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Abstract

Radiation therapy is a staple approach for cancer treatment, whereas radioresistance of cancer cells 

remains a substantial clinical problem. In response to ionizing radiation (IR) induced DNA-

damage, cancer cells can sustain/activate pro-survival signaling pathways, leading to apoptotic 

resistance and induction of cell cycle checkpoint/DNA repair. Previous studies show that Rac1 

GTPase is overexpressed/hyperactivated in breast cancer cells and is associated with poor 

prognosis. Studies from our laboratory reveal that Rac1 activity is necessary for G2/M checkpoint 

activation and cell survival in response to IR exposure of breast and pancreatic cancer cells. In the 

present study, we investigated the effect of Rac1 on the survival of breast cancer cells treated with 

hyper-fractionated radiation (HFR), which is used clinically for cancer treatment. Results in this 

report indicate that Rac1 protein expression is increased in the breast cancer cells that survived 

HFR compared to parental cells. Furthermore, this increase of Rac1 is associated with enhanced 

activities of ERK1/2 and NF-κB signaling pathways and increased levels of anti-apoptotic protein 

Bcl-xL and Mcl-1, which are downstream targets of ERK1/2 and NF-κB signaling pathways. 

Using Rac1 specific inhibitor and dominant negative mutant N17Rac1, here we demonstrate that 

Rac1 inhibition decreases the phosphorylation of ERK1/2 and IκBα, as well as the levels of Bcl-

xL and Mcl-1 protein in the HFR-selected breast cancer cells. Moreover, inhibition of Rac1 using 
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either small molecule inhibitor or dominant negative N17Rac1 abrogates clonogenic survival of 

HFR-selected breast cancer cells and decreases the level of intact PARP, which is indicative of 

apoptosis induction. Collectively, results in this report suggest that Rac1 signaling is essential for 

the survival of breast cancer cells subjected to HFR and implicate Rac1 in radioresistance of breast 

cancer cells. These studies also provide the basis to explore Rac1 as a therapeutic target for 

radioresistant breast cancer cells.
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INTRODUCTION

Radiation therapy (RT) is routinely used for breast cancer treatment.1 While ionizing 

radiation (IR) delivered by RT causes DNA-damage in cancer cells that can lead to cell 

death, radioresistance (primary or acquired) remains a major problem in clinic.2 Thus, there 

is a need to improve our understanding of the mechanisms that protect cancer cells from RT-

induced cytotoxicity.

In response to IR, cancer cells activate several mechanisms that promote DNA repair and 

survival.3 Among these, activation of ATM/ATR, PI3K/AKT and MEK/ERK signaling 

pathways are commonly observed following IR treatment of cancer cells.3,4 While the 

ATM/ATR signaling pathway plays an essential role in cell cycle checkpoint activation that 

leads to cell cycle arrest and DNA repair,5 PI3K/AKT and MEK/ERK signaling pathways 

promote survival through up-regulation of anti-apoptotic factors (e.g. Bcl2/Bcl-xL/Mcl-1) 

and inhibition of pro-apoptotic factors (e.g. Bid/Bad).3,4

The NFκB signaling pathway plays an important role in cell proliferation and survival in the 

inflammatory response.6 When inactive, NFκB is sequestered by the inhibitory κB protein 

(IκB) in the cytoplasm.6 Upon stimulation by inducers including radiation, IκB becomes 

phosphorylated by IκK kinases and subjected to proteasomal degradation.6 This releases the 

sequestered NFκB, allowing it to translocate into the nucleus and induce targeted gene 

expressions.6 Additionally, IR-induced ATM and reactive oxygen species (ROS) can further 

enhance the activation of NFκB pathway.7 The best validated NFκB gene targets include 

Bcl-2, Bcl-xL and Mcl-1, which are members of the anti-apoptotic Bcl-2 family.8

Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of Rho family GTPases, plays 

important roles in cell migration and survival.9 Rac1 exists in either an active GTP-bound 

state or inactive GDP-bound state.10 Rac1 is activated by its GEFs (Guanine nucleotide 

Exchange Factors), which accelerate GDP to GTP exchange, and inhibited by its GAPs 

(GTPase-Activating Proteins), which stimulate GTP hydrolysis.10 In its active state, Rac1 

interacts with downstream effectors to activate numerous signaling pathways.11,12 Rac1 has 

been reported to activate ERK1/2 signaling via PAK1/2 kinases, which phosphorylate Raf1 

and MEK1 to facilitate the formation of the Raf/MEK/ERK complex.13–15 Rac1 also 

interacts with PI3K to activate PI3K/AKT signaling16,17 and plays an essential role in AKT 

activation following UV or sphingosine 1-phosphate treament.18,19 Both AKT and ERK1/2 
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signaling pathways have been shown to promote survival after IR.3,20–25 In addition, Rac1 is 

required for IR-induced ROS production and ATM activation,3,26,27 which activates the 

