independent changes at conserved sites. By
using real data sets to examine patterns of change on evolu-
tionary trees, we find that the signal detected by covariation
methods tends to arise from small number of independent
changes at highly conserved sites rather than the correlated
changes expected from molecular coevolution. This identifi-
cation of slowly evolving sites does, however, explain why
covariation methods tend to identify contacting residues as
these sites tend to be clustered close together in the protein
core. These results are supported by a simple coevolutionary
model, which shows that the primary effect of coevolutionary
selective forces is a dramatic reduction in substitution rate. In
order for the model to produce the elevated rates of corre-
lated changes assumed by covariation methods to be indic-
ative of molecular coevolution, the strength of selection
needs to be so strong that the substitution rate becomes so
low that changes are very unlikely to occur at all. These results
lead us to propose the “coevolutionary paradox” because the
levels of selection required to produce correlated substitu-
tions are so strong that they prevent those changes occurring
over even large evolutionary distances. This paradox has im-
portant implications for any method exploiting correlated
substitutions: With so few changes occurring, they will have
very low statistical power.

Results

Theoretical Framework for the Observation of
Covariation under Different Evolutionary Scenarios

Molecular coevolution is widely thought to be the origin of
the observed covariation signal (Larson et al. 2000; Martin
et al. 2005; Dunn et al. 2008; Capra et al. 2010; Marks et al.
2011; Hopf et al. 2015). Such a mechanism implies that some
residue pairs have a higher fitness in combination than if
either is present individually, and so a substitution at one
position will lead to a second substitution at an interacting
position. The result will be an increase in the frequency
with which double substitutions occur relative to single

substitutions. This interpretation has been used explicitly in
evolution models (e.g., Yeang and Haussler 2007).

In order to observe a strong signal for covariation there
must be repeated occurrences of these pairs of correlated
substitutions over the phylogenetic tree, with episodic coevo-
lution the most likely scenario. Under episodic coevolution
the first substitution leads to a decrease in fitness, and is
followed by a mitigating substitution at a second site that
recovers the fitness loss. This process is episodic because the
reverse pair of substitutions may also occur, leading to a cy-
cling between high fitness pairs of residues through correlated
substitutions. An alternative scenario is that of directional
selection, where the first substitution is (near) neutral and
the second provides a selective advantage. Correlated substi-
tutions arising from directional selection at a pair of residues
occur in only one direction. Ongoing directional selection at a
pair of sites is therefore likely to be relatively rare if the envi-
ronment is stable and proteins are near fitness peaks, suggest-
ing that directional selection is unlikely to provide a strong
and consistent covariation signal. Many covariation methods
assume that both episodic coevolution and directional selec-
tion lead to correlated substitutions between pairs of residues
on the same branch of a phylogenetic tree, so the ratio of
double to single changes on individual branches may provide
a meaningful measure of the strength of coevolution.

The ability of covariation measures to detect coevolution is
highly sensitive to where substitutions occur on the phyloge-
netic tree. We demonstrate this sensitivity in figure 1, where
different evolutionary scenarios may result in the same mea-
sure of covariation as measured by MI. We consider two sites,
each of which can have one of two states, denoted 0 or 1. All
scenarios start with an unknown ancestor, and the first split is
defined by two substitutions (either a single substitution in
each branch, or a double substitution in a single branch). The
subsequent evolution differs in each tree. The top two trees
(A and B) both have maximal MI scores (since knowing the
state at the first site unequivocally informs us about the state
at the second site), but are generated from different patterns
of evolution; specifically, sites in the tree B are evolving much
more quickly than those in the top-left one. The tree A rep-
resents the maximum parsimony (MP) scenario for an even
split of observable states, and represents weak evidence for
coevolution with one potential double change at the root,
which is then amplified through the tree structure; namely,
the substitutions are inherited by all the descendants, leading
to an overrepresentation of a particular event in the sequence
alignment. In contrast, the tree B has strong evidence for
coevolution with up to six double changes distributed
through the tree. However, many of these changes occur in
shallow subtrees and are therefore not amplified. The lower
two trees (E and F) both have minimal MI scores, but are
again generated by very different evolutionary scenarios. The
tree E has one double change and three single changes, which
could be expected to occur by chance at two sites even when
no coevolution is acting. In contrast, the tree F has six double
changes and only three single changes, which through the
relatively high ratio of double to single changes could be in-
terpreted as a pair of coevolving sites. In scenarios C–F, the
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increase of the number of single changes can reduce the MI
between sites regardless of the number of double changes
that have occurred. This analysis demonstrates how a small
number of randomly distributed substitutions can remove
the double change signals of coevolution.

