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ABSTRACT Objective: Cellular heterogeneity is regarded as a major factor affecting treatment response and resistance in malignant melanoma. 

Recent developments in single-cell sequencing technology have provided deeper insights into these mechanisms.

Methods: Here, we analyzed a BRAFV600E-mutant melanoma cell line by single-cell RNA-seq under various conditions: cells sensitive 

to BRAF inhibition with BRAF inhibitor vemurafenib and cells resistant to BRAF inhibition with vemurafenib alone or vemurafenib 

in combination with the MEK1/2 inhibitors cobimetinib or trametinib. Dimensionality reduction by t-distributed stochastic 

neighbor embedding and self-organizing maps identified distinct trajectories of resistance development clearly separating the 4 

treatment conditions in cell and gene state space.

Results: Trajectories associated with resistance to single-agent treatment involved cell cycle, extracellular matrix, and de-differentiation 

programs. In contrast, shifts detected in double-resistant cells primarily affected translation and mitogen-activated protein kinase 

pathway reactivation, with a small subpopulation showing markers of pluripotency. These findings were validated in pseudotime 

analyses and RNA velocity measurements.

Conclusions: The single-cell transcriptomic analyses reported here employed a spectrum of bioinformatics methods to identify 

mechanisms of melanoma resistance to single- and double-agent treatments. This study deepens our understanding of treatment-

induced cellular reprogramming and plasticity in melanoma cells and identifies targets of potential relevance to the management of 

treatment resistance.
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Introduction

Malignant melanoma is a highly aggressive tumor with a well-es-

tablished genetic background1. The most prevalent mutation in 

melanoma is BRAFV600E (Val600→Glu600), which activates the 

mitogen-activated protein kinase (MAPK) pathway and can 

be targeted by small molecule inhibitors2. Currently, targeted 

treatment of metastatic melanoma uses 1 of the 3 BRAF inhib-

itors vemurafenib, dabrafenib, or encorafenib in combination 

with inhibitors of downstream targets such as mitogen-ac-

tivated extracellular signaling-regulated kinases (MEK1/2)2. 

These combinations have significantly improved 5-year overall 

survival rates, which now exceed 50%3. Despite this, the vast 

majority of patients ultimately develop a secondary resistance4.

Tumor heterogeneity is a well-known phenomenon and is 

regarded as a major driver of treatment resistance in many 

cancers, including malignant melanoma5,6. The advent of 

 single-cell sequencing technology has provided unprecedented 

resolution of this heterogeneity, and permitted detailed studies 

in a range of different cancers7. In the first landmark study on 

melanoma single-cell transcriptomes, Tirosh et al.8 analyzed 

19 samples from primary melanomas and melanoma metas-

tases. Transcriptional heterogeneity was defined in terms of 

gene expression patterns in both time and space, including 
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different cell cycle and developmental states as well as the 

spatial contexts of the local microenvironment. Importantly, 

a drug-resistance program (MITF-low/AXL-high signature) 

was found in a small number of cells in samples that were gen-

erally regarded to be drug-sensitive (MITF-high/AXL-low), 

suggesting that latent treatment resistance programs were 

present in these samples. Mapping the gene expression pat-

terns of non-melanoma cells onto melanoma sequencing data 

of the Cancer Genome Atlas Network has identified different 

types of tumor clusters on the basis of their inferred cell type 

composition8.

In an earlier study from our own group, self-organizing  

maps (SOMs) identified sub-populations of melanoma cells, 

based on gene expression patterns of cellular proliferation, 

oxidative phosphorylation, pigmentation, and stroma9. The 

results revealed that patterns affecting cellular proliferation 

were associated with the shortest overall survival in a clinical 

study when comparing these data with published gene expres-

sion profiles from patient biopsies10. Furthermore, prolifera-

tion and pigmentation gene signatures in primary melanomas 

were characteristic of a class of melanomas with poorer overall 

survival11.