NFκB signaling pathway.28

Rac1 and its modulators (GEFs/GAPS) are implicated in cancer development, invasion and 

metastasis.10 Overexpression/hyperactivity of Rac1 has been associated with cancer therapy 

resistance.29–31 For instance, aberrant Rac1 amplification/activation is linked to chemo/radio 

resistance of head and neck squamous cell carcinomas (HNSCC) and glioblastoma cells, and 

the HNSCC cells resistant to cisplatin or radiation displayed an increased Rac1 expression, 

activity and translocation to the nuclei.31–34 Further, inhibition of Rac1 using either 

pharmacological inhibitor or siRNA restores the chemo/radio sensitivity of these cancer 

cells.31,34 Rac1 is also shown to play an essential role in the resistance of breast cancer cells 

to trastuzumab (anti-HER2 therapy) and this involves PTEN inactivation and overexpression 

of insulin-like growth factor-1 receptor.35 Consistently, high-throughput RNAi screens 

identify Rac1 amplification as one of the most biologically relevant mechanisms of anti-

HER2 therapy resistance in breast cancer.30

We recently reported a new Rac1 function in the regulation of the IR response of breast and 

pancreatic cancer cells.26,27 We show that Rac1 is rapidly activated by IR and is required for 

ATM/ATR activation and cell survival following IR. Similarly, other studies reported that 

Rac1 deficiency reduces DNA damage checkpoint response, DNA repair and survival after 

exposure to IR and UV.36 In this study, we investigated the role of Rac1 in the response of 

human breast cancer cells to hyper-fractionated radiation (HFR), a protocol currently used 

for cancer therapy. Results in this report demonstrate that Rac1 signaling is required for the 

survival of breast cancer cells following HFR, suggesting a clinical potential of targeting 

Rac1 for radiosensitization of breast cancer cells.

RESULTS

Rac1 is overexpressed in human breast cancer cells

We analyzed Rac1 protein expression in a panel of normal and malignant breast cell lines. 

The genetic characteristics of these cell lines were previously reported and are summarized 

in Supplementary Table S1.37–39 As shown in Figure 1a, immunoblotting detected an 

average of 2–5 fold higher levels of Rac1 in the breast cancer cell lines compared to 76N 

normal human mammary epithelial (HME) cells. To assess whether Rac1 overexpression 

observed in the breast cancer cell lines translates to clinical samples, we assessed Rac1 

expression by immunohistochemistry (IHC) in a TMA, which consists of 33 cases of human 

normal breast/benign tumor tissues (NT) and 36 cases of human malignant breast tumor 

tissues. As shown in Figure 1b–c, IHC detected specific immunostaining for Rac1 with 

moderate to strong levels in the majority of breast tumor tissues, whereas the NT samples 

were negative or weakly positive for Rac1 staining. Among the TMA samples, 64% (23/36) 

of breast tumors had strong to moderately high levels of Rac1 expression, whereas weak to 

no Rac1 expression was observed in 58% (19/33) of NT samples. The analysis also showed 

that 18% (6/33) of NT samples had strong to moderately high levels of Rac1 expression. 

Overall, IHC analysis indicates a significantly higher level of Rac1 expression in breast 

tumor samples compared to NT samples (p<0.001).
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Rac1 is activated in breast cancer cells responding to IR

We have previously shown that IR activates Rac1 in MCF-7 cells.26 We therefore tested 

whether IR causes a similar effect on other normal and cancerous mammary cell lines. As 

shown in Figure 2, Rac1 activity (Rac1-GTP) increased approximately 4-fold in ZR-75-1, 

MDA-MB-231 and BT-474 breast cancer cells within 15 min following IR exposure. 

However, no increase in Rac1 activity was detected in 76N HME cells after IR.

Rac1 expression is increased in the breast cancer cells that survived HFR

Since aberrant amplification/activation of Rac1 is associated with poor prognosis of breast 

cancer,10,40 we assessed the effect of HFR on Rac1 and its downstream pro-survival 

signaling pathways in breast cancer cells. For this study, MDA-MB-231 and MCF-7 cells 

were subjected to a clinical protocol of HFR (50-Gy in 2.5-Gy daily) and the surviving cells 

were selected following treatment (Figure 3a).

As shown in Figure 3a, MDA-MB-231 and MCF-7 cells that survived the HFR (RT) were 

morphologically different from their corresponding wild-type (WT) parental cells. These 

cells appeared rounded-up and less adherent to substratum compared to parental cells. We 

next analyzed the Rac1 protein level in the HFR-treated cells. As shown in Figure 3b, when 

compared to their parental cells, approximate 10- and 3-fold increases in Rac1 protein level 

were detected in MDA-MB-231-RT and MCF-7-RT cells, respectively.

To investigate the mechanism by which Rac1 expression is increased in the breast cancer 

cells treated with HFR, Rac1 mRNA levels in WT and RT cells were examined by RT-PCR. 

As shown in Figure 3c, both MDA-MB-231-RT and MCF-7-RT cells expressed the same 

level of Rac1 mRNA as their respective parental cells. Thus, the increase in Rac1 protein 

expression in the HFR-treated cells apparently involves a post-transcriptional mechanism.