In sum, in order that coevolution generates enough covari-
ation to be detected, substitutions must not only be corre-
lated and subsequently conserved, but also deep enough in
the tree to be amplified across the sequence alignment.
Covariation approaches are unable to differentiate between
very different evolutionary scenarios resulting in the same
distribution of states, as they do not take into account the
tree topology. As the position of the substitutions on the tree
has the potential to markedly change the observed pattern of
substitutions, this analysis is applicable to all tree-naive mea-
sures of covariation. We therefore conclude that covariation
scores alone may be an inadequate predictor of coevolution.

Different scenarios in figure 1 may generate the same
degree of covariation, but it is unclear which is most likely
under a coevolutionary mechanism. To investigate this ques-
tion, we use a simple model of episodic coevolution on pairs
of binary characters. We assign a higher fitness to two pairs of
optimal states (00/11) than the other pair of states (01/10).
This model has two important parameters affecting covaria-
tion observations. The first parameter, S, is the strength of
coevolutionary selection for the optimal states; this is a prod-
uct of the effective population size and the selective

coefficient, and is the difference in fitness between the opti-
mal states (00/11) and the suboptimal states (01/10). The
second parameter is the amount of time, t, that a pair of
sequences has to evolve, measured in units of the process
where there is no coevolutionary pressure.

Figure 2 shows how this model reacts under different com-
binations of these parameters. The evolutionary rate of the
coevolution process decreases rapidly as S increases (gray line)
and a very strong selective pressure is required to substantially
increase the number of double changes. Under moderate
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FIG. 1. Different evolutionary scenarios for two binary sites. Each site can have {0,1} states. Thus, the pair of sites can have {00,01,10,11} states. We show
in bold font the observed states at the leaves of the tree, and in italics font the states after the first split (all scenarios are identical up to that point). Disks
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FIG. 2. Effect of coevolutionary selective pressure, S, in a binary model
on the relative rate of coevolution (gray line), and the relative frequency
of single observable changes at different evolutionary times, t, in units of
expected numbers of substitutions (black dashed lines).
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coevolutionary pressure (S = 2) the rate of the process has
already dropped by more than half, and for distantly related
sequences (t = 1.0) 73% of observable substitutions are still
single changes. Under strong coevolutionary pressure (S = 5)
the rate drops to 5.4% of the independent sites’ rate, and
even in extremely divergent sequences (t = 2.5) only 2.2% of
sites have an observable double change and 0.8% have an
observable single change. Taken together, these results sug-
gest that coevolution can only generate a strong covariation
signal (a high rate of double changes relative to single
changes) under very strong selective pressures over

extremely long periods of time. Under the time scales
likely to occur in real sequence comparisons we predict
that there will be a strong decrease in evolutionary rate
and double changes resulting from coevolution will
remain relatively rare. Our results are based on a binary
model, but our key observations are likely to hold even for
amino acids since for any given pair of sites there are likely to
be relatively few optimal pairs of residues and the genetic
code places restrictions on the amino acids that can
instantaneously substitute to one another through point
mutation.

A B

C D

E F

FIG. 3. Information and parsimony basis of methods when analyzing a “well-defined” phylogenetic scenario. (A, B) Median MI for the selected pairs.
(C, D) Median number of single changes occurring in the selected pairs. (E, F) Median number of double changes occurring in the selected pairs. Lines are
as follows: Black-dashed, MI; red, �2; yellow, MI

HðXYÞ; green, MIp; cyan, MIadj; blue, PSICOV; purple, DI. Shaded area shows the confidence interval of the
expected value for a specific number of predictions.
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Evolutionary Origin of Observable Covariation

Covariation measures are able to identify pairs of residues that
are close in the protein structure if data sets with large protein
families are used, containing hundreds or thousands of se-
quences (Marks et al. 2011; Jones et al. 2012). We restrict our
coevolution analyses to “well-defined” phylogenetic data sets,
which contain orthologous and paralogous proteins for which
we could estimate a reasonable phylogenetic tree. Our ap-
proach excludes any clade with branch lengths greater than
1.0, potentially misaligned sites, and sequencing errors (see
Materials and Methods). This approach inevitably limits the
number of sequences in our data sets and their divergence,
that is, our data sets contained 155 (rat trypsin) and 73
(human pepsin) sequences. The lower number of sequences
makes them more practical for reliable phylogenetic inference
(Izquierdo-Carrasco et al. 2011), but the best covariation
methods work optimally with much larger sequence align-
ments (Marks et al. 2011; Jones et al. 2012). Although our
smaller data sets lead to some loss of statistical power, the
predicted covarying pairs within the phylogeny-based data
sets are an appropriate sample of the kind of covariation
that each approach attempts to detect (see supplementary
material, Supplementary Material online, for an expanded
discussion on this issue).