In the present study, single-cell transcriptomic patterns were 

analyzed in A375 melanoma cell cultures under targeted treat-

ment with MAPK inhibitors to identify transcriptomic pat-

terns of developing treatment resistance. We applied a variety 

of bioinformatics methods including t-distributed stochastic 

neighbor embedding (tSNE) and SOM to visualize expression 

landscapes before and after treatment as well as pseudotime 

and RNA velocity analysis to infer paths of developing treat-

ment resistance on a single cell level. We demonstrated that 

developmental trajectories showed transitions from a neural 

crest-like state to a more proliferative one, followed by states 

exhibiting signatures of MAPK pathway reactivation and 

pluripotency, suggesting a high degree of plasticity of cellular 

programs after treatment.

Materials and methods

Melanoma cell culture

The BRAFV600E-mutant melanoma cell line A375 was main-

tained under standard conditions in RPMI medium with 

10% fetal calf serum and 1% penicillin/streptomycin. The 

identity of the A375 cells was confirmed before starting the 

experiments. Cells were made resistant to vemurafenib or 

a combination of vemurafenib with cobimetinib or tra-

metinib (MEK1/2 inhibitor) by treating cells for 10–14 days 

with half of the previously determined IC50 concentra-

tions. This resulted in an increase of IC50 mean values for 

vemurafenib from 3.06 μM for  sensitive (S) cells to 13.94 

μM for  single-agent- resistant (vemurafenib; RV) cells and to 

39.24 μM for double-agent (vemurafenib plus cobimetinib; 

RVC) and 15.96 (vermurafenib plus trametinib; RVT) cells. 

Values for cobimetinib increased from 0.55 μM for S cells to 

9.18 μM for RVC cells and for trametinib from 0.78 μM for 

S cells to 9.82 μM for RVT cells. Inhibitors were removed 

24 h before starting single-cell analyses to avoid direct toxic 

effects of substances on cell cultures. Chemical inhibitors 

were purchased from Biozol (Munich, Germany; vemu-

rafenib, SEL-S1267; cobimetinib, SEL-S8041; trametinib, 

SEL-S2673).

Single-cell RNA-seq (scRNA-seq)

Cell suspensions were generated by washing melanoma cells 

with phosphate-buffered saline then trypsinized with TripLE 

Xpress (Invitrogen, Darmstadt, Germany) for 5 min. The reac-

tion was stopped by adding media containing fetal calf serum 

(FCS). Cell viability was determined by trypan blue stain-

ing (Sigma Aldrich, Munich, Germany) and always exceeded 

95%. Single melanoma cells from short-term cultures were 

captured on a 10x Genomics Chromium Controller® (10x 

Genomics, Pleasanton, CA, USA) according to the manu-

facturer’s instructions, with 10,000 cells being loaded into a 

channel of the Chromium system using the v2 single-cell rea-

gent kit (10x Genomics®). Following capture and lysis, cDNA 

was synthesized and amplified for 12 cycles. The amplified 

cDNA was used to construct Illumina sequencing libraries 

according to the conditions described in the Chromium User 

Guide® (10x Genomics). Briefly, blunt-end repair was fol-

lowed by adapter ligation. Sample indexes were added during 

PCR amplification. The barcoded libraries were purified with 

SPRI beads and quantified using the Library Quantification 

Kit – Illumina/Universal (KAPA Biosystems; Merck KGaA 

Darmstadt, Germany) according to the manufacturer’s 

instructions. Correct size distribution of the library DNA was 

confirmed using the Fragment Analyzer (Agilent, Santa Clara, 

CA, USA). Sequencing of 2 × 150 bp was performed with an 

Illumina NextSeq 550 sequencer (Illumina, San Diego, CA, 

USA). Demultiplexing was done using bcl2fastq v2.20.0.422 

(Illumina).
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Pre-processing and SOM analysis of scRNA-seq 
data

scRNA-seq data were further pre- processed using 10x 

Genomics software Cell Ranger® (https://support.10xgenom-

ics.com) and the R package Seurat (https://satijalab.org/

seurat/). For subsequent transcriptional analysis, we applied 

oposSOM software12-15. Pre-processing of expression values 

included log-transformation and centralization of expres-

sion data. Cell numbers varied between treatment groups: 