Breast cancer cells that survived HFR exhibit altered pro-survival signaling properties 
compared to their parental cells

Since the breast cancer cells treated with HFR survived 50-Gy fractionated radiation 

delivered over 4 weeks, it is expected that substantial changes in biology occurred in these 

cells compared to their parental cells. Therefore, we compared activities and/or levels of 

several pro-survival signaling pathways in the HFR-treated cells with the corresponding 

parental cells. As shown in Figure 3d, AKT phosphorylation was unexpectedly decreased in 

both MDA-MB-231-RT and MCF-7-RT cells. Furthermore, AKT protein level was also 

markedly decreased in MDA-MB-231-RT cells compared to MDA-MB-231-WT cells, 

whereas it remained unchanged in MCF-7-RT cells relative to MCF-7-WT cells. In contrast, 

phosphorylation of ERK1/2 and IκB, indicative of activation of the ERK1/2 and NF-κB 

signaling pathways, were markedly increased in both MDA-MB-231-RT and MCF-7-RT 

cells relative to their respective parental cells (Figure 3d).

To determine the biological impact of the up-regulation in ERK1/2 and NF-κB signaling 

pathways in the HFR-treated breast cancer cells, we analyzed the downstream targets of 

these signaling pathways. As shown in Figure 3d, immunoblotting indicates notable 

increases in anti-apoptotic proteins Bcl-xL and Mcl-1L in both MDA-MB-231-RT and 
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MCF-7-RT cells compared to their parental cells. In contrast, no difference in Bcl-2 protein 

levels were observed between the HFR-treated cells and untreated cells. These results 

indicate augmentation of pro-survival signaling activities in the breast cancer cells that 

survived HFR.

Since both ERK1/2 and NF-κB signalings can promote survival and proliferation, we 

compared growth kinetics of HFR-treated cells with their parental cells. Results in Figure 3e 

show that both MDA-MB-231-RT and MCF-7-RT cells grew significantly slower than their 

parental cells.

We next compared the HFR-treated cells and untreated cells for their cell cycle response to 

IR. As shown in Supplementary Figure S1, both MDA-MB-231-RT and MCF-7-RT cells, 

either with or without IR exposure, displayed different cell cycle profiles when compared to 

the corresponding parental cells. It is noticeable that MDA-MB-231-RT cells contained a 

larger proportion of 2N-DNA content cell population, indicative of G1 phase cells, than 

MDA-MB-231-WT cells, either with or without IR exposure (Supplementary Figure S1, 

upper panel). On the other hand, MCF-7-RT cells appeared to contain a larger proportion of 

4N-DNA content cell population, indicative of cells in G2/M phase, compared to MCF-7-

WT cells, with/without IR exposure (Supplementary Figure S1, lower panel). In response to 

IR exposure, both untreated and HFR-treated MDA-MB-231 and MCF-7 cells underwent 

dose-dependent G2/M cell cycle arrest, indicating the presence of a functional G2/M 

checkpoint in these cells.

Collectively, these results indicate that the HFR-selected cells adopted many changes in 

biological characteristics in order to survive the cytotoxicity induced by HFR.

Inhibition of Rac1 abrogates up-regulation of the pro-survival signaling pathways in the 
HFR-selected breast cancer cells

As shown in Figure 3b–d, HFR treatment of breast cancer cells resulted in an up-regulation 

of Rac1 expression and a concomitant increase in activities of ERK1/2 and NF-κB pro-

survival signaling pathways. We therefore assessed the effect of Rac1 on these signalings.

We first tested the effect of Rac1 inhibition by NSC23766 on these signaling pathways and 

their downstream targets, the Bcl-2 family members. We previously demonstrated that 

incubation with NSC23766 abrogates IR-induced Rac1 activation in MCF-7 cells.26 

Similarly, incubation with NSC23766 abolished Rac1 activation after IR in MDA-MB-231-

RT cells (Figure 4a).

As shown in Figure 4b, IR exposure induced noticeable increases in phosphorylation of 

ERK1/2 and IκBα in both MDA-MB-231-RT and MCF-7-RT cells, whereas the increases 

were completely abrogated by incubation with Rac1 inhibitor NSC23766. Rac1 inhibition 

by NSC23766 also diminished the basal phosphorylations of ERK1/2 and IκBα in un-

irradiated MDA-MB-231-RT cells (Figure 4b).

We next examined the effect of Rac1 on the expression of Bcl-xL, Mcl-1L and Bcl-2, which 

are downstream targets of ERK1/2 and NF-κB pathways. As shown in Figure 4c, IR 

exposure resulted in increased protein expression of Bcl-xL and Mcl-1L in both MDA-
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MB-231-RT and MCF-7-RT cells. However, these IR effects were abolished in both cell 

lines by the presence of Rac1 inhibition. Rac1 inhibition also decreased the basal protein 

expression of Bcl-xL and Mcl-1L in un-irradiated MDA-MB-231-RT cells. In contrast, 

neither IR nor Rac1 inhibition had any detectable effect on the steady-state level of Bcl-2 

protein in both MDA-MB-231-RT and MCF-7-RT cells.

In summary, these results suggest that Rac1 is required for the maintenance of hyperactive 

pro-survival pathways in the breast cancer cells selected by HFR.