We analyzed which evolutionary scenarios were most likely
to occur at sites identified by different covariation methods.
In addition to MI, which performs relatively poorly according
to many benchmarking methods (Martin et al. 2005), we used
MIp (Dunn et al. 2008) and MIadj (Capra et al. 2010), both of
which try to model the distribution of background noise, and
the �2 test, which has been proposed as a suitable approach
for comparing the observed and expected frequencies of pair-
ings (Larson et al. 2000). We also used Direct Information
(DI; Marks et al. 2011) and PSICOV (Jones et al. 2012),
which are statistically sophisticated methodologies aimed at
distinguishing direct and indirect correlations.

We calculated the MI score, which gives an indication of
how evenly the observed duplets are distributed (Marks et al.
2011), and the MP estimates of single and double changes for
our “well-defined” phylogenetic data sets of trypsin and
pepsin. Thus, for each covariation measure we investigated
which were the most likely scenarios from those presented in
figure 1. Figure 3A and B shows that pairs selected using MI

HðXYÞ,
which corrects for the sites entropy, have MI that cannot be
distinguished from a random distribution. Conversely, the
other covariation measures select pairs with greater-than
random MI. Nevertheless, none of the approaches selected
the pairs with the highest MI. Thus, the identified pairs have
an intermediate covariation, and trees A, B, E, and F in figure 1
seem to be extreme scenarios that are quite unlikely to be
selected.

In order to better understand the relationship between the
covariation approaches and the evolutionary scenario, we
analyzed how covariation in the selected pairs originated
using MP to count how many single and double changes
occur on each branch (see fig. 3C–F). We calculated parsi-
mony both assuming coevolution (MPdep) and without

coevolution (MPind). In the former, we counted the number
of branches where changes occurred, regardless of being
single or double changes, whereas in the latter, we counted
the number of changes. We find that these measures are
strongly correlated with MI (see supplementary table S1,
Supplementary Material online), with MI

HðXYÞ selecting pairs
with a very small number of substitutions (single or
double); this metric selects some of the most conserved
sites that still have observable covariation. (Note that invari-
ant sites are removed from covariation analyses.) The values
for the remaining methods are close to the random expecta-
tion in terms of number of single substitutions, and slightly
above random in terms of number of double substitutions. In
all cases single substitutions substantially outnumber double
substitutions, meaning that the majority of the covariation
signal originates from single site substitutions, rather than
correlated substitutions occurring on the same branch, and
that the slight increase in double changes may be evidence of
a weak coevolutionary signal. Given these observations we
conclude that the scenarios on the left-hand side of
figure 1 (trees A, C, and E), which show no evidence of mo-
lecular coevolution, are the most likely.

In order to ensure that these results are not a byproduct of
using small alignments, or a peculiarity of trypsin or pepsin,
we reanalyzed the PSICOV benchmark data set (Jones et al.
2012). This data set consists of 150 families, with the number
of sequences per family ranging from 150 to 74,836. First, we
calculated MI for all pairs; as observed in the phylogenetic
data sets, figure 4A shows that the top-scoring pairs are not
the most informative (pairs with the highest MI). Second, we
built neighbor-joining trees for the alignments, and calculated
the number of single and double changes that occurred in
each branch. Then, we compared those pairs of residues with
the highest PSICOV score with all others. In most of the
proteins, the selected pairs show a small depletion in single
changes, a slight increase in the number of double changes,
or both phenomena together (see fig. 4B and C and supple-
mentary fig. S1, Supplementary Material online). The number
of single changes is again much larger than double
changes (cf. fig. 4B and C and see supplementary fig. S2,
Supplementary Material online), indicating that observations
of independent substitutions are general in both the well-
curated families and the much larger data set.

The Relationship between Covariation and
Evolutionary Rate

Our results suggest that coevolution is not the driving force
behind the majority of covariation detected by the different
approaches, but rather the amplification of independent sub-
stitutions by the tree topology is a more likely candidate. In
order for the amplification effect to occur, sequences must
have a relatively slow rate of evolution (see fig. 1).

The evolutionary rate not only depends on the number of
substitutions but also on the likelihood of observing each
particular amino acid substitution. Although site-entropy
only depends on the frequency of each amino acid, entropy
and evolutionary rate are strongly correlated (R = 0.92 and
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0.90 for trypsin and pepsin, respectively); the faster the rate,
the higher the number of amino acids observed at one posi-
tion. Most covariation methods try to correct the influence of
site-entropy in the pair covariation, and so the best perform-
ing methods are biased against rapidly evolving sites. Figure 5,
supplementary figure S3 and table S2, Supplementary
Material online, confirm these expectations. Methods based
on the frequencies of states such as MI and �2 select pairs of
fast evolving pairs, whereas most of the corrected measures
select slowly evolving sites. This evidence further supports the
idea that the methods with the best performance are detect-
ing signal amplification of single changes caused by the phy-
logenetic tree.