5,282 sensitive/untreated cells (S), 2,004 cells resistant to sin-

gle-drug treatment with vemurafenib (RV), 9,266 cells resist-

ant to combined treatment with vemurafenib and cobimetinib 

(RVC), and 10,427 cells resistant to combined treatment with 

vemurafenib and trametinib (RVT; see Figure 1 for an over-

view). After quality control to remove dead and doublet cells, 

technical bias was removed by batch correcting the data using 

the IntegrateData protocol in the Seurat package. Then, cell 

numbers were equalized by random selection of 2,000 cells 

per condition to ensure equal weighting of treatment condi-

tions in downstream analyses. To optimize the runtime of the 

oposSOM software, we sought to downscale the cell numbers 

while preserving the intrinsic heterogeneity of the samples. 

For this purpose, we employed Louvian clustering to group 

the cells in 27 clusters, and randomly selected 20% of cells 

per cluster and treatment group. Overall, 1,800 representative 

cells (out of originally 26,979) remained for SOM analysis. 

Note that the number of clusters used for segmentation (n = 

27) is not limiting, insofar as it clearly exceeds the number of 

treatment groups (n = 4) and intrinsic clusters (n = 7).

We employed the oposSOM software to analyze transcrip-

tome data via SOMs, a neural network machine learning 

technique previously described14,15. Briefly, it transforms the 

high-dimensional expression data of n = 28,065 gene tran-

scripts into K = 3,600 metagenes. Metagenes were arranged 

in a 60×60 grid, and due to the self-organizing properties of 

the SOM, metagenes with similar expression profiles clus-

ter together. Similarly, genes with similar expression profiles 
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Figure 1 Overview of the experimental and analytical workflow. A375 melanoma cells were cultured in the presence of various mitogen- 
activated protein kinase pathway inhibitor drugs and analyzed by single-cell RNA-seq. After quality control, cell numbers were balanced and 
downscaled for further analysis. t-Distributed stochastic neighbor embedding analysis assigned cells to 7 transcriptional states distributed over 
the treatment groups. The underlying transcriptional landscapes were visualized using self-organizing map portraits. The downstream analysis 
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group together in the same or closely located regions of the 

grid. SOM analysis thus visualizes the individual transcrip-

tome landscape of each cell, its “SOM portrait”, by coloring 

overexpressed and underexpressed metagenes in red and blue, 

respectively.

Clustering the expression portraits of all cells resulted in  

7 clusters (C1–C7), each referring to cells with similar expression  

patterns. Mean SOM portraits of each cluster were obtained by 

averaging the portraits of all cells within clusters. The so-called 

spots of overexpressed metagenes were identified by applying 

a top 90% quantile criterion for metagene expression. Spots 

contained 162–653 genes. The functional context of each 

spot and cell cluster was determined using DAVID (https://

david.ncifcrf.gov) and gene set analysis as implemented in 

oposSOM15.

Similarity, pseudotime, and RNA velocity 
analysis

Similarities between the transcriptomes of melanoma 

cells were visualized using tSNE applied to the cells in all 

treatment conditions. Pseudotime analysis was performed 

using monocle16. and URD as independent methods16,17. 

Pseudotime analysis arranges cells according to similari-

ties of their transcriptomes along a branched-tree structure 

inferring potential trajectories of cell development, e.g., 

under the effect of treatment. RNA velocities were calcu-

lated as rate of gene expression change using the ratio of 

unspliced to spliced mRNAs of each gene18. We applied 

the scVelo software, which uses heterogeneous splicing 

kinetics of different cell populations for the recovery of 

directed dynamic information19. The mRNA of all genes 

forms a multidimensional vector pointing in the direction 

of the overall increment of mRNA abundance of the cell. 

It thus predicts the future state of the cell transcriptome. 