Ectopic expression of dominant negative N17Rac1 mutant diminishes pro-survival 
signaling pathways in the HFR-selected breast cancer cells

Using an adenoviral vector expressing N17Rac1, a dominant negative Rac1 mutant,41 we 

tested the effect of Rac1 on the pro-survival signaling pathways in MDA-MB-231-RT and 

MCF-7-RT cells in the presence or absence of IR. As shown in Figure 5a, immunoblotting 

detected the ectopically expressed N17Rac1, which migrates slightly slower than the 

endogenous wild-type Rac1.26,27 Results in Figure 5a showed that the IR-induced increases 

in ERK1/2 and IκBα phosphorylation in MDA-MB-231-RT and MCF-7-RT cells were 

completely blocked by the expression of N17Rac1 mutant.

We next examined the effect of N17Rac1 mutant on downstream targets of ERK1/2 and NF-

κB signaling pathways. As shown in Figure 5b, while IR exposure resulted in an increase in 

protein levels of Bcl-xL and Mcl-1L in the control-transduced MDA-MB-231-RT and 

MCF-7-RT cells, this effect was abrogated by the expression of N17Rac1. In addition, in the 

absence of IR, N17Rac1 expression also resulted in decreases in protein levels of Bcl-xL and 

Mcl-1L in MDA-MB-231-RT and MCF-7-RT cells (Figure 5b). Consistent with the effect 

observed with the Rac1 inhibitor NSC23766, N17Rac1 expression also had little effect on 

the steady-state level of Bcl-2.

Inhibition of Rac1 blocks survival of the HFR-selected breast cancer cells but not normal 
mammary epithelial cells

Since inhibition of Rac1 either by NSC23766 or by N17Rac1 mutant resulted in suppression 

of pro-survival signaling activities (Figure 4–5), we examined the effect of Rac1 inhibition 

on cell survival, in the presence or absence of IR. As shown in Figure 6a, while IR itself had 

little effect on the morphology of MDA-MB-231-RT cells, inhibition of Rac1 by NSC23766 

caused >50% of cells to round-up and shrink, which is indicative of cytotoxicity.42 IR 

exposure in the presence of NSC23766 resulted in a further increase in cytotoxicity 

compared to the cells treated with NSC23766 alone, as >90% of the cells treated with both 

IR and NSC23766 rounded-up and detached from substratum (Figure 6a), indicating a 

synergistic cytotoxic effect.

We verified the cytotoxic effect of Rac1 inhibition using a clonogenic assay. As shown in 

Figure 6b–c, while IR exposure alone resulted in a modest dose-dependent decrease in 

clonogenic survival of MDA-MB-231-RT and MCF-7-RT cells, IR exposure in the presence 

of NSC23766 resulted in the striking eradication of clonogenic survival of these cells. In the 

presence of NSC23766, viability of MDA-MB-231-RT cells treated with 5- and 10-Gy of IR 

was respectively decreased by >6 orders of magnitude compared to their corresponding 
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irradiated controls (Figure 6b, p=0.02, n=4). Similarly, MCF-7-RT cells treated with 5- and 

10-Gy of IR in the presence of NSC23766 showed a decrease of clonogenic viability by >3 

orders of magnitude compared to their corresponding irradiated controls (Figure 6c: 5-Gy, 

p=0.02, n=4; 10-Gy, p=0.001, n=4). Treatment with NSC23766 alone also resulted in a 

significant reduction in clonogenic survival of both MDA-MB-231-RT and MCF-7-RT cells 

relative to their respective untreated control cells (Figure 6b–c, 0-Gy, p<0.001, n=4).

We have previously shown that Rac1 inhibition alone has little effect on the survival of wild-

type MCF-7 cells, while it synergized with IR, abrogating clonogenic survival of MCF-7-

WT cells after IR.26 We therefore tested whether Rac1 inhibition affects clonogenic survival 

of MDA-MB-231-WT cells. As shown in Supplementary Figure S2, Rac1 inhibition by 

NSC23766 resulted in a noticeable but statistically insignificant reduction in the number of 

colonies formed by these cells. Consistent with the result obtained from MCF-7-WT cells,26 

inhibition of Rac1 by NSC23766 also abrogated clonogenic survival of MDA-MB-231-WT 

cells after IR (Supplementary Figure S2). For a comparison, we also tested the effect of 

Rac1 inhibition on survival of 76N human normal mammary epithelial cells, which 

expressed lower Rac1 levels compared to MCF-7-WT and MDA-MB-231-WT cells (Figure 

1a). Results in Supplementary Figure S3 showed that, while IR resulted in a dose-dependent 

decrease in survival of 76N cells, inhibition of Rac1 had no additional effect on the survival 

of these cells following IR.