As low rate is correlated with covariation, we investigate
whether evolutionary rate is also a strong predictor of struc-
tural proximity. We used the rate of both sites and selected
pairs with the smallest mean or variance. In addition, we
selected the pairs with the smallest number of changes
(MP). We also selected pairs with the smallest ratio of

branches with single substitutions to branches with double
substitutions. By selecting pairs of residues with a small
number of changes, we achieve high precision even when
making a large number of predictions (fig. 6). Indeed, strate-
gies based on the tree structure such as the ratio between
single and double substitutions or based on an evolutionary
model (e.g., the mean of the sites evolutionary rate) perform
as well as, and even can outperform, the best covariation-
based approaches (here the “best” covariation approach is
defined as a meta-score that, for each size of the prediction
set, selects the highest precision among all the covariation
measures).

The Relationship between Covariation and Structural
Environment

Residues in the core of the protein evolve much more slowly
than those on the surface (Mintseris and Weng 2005). Trypsin
contains 105 pairs where both residues are completely buried
from solvent, and 67.6% of these pairs are closer than 10 Å.

A B C

FIG. 4. Information and parsimony basis of methods when analyzing big data sets. For each alignment in the benchmark data set, 1) we calculated MI,
and the number of single and double changes for all the pairs; and 2) we calculated the median value for the selected pairs, and the median value for a
control sample. (A) Median MI of the selected pairs compared with the median MI for the top-informative pairs (equivalent-size set of pairs with the
highest MI) for the proteins in the PSICOV benchmark. (B) Median number of single changes occurring in the selected pairs compared with the median
number of single changes occurring in the rest of pairs for the proteins in the PSICOV benchmark. (C) Median number of double changes occurring in
the selected pairs compared with the median number of double changes occurring in the rest of pairs for the proteins in the PSICOV benchmark.

A B C

FIG. 5. Evolutionary basis of methods. In the “well-defined” phylogenetic scenarios, we calculated the mean rate for each pair as the average of the two
single evolutionary rates. Then, we calculated the median of the sample of mean rates. (A, B) Median of the averaged evolutionary rate for the selected
pairs. Lines are as follows: Black-dashed, MI; red, �2; yellow, MI

HðXYÞ; green, MIp; cyan, MIadj; blue, PSICOV; purple, DI. Shaded area shows the expected mean
rate for a specific number of predictions. (C) Median entropy H of the selected pairs compared with the median H for the top-entropic pairs for the
proteins in the PSICOV benchmark.
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These observations raise the question of whether covariation
methods might be inadvertently optimized for selecting
slowly evolving pairs of residues, which tend to occur in the
core of the protein. As expected, low MP scores can be used
to select residues in the protein core, with 73% of residue pairs
in trypsin with MPind � 2 having less of 10% of their volume
accessible to solvent. Analyses based on MPind include invari-
ant sites, whereas covariation methods do not. Nevertheless
Larson et al. (2000) found an enrichment for core residues
when analyzing covariation in SH3 domains. Moreover, sup-
plementary table S2, Supplementary Material online, shows
that the vast majority of residues selected by a previously
published analysis of covariation in trypsin (Morcos et al.
2011) is not solvent accessible. Finally, a recent review
showed that even if hydrophobicity alone is not a good pre-
dictor for residue contacts, the pairs with the stronger covari-
ation were in the core of the protein structure (Taylor et al.
2013).

We tested for the overrepresentation of core residues
in trypsin and pepsin by calculating the median accessibility
of the residues in the selected pairs using several covariation
approaches (see fig. 7A and B and supplementary fig. S4,
Supplementary Material online). MI and �2 consistently
select pairs of exposed residues; MIp shows different re-
sults for trypsin and pepsin, and the rest of methods select

at least one core residue. Finally, for 131 of 150 alignments
from the PSICOV benchmark, the top scoring pairs are sig-
nificantly less accessible than the rest of pairs in the protein
structure (fig. 7C, Mann–Whitney test; FDR [false discovery
rate]< 0.05).