In the gene space as provided by SOM, the mRNA veloc-

ity of a metagene is given by the multidimensional vector 

with the mRNA velocities of all single genes included in the 

metagene cluster20. It forecasts the expression change of the 

metagene. The cell or metagene-related vector fields were 

then transformed into trajectories of RNA velocity  pointing 

in the direction of increasing expression. They conse-

quently represent flow vectors of increasing mRNA abun-

dance from a source toward a sink (or attractor) region of 

transcription.

Results

Treatment groups are divided into 7 types of 
cell activity

We applied scRNA-seq to measure the transcriptomes of a total 

of 26,979 single cells obtained from the A375 melanoma cell 

line grown under 4 different conditions: untreated/sensitive 

(S), treatment-resistant to BRAF inhibitor vemurafenib alone 

(RV) or treatment-resistant to a combination of vemurafenib 

with the MEK1/2 inhibitors cobimetinib (RVC) or trametinib 

(RVT) (Figure 1). Diversity analysis revealed 7 cell clusters of 

different transcriptomic activity (C1–C7), where each cluster 

is represented by a specific area on a t-SNE plot (Figure 2A 

and Table 1). Each cluster represents a transcriptional state 

of the cells characterized by its average SOM portrait of gene 

expression showing specific red areas (overexpression spots) 

of high transcriptional activity and blue areas (underexpres-

sion spots) of low transcriptional activity (Figure 2A).

Each treatment group consists of several transcriptional 

clusters (Figure 2B), reflecting the heterogeneity of melanoma 

cells under each treatment21 (Figure 2C). S cells mainly consist 

of clusters C1–C5. Single-agent treatment-resistant RV cells 

mainly consist of clusters C2–C5, while double-agent-resistant  

RVC cells show a clear preference for C4, with less cells in C3, 

C5, and C6. Double-agent-resistant RVT cells were enriched 

by C5, followed by C4, C7, and C6 (Figure 2C). C1 largely 

consisted of S cells, thus harboring a cell type virtually eradi-

cated by treatment (Figure 2D). In contrast, C6 and C7 almost 

exclusively consisted of double resistant cells from RVC and 

RVT, respectively, which defines them as specific double-agent 

treatment survivors (Figure 2D). The remaining clusters, C2–

C5, constitute transcriptional cell states existing under all treat-

ment conditions, but with different frequencies. Alternative 

similarity analyses such as independent component analysis 

(ICA) (Supplementary Figure S1A) and similarity network 

presentation (Supplementary Figure S1B) supported these 

results.

The heterogeneity of the treatment groups was translated 

into alpha-diversity values, an entropy-based measure derived 

from ecology to estimate diversity of species among habitats 

(Figure 2E)22. The alpha-diversity values among the treatment 

groups increased from sensitive toward RVT double-agent- 

resistant cells, reflecting the fact that heterogeneity of cell 

states increases upon treatment. In line with Figure 2D, the 

https://david.ncifcrf.gov
https://david.ncifcrf.gov
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alpha-diversity among clusters is lowest in C1 and C7, which 

contain mainly S and RVT cells, respectively (Figure 2E). The 

high diversity among treatment groups supports the develop-

mental character of transcriptomic clusters. Taken together, 

treatment resistance is reflected by a re-distribution of exist-

ing, and appearance of new gene expression clusters.

Treatment affects gene patterns in a serial order

The red spots in the gene expression portraits (SOM) in 

Figure 2A and 2B consist of patterns of co-regulated genes 

overexpressed in the respective cell cluster or treatment 

groups, respectively. Overall, we identified 8 such spots labeled 

as an entropy measure using the fractions of cells in the respective group22. (F) Supporting maps illustrate different properties of SOM 
space: The overexpression summary map provides an overview of the red spots observed in the individual group portraits (labels A–I) 
and their main function. Spot activation after treatment (S, RV, RVC, and RVT) follows the arrow pointing in a counterclockwise direction. 
Localizations of selected key genes are associated with the functional classification of the spots. The expression variance map indicates 
that the highest variability is observed along the edges of the map while invariant genes accumulate within the blue spot in the center. 
The correlation map shows strong anti-correlation of spot expression along the upper-left to down-right diagonal (between spots A and 
D). (G) Difference SOM portraits with respect to the untreated S-state indicate areas of differentially upregulated and downregulated 
genes in red and blue, respectively.