To verify the effect of Rac1 inhibition on 76N cell survival after IR, we analyzed the 

phosphorylation of ERK1/2 and IκB in these cells. As shown in Supplementary Figure S4a, 

relative to positive control, 76N cell lysate incubated with GTPγs prior to Rac1 activity 

assay, 76N cells express very low Rac1 activity and this activity was inhibited by incubation 

with NSC23766. As shown in Supplementary Figure S4b, while IR exposure induced a 

subtle, if any, increase in phosphorylation of ERK1/2 and IκB in 76N cells, presence of 

NSC23766 had little effect on these phosphorylations. Incubation with NSC23766 might 

result in a slight increase in ERK1/2 phosphorylation in 76N cells (Supplementary Figure 

S4b, p-ERK1/2). We next assessed the effect of Rac1 inhibition on the expression of Bcl-xL, 

Mcl-1L and Bcl-2 proteins in the 76N cells treated with/without IR. Supplementary Figure 

S4c showed that, while Rac1 inhibition did not affect the protein expression of Bcl-xL and 

Bcl-2, it reduced Mcl-1L protein level in both irradiated and non-irradiated 76N cells.

Ectopic expression of N17Rac1 mutant inhibits clonogenic survival of the HFR-selected 
breast cancer cells

Using an adenoviral vector expressing N17Rac1 dominant negative mutant,41 we verified 

the cytotoxic effect of Rac1 inhibition on MDA-MB-231-RT and MCF-7-RT cells. As 

shown in Figure 6d–e, while Ad.Control-transduced cells showed a dose dependent decrease 

in clonogenic survival following IR exposure, transduction with Ad.N17Rac1 abolished 

clonogenic survival after IR in both HFR selected cell lines. As shown in Figure 6d, 

N17Rac1 expressing MDA-MB-231-RT cells exposed to 5- and 10-Gy of IR showed >3 

orders of magnitude decrease in clonogenic survival compared to the corresponding 

irradiated controls (p=0.02, n=4). A similar result was also obtained using MCF-7-RT cells 

transduced with Ad.N17Rac1 (Figure 6e, p=<0.001, n=4). Additionally, ectopic N17Rac1 
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expression itself resulted in a reduction in clonogenicity in both lines of HFR-selected cells 

in the absence of IR. However, while this effect of N17Rac1 on un-irradiated MDA-

MB-231-RT cells was statistically significant (Figure 6d, 0-Gy, p=0.029, n=4), its effect on 

MCF-7-RT cells was insignificant (Figure 6e, 0-Gy, p=0.343, n=4). It should be noted that 

the size of colonies formed by the N17Rac1 expressing cells, in both MDA-MB-231-RT or 

MCF-7-RT cells, were smaller than their corresponding control cells (Figure 6d–e)

Collectively, results of these studies suggest that Rac1-mediated pro-survival signalings are 

essential for the survival of breast cancer cells in response to HFR treatment. Additionally, 

the HFR-selected breast cancer cells, which express a higher level of Rac1 than their 

parental cells, are more sensitive to Rac1 inhibition than their parental controls, suggesting 

an addiction of the HFR-treated cells to Rac1 signaling for survival.

Rac1 inhibition induces apoptosis in the HFR-selected breast cancer cells

To investigate the mechanisms involved in the decrease in survival of the HFR-selected 

breast cancer cells by Rac1 inhibition, we assessed the integrity of PARP in these cells in the 

presence or absence of Rac1 inhibition. Cleavage of PARP is a hallmark of apoptosis and it 

occurs during the execution phase of programmed cell death.43

As shown in Figure 7a, in the absence of NSC23766, IR exposure had no detectable effect 

on the levels of intact PARP in both MDA-MB-231-RT and MCF-7-RT cells, determined at 

48 h post IR. In contrast, inhibition of Rac1 by NSC23766 alone resulted in a marked 

decrease in the level of intact PARP in both MDA-MB-231-RT and MCF-7-RT cells. 

Additionally, IR exposure in the presence of Rac1 inhibition eliminated the residual intact 

PARP that was present in the cells treated with NSC23766 alone (Figure 7a, lane 4 vs. 3).

To verify the effect of Rac1 inhibition on PARP, cells were transduced with Ad.N17Rac1 or 

Ad.Control and exposed to IR. As shown in Figure 7b, transduction with Ad.N17Rac1 

resulted in a marked decrease in levels of intact PARP in both MDA-MB-231-RT and 

MCF-7-RT cells compared to the control-transduced cells (lanes 3 vs. lane 1). Furthermore, 

IR exposure of N17Rac1 expressing cells resulted in a further decrease of intact PARP 

relative to the un-irradiated N17Rac1-tranduced cells (Figure 7b, lane 4 vs. 3).

Collectively, these studies indicate that inhibition of Rac1 in the HFR-selected breast cancer 

cells results in apoptosis induction.

DISCUSSION

Hyperactive Rac1 signaling has been implicated in cancer development and associated with 

poor prognosis.40,44,45 In this study, we observe a significant up-regulation of Rac1 protein 

expression in cancerous versus normal HME cells and tissues (see Figure 1). Furthermore, 

IR induces a rapid Rac1 activation in breast cancer cells and the breast cancer cells that 

survived the clinical HFR protocol reveal an increase in Rac1 protein expression, which is 

associated with an overall increase in pro-survival signaling activities (Figure 2–3). 