Discussion
Molecular coevolution could potentially be a powerful tool
for identifying interacting residues within and between pro-
teins. Computational tools for identifying such residues would
be valuable for a range of structural and functional studies.
Covariation methods are widely assumed to provide approx-
imate measures of coevolution and they have been used suc-
cessfully to identify physically close residues in a range of
proteins. Here, we cast doubt on the validity of that assump-
tion through a theoretical and empirical framework. We show
that a range of different coevolutionary and independent
evolutionary scenarios are indistinguishable from one another
based solely on the observation of covariation. Only by ex-
amining change in the context of the phylogenetic tree struc-
ture can one discriminate between coevolutionary double
changes and groups of independently occurring single
changes amplified by the structure of the phylogenetic
tree. We use a simple MP approach to determine whether
covariation methods are detecting true coevolution or

A B C

FIG. 7. Structural basis of methods. (A, B) Median of the weighted average accessibility of the selected pairs. Lines are as follows: Black-dashed, MI; red,
�2; yellow, MI

HðXYÞ; green, MIp; cyan, MIadj; blue, PSICOV; purple, DI. Shaded area shows the expected mean accessibility for a specific number of
predictions. (C) Median weighted average accessibility in the selected pairs compared with the median weighted average accessibility in the rest of pairs
for the proteins in the PSICOV benchmark.

A B

FIG. 6. Precision of evolution-based metrics. Lines are as follows: Black-dashed, best covariation performance; red, mean of evolutionary rates; yellow,
difference (variance) between evolutionary rates; green, MPind; blue, MPdep; purple, branches with single substitutions

branches with double substitutions. Shaded area shows the random precision
for a specific number of predictions.
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amplified changes. We find that even the best performing
covariation methods provide no enrichment for double
changes (coevolution), but instead find pairs of sites with
fewer independent changes than average.

Based on these observations, we propose that the success
of covariation methods to identify residue contacts is attrib-
utable to their tendency to select slowly evolving pairs of sites.
These sites are predominantly found clustered in physical
proximity to one another in the hydrophobic protein core.
This suggestion is supported by the observation that raw
estimates of independent evolutionary rate tend to provide
similar levels of positive predictive power as the most suc-
cessful covariation-based methods. There is, however, limited
overlap between pairs of residues identified by conservation
and covariation measures because the most conserved pairs
of sites have no changes and therefore do not covary. Our
results have significant consequences for the use of covaria-
tion methods as approximate measures of coevolution when
predicting protein folding and function.

Implications for Protein Folding and Function
Prediction

Covariation methods are used extensively to predict contact
maps, which in turn are used to impose constraints on pro-
tein folding algorithms. This study does not negate this prac-
tical application, but does offer insight into the underlying
properties of covariation methods and how they could be
further developed. The relationship of these methods with
evolutionary rate explains some of their properties, such as
their requirement for large alignments in order to work suc-
cessfully. Many slowly evolving residues in the core may be
very highly constrained and show no variation in small to
medium alignments and are therefore discarded by covaria-
tion methods. Large densely sampled alignments may allow
covariation methods to identify these sites, either through
identifying rare changes in a small number of orthologs, by
sampling low frequency deleterious alleles in populations, or
even by identifying sequencing or alignment errors. Dense
sampling of sequences then offers the opportunity to amplify
rare changes through the tree topology. The interaction be-
tween covariation methods and rate may help explain their
limited success in other applications. For example, the active
sites of enzymes are under strong constraint (Zvelebil et al.
1987; Bartlett et al. 2002) and in many cases will have zero
or very few changes even for large alignments, making
them invisible to covariation methods. In contrast, for
protein–protein interactions the interacting residues tend
to be less conserved than residues in the core (Mintseris
and Weng 2005), especially for transient interactions. This
suggests that unless prior knowledge is used for filtering out
all the core residues, the interacting residues will be difficult to
identify in some cases, and other computational approaches
may be required to address these applications. In particular,
we expect that covariation methods will be more successful in
predicting obligate interactions (e.g., Ovchinnikov et al. 2014)
in protein complexes than for identifying transient interac-
tions, such as are found in signaling cascades.

Recognizing that covariation methods tend to function by
detecting slowly evolving sites in the core of proteins may also
aid in their development and extension to other problems.
One possibility for improvement would be to explicitly adjust
covariation measures to incorporate biophysical properties of
residues, such as hydrophobicity, which may aid the identifi-
cation of core residues. As covariation methods do not rep-
licate contact maps based on hydrophobicity (Taylor et al.
2013), both types of data might complement each other.
Indeed, some success has been achieved combining covaria-
tion-based contact maps and secondary structure predictions
in order to identify protein folds (Taylor et al. 2012). An al-
ternative, but complementary, approach would be to com-
bine information from covariation and evolutionary rate to
help identify buried and functional residues. Both of these
approaches, however, are based on the idea of tuning covari-
ation methods to better identify low rate sites in the core of
proteins. More significant improvements may be possible
through tree-based methods that directly try to measure mo-
lecular coevolution.