Additionally, the HFR-selected cells display very different cell cycle distribution profiles 

compared to their parental cells, with or without IR, and the changes are apparently cell type 
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specific (see Supplementary Figure S1). Moreover, the HFR-selected cells grow significantly 

slower than parental cells (Figure 3e). These results indicate that the HFR-selected cells 

have gone through adaptive changes to resist the cytotoxic pressure generated by HFR and 

suggest an involvement of Rac1 in the survival of the breast cancer cells treated with HFR.

Activation of AKT, ERK1/2 and NF-κB signaling pathways following IR has been 

implicated in survival and radioresistance.28,46,47 Rac1 is required for PI3K/AKT activation 

by lipopolysaccharide and MEK/ERK activation by 12-O-tetradecanoylphorbol-13-

acetate.48,49 In addition, Rac1 is essential for activation of the NF-κB signaling pathway 

during inflammation and in the initiation of colorectal cancer that carries mutations in 

APC.50,51 These studies suggest that AKT, ERK1/2 and NF-κB pro-survival signalings are 

downstream targets of Rac1. Results in this report demonstrate that HFR results in increased 

Rac1 expression and increased phosphorylation of ERK1/2 and IκBα in the HFR-selected 

cells (see Figure 3d). Furthermore, Rac1 inhibition abrogates the HFR-induced 

phosphorylation of ERK1/2 and IκBα, and the expression of downstream anti-apoptotic 

proteins Bcl-xL and Mcl-1L (see Figure 4–5). These results suggest an involvement of Rac1-

regulated ERK1/2 and NF-κB signaling pathways in the survival of breast cancer cells 

following HFR.

Our previous studies indicate that inhibition of Rac1 in wild-type breast and pancreatic 

cancer cells blocks survival of irradiated cells, whereas it has little effect on the survival of 

non-irradiated cells.26,27 However, results of the current study indicate that the HFR-selected 

breast cancer cells exhibit sensitivity to Rac1 inhibition in the absence of IR (see Figure 6–

7). Biochemical analyses indicate that Rac1 inhibition alone reduces phosphorylation of 

ERK1/2 and IκBα, as well as levels of anti-apoptotic proteins Bcl-xL and Mcl-1L in the 

non-irradiated HFR-selected cells (see Figure 4–5). In contrast, Rac1 inhibition by 

NSC23766 does not suppress the survival of normal 76N HME cells that express very little 

Rac1, whether with/without IR (Supplementary Figure S3). Consistently, inhibition of Rac1 

also does not decrease phosphorylation of ERK1/2 or IκBα in 76N cells treated with/

without IR. These results suggest a sequential increase in dependency on Rac1 for survival 

from normal HME cells → primary breast cancer cells → HFR-selected cells.

Both Bcl-2 and Bcl-xL have been shown to play critical roles in anticancer therapeutic 

resistance.52,53 While the two proteins share 45% sequence identity,54 studies demonstrate 

some differences in their anti-apoptotic functions responding to stimuli. For instance, Fiebig 

et al. show that Bcl-2 overexpression blocks the apoptosis induced by ceramide or 

thapsigargin, but has no effect on doxorubicin- or TNFα-induced apoptosis.54 On the other 

hand, Bcl-xL overexpression can block the apoptosis induced by all four stimuli.54 In the 

present study, we show that Bcl-xL expression is up-regulated following HFR, whereas 

Bcl-2 level is unaffected by HFR (Figure 3d). Consistently, Rac1 inhibition in the HFR-

treated cells abolishes the up-regulation of Bcl-xL but had little effect on Bcl-2 protein level 

(see Figure 4–5). Another Bcl-2 family member Mcl-1L is also upregulated following HFR 

and this up-regulation is abrogated by Rac1 inhibition (see Figure 4–5). These results 

suggest a role for Rac1 in the regulation of Bcl-xL and Mcl-1L in response to HFR and 

implicate Bcl-xL and Mcl-1L in the survival of breast cancer cells after HFR.
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It is noticed that IR induces an increase in Mcl-1L protein in both normal 76N and breast 

cancer cells, but only causes an increase in Bcl-xL protein in breast cancer cells (see Figure 

4–5 and Supplementary Figure S4). These results suggest that different mechanisms are 

involved in the regulation of Mcl-1L and Bcl-xL expression in response to IR and additional 

genetic alterations may be required for the upregulation of Bcl-xL following IR. 

Furthermore, since Rac1 inhibition abolishes HFR or IR-induced Mcl-1L and Bcl-xL, Rac1 

is apparently required for the upregulation of these proteins after HFR or IR. Future studies 

are needed to elucidate the molecular pathways that upregulate these anti-apoptotic 

molecules in response to HFR.

RT is a staple cancer treatment approach, whereas its efficacy is still limited by 

radioresistance. While RT induces cytotoxicity in cancer cells, it concurrently activates 

multiple pro-survival signaling pathways,3,4 which can act conjointly to reduce the 

magnitude of radiation-induced cytotoxicity and promote radioresistance. Results in this 

report provide evidence supporting a key role for Rac1 in the survival of breast cancer cells 

following HFR. Studies to explore the clinical potential of targeting Rac1 signaling for 

radiosensitization of cancer cells are currently underway and will be reported in due course.