Perspectives on Methods for Detecting Coevolution

Our study suggests that measures of covariation tell us lit-
tle about molecular coevolution. Several computational
approaches have been proposed to explicitly search for mo-
lecular coevolution by detecting correlated changes, either
through explicit substitution models that capture double
changes (Pollock et al. 1999; Yeang and Haussler 2007) or
through mapping single changes onto a tree and using re-
gression to search for correlated changes (Dutheil et al. 2005;
Dutheil and Galtier 2007). The evolutionary principles behind
these methods are appealing, but they tend to be computa-
tionally slow and their performance tends to be similar to the
best covariation methods. Considering the evolutionary prin-
ciples behind molecular coevolution may explain some of the
inherent limitations of both covariation and evolutionary
methods.

All approaches for studying molecular coevolution work by
searching for ongoing episodic compensatory substitution at
pairs of residues, where initial deleterious substitutions at one
site are compensated for by equally advantageous substitu-
tions at the interacting site so that the selective forces acting
on the combined pair of changes are approximately neutral.
The interaction of two (or more) sites in a protein may be
considered through coevolutionary selective forces acting
upon them to maintain a favorable combination of residues,
such as both being hydrophobic or a positive–negative charge
interaction. Purifying selection will act upon any mutation
that interferes with the favorable combination in proportion
to the strength of the interaction, reducing the probability of
fixation of these mutations and reducing the overall rate of
substitution (fixed mutations) at each of the interacting sites.
Any compensatory mutation must either occur before puri-
fying selection has purged the deleterious mutation from the
population or after the deleterious mutation has become
fixed, with the probability of each dependent on the strength
of coevolutionary selection.
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The alternative cause of molecular coevolution is direc-
tional selection, where a set of sites change through a series
of mildly deleterious, neutral, or progressively fitter genotypes.
Such pathways of directional selection have been observed for
antibiotic resistance (Weinreich et al. 2006) and other phe-
notypes (de Visser and Krug 2014), but would produce only
small numbers of coevolutionary changes as each pair of cor-
related changes occurs once and only once. Our empirical
observations suggest that such changes would either be too
few to provide a covariation signal, be dissipated through
subsequent single substitutions, or a combination of both.
Ongoing environment change could lead to continuous mo-
lecular coevolution through directional selection in a similar
manner to the Red Queen effect, but it seems unlikely that
such environmental adaptation would be sufficiently
common to explain the performance of covariation methods
across such a broad range of proteins.

Under episodic molecular coevolution the relative fre-
quency with which favorable residue combinations are ob-
served is proportional to the coevolutionary selection acting.
Weak coevolutionary selection means that favorable pairs or
sets of residues will be relatively rare and large numbers of
single independent substitutions, which offer no coevolution-
ary signal, will dominate. As coevolutionary selection becomes
stronger the initial mutation that disturbs the favorable pair or
set has progressively lower probabilities of fixation and tends to
be rapidly purged from the population, meaning the time in
which the compensatory mutation can occur is very brief. For
strong coevolutionary selection, the initial mutation will only
be present for a small number of generations or may even be
lethal. Under these conditions the only way for the compen-
satory mutation to occur is for both the initial and compen-
satory mutation to occur approximately simultaneously, which
has a probability of approximately the square of that of the
probability of a single mutation. The resulting evolutionary rate
would be extremely low and would require vast time-scales to
observe even a single compensatory change.

This scenario leads to us to propose the coevolution par-
adox whereby the strength of coevolutionary selection re-
quired to cause compensatory double change reduces our
ability to observe it. This paradox explains the slow progress
in developing computational tools to detect coevolution and
their relatively low power. Our results and the coevolution
paradox predict that the strongest signal for molecular co-
evolution is a dramatic reduction in evolutionary rate, cou-
pled with at best a moderate decrease in the relative ratio
single:double substitutions on branches. This paradox also
explains the performance of the best covariation methods,
which, for the most part, have been developed with the aim
of detecting real coevolution, but instead seem to detect pairs
of low rate sites, which tend to occur in the protein core.

Materials and Methods

A Binary Model of Molecular Coevolution
The Independent Process
In order to examine the effect that molecular coevolution has
on a pair of characters, we examine the simplest possible case

of a pair of binary (0/1) characters. Each one of these charac-
ters evolves to a simple two-state Markov process describing
their mutational process without selection. This process is
defined by the instantaneous rate matrix:

Qsite ¼
��1 �1

�0 ��0

" #
: ð1Þ

The values of � ¼ f�0; �1g are the frequency with which we
expect to see the characters 0 and 1 under the mutational
model. The relative rate of this process is determined by the
mutation rate, �, but this value is assumed constant and not
included in our model. The requirements of a Markov process
means that diagonal elements of the matrix are set to the
negative row sums. This instantaneous rate matrix can be
used to calculate a matrix of the probabilities of change be-
tween pairs of characters over a period of time t through
PðtÞ ¼ eQt (Grimmett and Stirzaker 2001). This simple
model can be easily expanded to a pair of independent
sites by extending the state-space to {00,01,10,11} to produce
the instantaneous rate matrix below

Qmut ¼

�2�1 �1 �1 0

�0 �1 0 �1

�0 0 �1 �1

0 �0 �0 �2�0

2
666664

3
777775: ð2Þ

Note for this matrix that only single changes can occur, such
as 00! 01, and the rate of “instantaneous” double changes,
such as 00! 11 is zero. For any given amount of time, t, the
process will be able to have double changes, but they must
have transitioned through intermediate states. This approach
is exactly that used in the majority of codon models
(Yang 2006), but see Whelan and Goldman (2004) for a
model that allows instantaneous double and triple changes.
For our coevolution study, we know of no mechanism that
readily generates pairs of mutations for separate pairs of
characters.

The Coevolutionary Process
From this independent matrix, it is obvious that the station-
ary frequencies of the joint characters are �ij ¼ �i�j.
Following Halpern and Bruno (1998) the substitution rate
for the joint process can be computed as Qi;j ¼ Qmut

i;j
�fitnessði; jÞ where fitness(i, j) is the fixation probability of
a new mutation in a haploid organism and is given by Kimura
(1962) and Golding and Felsenstein (1990) as approximately

fitnessði; jÞ ¼ PðmutationÞ � PðfixationÞ

&2Ne��
s

1� e�2Nes
/

S

1� e�S
;

ð3Þ

where S ¼ 2Nes or for diploids is given by S ¼ 4Nes, where Ne

is the effective population size and s measures the strength of
selection for (positive) or against a mutation (negative), with
s = 0 representing no coevolutionary selective pressure. The
parameter � describes the mutation rate, which is assumed
constant and removed from the far right-hand of equation (3)
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by the proportional sign. Given that s and Ne always occur
together it is useful to consider S as the selective coefficient.
The sign of S is determined by s, with positive values repre-
senting a selective advantage and negative values represent-
ing a selective disadvantage. This equation allows us to create
a simple model of molecular coevolution for the pair of binary
characters, assuming that 00/11 are the selectively favored
states and 01/10 are the equally deleterious.

Q ¼

2�1
S

1� eS
�1
�S

1� eS
�1
�S

1� eS
0

�0
S

1� e�S

�S

1� e�S
0 �1

S

1� e�S

�0
S

1� e�S
0

�S

1� e�S
�1

S

1� e�S

0 �0
�S

1� eS
�0
�S

1� eS
2�0

S

1� eS

2
666666666664

3
777777777775
:

ð4Þ

When s = 0 it represents the independent process, so follow-
ing Kimura (1962) both S

1�e�S and �S
1�eS tend to 1

Ne
and Q tends

to Qmut. The stationary distribution can be calculated from
the relative frequencies of characters under the mutational
model and the relative fixation probabilities of the different
characters:

�00 ¼ c�0�0
S

1� e�S
; ð5Þ

�01 ¼ �10 ¼ c�0�1
�S

1� eS
; ð6Þ

�11 ¼ c�1�1
S

1� e�S
; ð7Þ

where c is a scaling constant so that �00 þ �10þ

�01 þ �11 ¼ 1:0

Properties of the Independent and Coevolutionary
Process
The Rate of Evolution
This simple process allows us to investigate properties of a
molecular coevolutionary process between two binary
characters. The first interesting property to study is the
relative rate of the independent (s ¼ 0) S ¼ 0) process,
RateQmut ¼

P
i �iQ

mut
i;i , compared with a process with coevo-

lution, RateQ ¼
P

i �iQi;i.

Relative rate ¼
RateQ

RateQmut

¼
S

1� e�S

�S

1� eS
c: ð8Þ

Number of Observed Single and Double Changes
A second set of interesting properties of the coevolutionary
process are the frequency with which we observe single
changes (00! 01 or 10! 11), double changes (00! 11
or 01! 10), or no change (e.g., 00! 00 or 01! 01) over
a period of time t through the matrix PðtÞ ¼ eQt. These values
are of interest when studying coevolution as they represent
how often we see changes that could be interpreted as

independent (single) or correlated (double) change. The re-
quirement for time t is because both the independent and the
coevolutionary model assume only point mutation and there-
fore do not allow instantaneous changes at both characters,
which means we need to measure it once both changes have
had a chance to occur. The relative proportions of no, single,
and double changes can be computed as:

No change ¼
X

i

�iPðtÞi;i; ð9Þ

Single changes ¼
X

i!j is a single change

�iPðtÞi;j; ð10Þ

Double changes ¼
X

i!j is a double change

�iPðtÞi;j: ð11Þ

Note that these proportions are a function of both S and
t as PðtÞ ¼ eQt and Q is parameterized by S. All results pre-
sented here are for the case �0 ¼ �1 ¼ 1=2, which repre-
sents the best possible case for detecting coevolution through
a covariation signal.