MATERIALS AND METHODS

Cell culture and treatment

Human breast cancer cell lines 21MT-1, BT-474, HCC1954, MCF-7, MDA-MB-231, MDA-

MB-468, SkBr3, T47D and ZR75-1 were recently obtained from ATCC. 76N is a line of 

human primary mammary epithelial cells immortalized using human telomerase.37 The 76N 

cell line is a kind gift from Dr. Vimla Band (University of Nebraska Medical Center). Cell 

culture and treatment are detailed in Supplementary Materials.

Rac1 inhibitor NSC2376655 was obtained from Tocris Bioscience and dissolved in DMSO.

Antibodies and immunoblotting

Antibodies are listed in Supplementary Materials. Immunoblotting was performed as 

described previously.22,56

Tissue microarray (TMA) and immunohistochemistry—The clinical specimen for 

IHC was a commercial TMA (BR723) (US Biomax). The TMA included 33 cases of human 

breast normal or benign tumor tissues (NT) and 36 cases of human malignant breast tumor 

tissues at various stages. The TMA was analyzed for Rac1 expression by IHC, as described 

previously,57,58 using a Rac1 specific antibody (PA1–091) at 1:400 dilution. The Rac1 

immunostaining intensity was evaluated by a UNMC pathologist who was blinded to the 

clinical information.

Rac1 activity assay

Rac1 activity was assayed using a Rac1 assay kit (Upstate Biotechnology), as described in 

our previous studies.26,27
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RT-PCR analysis

Total RNA was isolated using the RNeasy Mini Kit (Qiagen) and analyzed for human Rac1 

and GAPDH mRNA by real-time RT-PCR using the RT2 Real-Time™ Syber Green RT-PCR 

system (SuperArray Bioscience). The relative Rac1 mRNA expression was adjusted with 

GAPDH mRNA levels. The PCR primer sequences are included in Supplementary 

Materials.

Growth kinetics

Growth kinetics was determined using AlamarBlue assay (Life Technologies) as described 

previously.59

Cell cycle analysis

Fluorescence-activated cell sorting (FACS) was performed as described previously.22

Adenoviral vectors and adenoviral infections

Recombinant adenovirus N17Rac1 (Ad.N17Rac1) and dl312 (Ad.Control) were kindly 

provided by Dr. Toren Finkel (NIH, Bethesda, MD). In Ad.N17Rac1, the Rac1 cDNA 

contains a Ser to Asp substitution at position 17 and functions as a dominant negative 

mutant.60

Adenoviral infection was performed as described previously.61

Clonogenic survival assay

Clonogenic assay was performed and quantified as described previously.26,27,62

Statistical analysis—Composite-score was evaluated by multiplying the values of the 

IHC-staining intensity and the percent of immunoreactive cells.57,58 The data are shown as 

mean±s.d. P-values were determined using Student’s t-test and P≤0.05 was considered as 

significant. All statistical analyses were done using SigmaPlot.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rac1 is overexpressed in breast cancer cells. (a) Upper panel: normal mammary epithelial 

cells (76N) and breast cancer cells of subtype luminal A (MCF-7 and T47D), and luminal B 

(BT-474 and ZR-75-1), triple-negative (MDA-MB-231 and MDA-MB-468) and HER2 

positive (SkBr3, HCC1954, 21MT-1) were analyzed for Rac1 protein expression by Western 

blot analysis. As a protein loading control, the level of GAPDH in cell lysates was assessed. 

Lower panel: immunoblot densities of Rac1 and GAPDH were quantified using ImageJ 

analytical program (NIH) and relative Rac1 expression versus GAPDH determined. (b) 

Hein et al. Page 17

Oncogene. Author manuscript; available in PMC 2016 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Representative IHC analysis shows a distinct increase in immunostaining of Rac1 in 

malignant breast tumor tissues compared to normal breast tissues. (c) Box plot shows 

composite score of Rac1 expression in normal breast/benign tumor tissues (NT) and 

cancerous breast tissue (Cancer), analyzed by IHC.
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Figure 2. 
Rac1 activity is increased following irradiation in breast cancer cells compared to normal 

breast cells. Upper panel: indicated cells were harvested before and 15 min after IR (10-Gy) 

and analyzed for Rac1 activity (Rac1-GTP), as described in Materials and Methods. As 

controls, protein levels of Rac1 and GAPDH in cell lysates were assessed. Lower panel: 

immunoblot densities of Rac1-GTP and Rac1 total protein were quantified using ImageJ 

software and relative Rac1-GTP level versus Rac1 total protein level determined.
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Figure 3. 
Breast cancer cells that survived a clinical dose of HFR exhibit different cell morphology 

and increased Rac1 protein expression compared to parental cells. (a) Left panel: procedure 

for selecting the breast cancer cells that survived clinical dose of HFR. Right panel: 

representative images of MCF-7 and MDA-MB-231 cells were obtained before (WT) and 

after (RT) HFR treatment. (b) Upper panel: indicated breast cancer cells were analyzed for 

protein levels of Rac1 and GAPDH by immunoblotting. Bottom panel: immunoblot densities 

of Rac1 and GAPDH proteins were quantified using ImageJ software and relative Rac1 
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expression versus GAPDH determined. (c) mRNA levels of Rac1 and GAPDH in the 

indicated cells were analyzed by RT-PCR and relative Rac1 mRNA level versus GAPDH 

mRNA determined. The results are shown as mean±s.d. of RT-PCR analyses in tetraplicate 

samples (n=4). (d) Log-phase growing MCF-7 and MDA-MB-231 cells treated without 

(WT) or with (RT) HFR were analyzed for phosphorylation and/or level of AKT, ERK1/2, 