Phylogenetic Data Sets

Orthologs and paralogs of ENSRNOG00000032916 (rat tryp-
sin) and ENSG00000229183 (human pepsin) were identified
(Vilella et al. 2009). A three-step iterative procedure was used
to obtain a “well-defined” evolutionary scenario with a reli-
able amino acid alignment and tree: 1) Sequences were
aligned using MUSCLE (Edgar 2004), with GUIDANCE filtering
(Penn et al. 2010); 2) a tree was estimated using phyml
(Guindon and Gascuel 2003); and 3) if any branches are
longer than 1.0 remove the smallest clade (or sequence)
and go to (1), otherwise stop (see fig. 8). Only sites mapping
to an appropriate PDB structure were considered for further
analysis, with the final data set consisted of 155 trypsin
sequences over 194 sites (PDB: 3tgi) and 73 pepsin sequences
over 300 sites (PDB: 3utl). The alignments and trees are pro-
vided as supplementary material, Supplementary Material
online. All phylogenetic analysis was conducted using
WAG +G+ I.

Benchmark Data Set

QuickTree (Howe et al. 2002) was used to compute neighbor-
joining trees from alignments downloaded from the http://
bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV (last accessed
May 21, 2015). A single very large data set was discarded
because we could not compute the tree. We selected covary-
ing pairs using the precomputed PSICOV score. For each
protein we selected L/5 number of pairs, where L is the
length of the protein (Jones et al. 2012). For each measure,
we calculated the median value for the selected pairs, and
compared it with either the median value of a control sample.

Covariation Metrics

We did not pretend to do a survey of the performance of the
covariation approaches, but to have a representative set of
widely used methods, some recent corrections to MI, and
some of the more recently developed methods that have
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demonstrated a marked improvement in the prediction of
residue contacts (reviewed by Ashenberg and Laub 2013;
Taylor et al. 2013). The methods analyzed were MI, MI

HðXYÞ ;
�2 (Larson et al. 2000), MIp (Dunn et al. 2008), MIadj (Capra
et al. 2010), DI (Marks et al. 2011), and PSICOV (Jones et al.
2012). MI-based and �2 measures were computed locally.
PSICOV and EVFold were downloaded and run locally.
Additionally, we calculated a “best covariation approach”
meta-score; that is, we analyzed the precision versus
number of selected pairs for each measure, and we selected

the precision distribution representing the greatest precision
achieved at each measuring point.

Performance Metrics and Structural Environment

Successful coevolutionary predictions are determined by
identifying residues falling within a given threshold distance,
measured as the shortest distance between nonhydrogen
atoms. Precision is defined as successes

predictions. Residue accessibility
is calculated using Naccess (http://www.bioinf.manchester.ac.

CKP1: Remove sequences/
clades with branches larger 

than 1.0 

CKP2: Remove columns that cannot be 
mapped to the structure. Remove 

sequences with more than 50% of gaps or 
X in the structural part of the alignment 

CKP3: Remove sequences with a 
score smaller than 0.6 

Align sequences 
with Muscle 

Sequences 

Align sequences 
with GUIDANCE 

Alignment 

Calculate 
phylogenetic tree 

with PhyML

Phylogenetic tree 

CKP1 

CKP2 

CKP4 

CKP3 

CKP2 

Calculate 
phylogenetic tree 

with PhyML

CKP4: Remove low scoring 
columns 

phylogenetic scenario 

FIG. 8. Diagram summarizing the data processing pipeline for the “well-defined” phylogenetic data sets. We iteratively aligned sequences (blue box), and
calculated the ML evolutionary tree (orange box) in order to remove distant homologs and conflicting sites. We had different checkpoints (CK) in order
to filter the sequences and sites. The “well-defined” scenario consists in the final alignment and phylogenetic tree.
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uk/naccess/, last accessed May 21, 2015). Mean accessibility is
calculated as the weighted average, where the weights are the
residue volumes.

Calculation of Random Expectation

For all the measures, we calculated the 95% confidence inter-
val for the expected value when selecting a particular number
of pairs at random. We used a bootstrapping strategy with
1,000 replicates. The expected values are shown in the plots as
a shaded area.

Supplementary Material
Supplementary material, tables S1 and S2, figures S1–S6 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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