IκBα, Bcl-xL, Mcl-1L and Bcl-2 by immunoblotting. GAPDH was assessed as a protein 

loading control. (e) The indicated cells were analyzed for growth kinetics using AlamarBlue 

assay, as described previously.59 At indicated time points, 10% of AlamarBlue reagent was 

added to the cells, incubated for 130 min and measured for fluorescence intensity using a 

SpectraMax M5 plate reader (Molecular Devices, Inc.) at ex/em 544/590 nm.
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Figure 4. 
Effect of Rac1 inhibition on the key components of pro-survival signaling pathways in HFR-

selected breast cancer cells treated with/without radiation. (a) MDA-MB-231-RT cells were 

incubated with NSC23766 at the indicated doses for 1 h and exposed to IR (10-Gy). The 

cells were then incubated for 15 min at 37°C and analyzed for Rac1 activity (Rac1-GTP) 

and protein level (Rac1). (b) and (c) cells were incubated for 1 h in the presence or absence 

of NSC23766 (100 µM) and treated with/without 10-Gy IR. After 2 h incubation following 

IR, the cells were analyzed for phosphorylation and level of ERK1/2 and IκBα (b). After 48 
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h post IR, the cells were analyzed for levels of Bcl-xL, Mcl-1L, Bcl-2 and GAPDH by 

immunoblotting (c).
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Figure 5. 
Effect of N17Rac1 dominant negative mutant on the key components of pro-survival 

signaling pathways in HFR-selected breast cancer cells treated with/without radiation. (a) 

Indicated cells were transduced for 24 h with adenoviral vector expressing N17Rac1 or 

control adenoviral vector (10 pfu/cell), treated with/without 10-Gy IR, incubated for 2 h and 

analyzed for phosphorylation and/or level of N17Rac1, ERK1/2 and IκB by 

immunoblotting. (b) At 48 h post IR, the cells were assessed for levels of Bcl-xL, Mcl-1L, 

Bcl-2 and GAPDH.
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Figure 6. 
Inhibition of Rac1 abrogates clonogenic survival of the HFR-selected breast cancer cells. (a) 

MDA-MB-231-RT cells were incubated for 1 h in the presence or absence of NSC23766 

(100 µM) and exposed to IR (5-Gy). The cells were incubated for 3 h post IR, washed, 

incubated for an additional 2 days and photographed using phase-contrast optics. The scale 

bar represents 100 µm. (b) MDA-MB-231-RT cells were incubated for 1 h with/without 

NSC23766 and exposed to increasing doses of IR. After 3 h incubation post IR, the cells 

were washed and incubated in growth medium for 2 weeks. Left panel: representative 

sample dishes from the clonogenic assay are shown. Right panel: number of colonies in the 

resulting samples were quantified using the ImageJ analytical program and the results are 
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shown as mean±s.d. of two set of experiments in duplicate samples. (c) MCF-7-RT cells 

were treated as described above. Left panel: representative sample dishes from the 

clonogenic assay are shown. Right panel: numbers of colonies in the samples were 

quantified using the ImageJ analytical program and the results shown as mean±s.d. of two 

set of experiments in duplicate samples. (d) MDA-MB-231-RT cells were infected with 

Ad.N17Rac1 or Ad.Control (10 pfu/cell) for 24 h and exposed to IR (5 or 10-Gy) or left 

non-irradiated. The cells were incubated in growth medium for 14 days and assessed for 

amount of colonies. Left panel: representative sample dishes from the clonogenic assay. 

Right panel: number of colonies in the samples were quantified and the results shown as 

mean±s.d. of two set of experiments in duplicate samples. (e) MCF-7-RT cells were treated 

as described above. Left panel: representative sample dishes from the clonogenic assay. 

Right panel: numbers of colonies in the samples was quantified and the results shown as 

mean±s.d. of two set of experiments in duplicate samples.
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Figure 7. 
Inhibition of Rac1 induces apoptosis in the HFR-survived breast cancer cells. (a) Indicated 

cells were treated with/without IR (10-Gy) in the presence or absence of NSC23766 (100 

µM), incubated for 2 days and analyzed for PARP and GAPDH protein expression by 

immunoblotting. (b) Cells were infected with Ad.Rac1N17 or Ad.Control (10 pfu/cell) for 

24 h and exposed to IR (10-Gy) or left untreated. After 48 h incubation, cells were analyzed 

for PARP and GAPDH protein expression by immunoblotting.
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