Table 1 Functional characteristics of cell types

Cluster (cellular 
subtype)

  Brief characteristics   Upregulated 
spots

  High population in   Activated gene signaturesa   Activated genesb

C1   Neural crest-like   C   S   Antigen-presenting cells, 
transitory neural-crest 
signature

  MAJIN, NME9, CD74, ERBB3, 
RAMP1, HLA-DRA, SOX10, 
KRT23 

C2   High cycling G1S-
arrest biased

  A   RV   Proliferating cells, high-cell-
cycle activity, DREAM targets

  UBE2S, KRT81, KRT17, 
HMGN2, ANKRD1, FOSL1, 
KRT18, RANBP1, STMN1, 
CENPU, CDK1, CDK4, MYC

C3   Slow cycling, stromal-
like

  D (B)   RV > (RVT > RVC)   Hallmark p53 targets stroma-
like, epithelial-to-mesenchymal 
transition, cell cycle inhibition 
by CDKN1A

  NEAT1, CDKN1A, KDM5B, 
IL1B, H1-2, GSN, FAM3C, 
MTOR, MDM2

C4   High cycling, G2M-
arrest biased

  A   RVC (> RV, RVT, S)   Proliferating cells, cell cycle 
activity in G2/M arrest

  See C2

C5   Translation   B   RVT (> RV, RVC, S)   Ribosome, translation, low 
proliferation, melanoma 
housekeeping genes

  S100A6, RPL7A, RPL31, 
RACK1, EEF1A1

C6   Stressed, pluripotency-
resembling

  F, H, I   RVC (> RVT)   Unconventional PI3K/Akt 
activators, KLF4 activation

  UTS2, COX2, NTS, MMP1, 
EGR1, MALAT1, SUCNR1, 
PCSK6, NEAT1, OCT4, 
SETD1A, KLF4

C7   MAPK reactivating   E, G   RVT   Alternative MAPK pathway, 
stress-induced signaling, cGMP 
activity to MAPK, invasiveness

  EPO, MARCKS, TSPAN8, 
GUCY1B1, PDE6B, DDX10, 
BRAF, WDR63, SPANXD

aGene sets were taken from an number of earlier reports8,21,46-48 as part of the gene sets implemented in the R package oposSOM used for 
analysis14.
bGenes were taken from spot lists (Supplementary Table S1).
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A–I (Figure 2F and Supplementary Table S1). Locations of 

selected key genes with functions in cell cycle activation, 

MAPK pathway, and pluripotency are indicated on the map 

(Figure 2F). Interestingly, the development of treatment 

resistance from sensitive (S), via single-agent-resistant (RV) 

toward double-agent-resistant (RVC/RVT) cells is reflected by 

an activation of spots from the top-right via top left toward the 

bottom right corner of the SOM, in counterclockwise direc-

tion, around an area of invariant genes. This leads to anti- 

correlated expression especially between genes in spot A and 

D (Figure 2F, right). Difference portraits of SOMs reveal that 

treatment activates new cell states with genes located along the 

left and lower edge of the SOM, while double-agent treatment 

resistance (versus single-agent treatment resistance) activates 

genes along the lower and right edges, reflecting partly reac-

tivation of initial states of untreated cells in C1 (Figure 2A 

and 2G).

Functional context of gene modules and cell 
types

Expression profiles of the genes from the different spots across 

all the cells are shown in Figure 3A, where cells were grouped 

by either clusters or treatment and ranked within each line 

with decreasing expression of spot A. The functional con-

text of the spots was inferred from gene set analysis and/or 
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major trend observed upon treatment. (C)–(E) Pairwise comparison of expression signatures. (C) Comparison of gene expression in G1/S and 
G2/M phases of the cell cycle indicates a shift of C2 cells toward high expression of G1/S gene and of C4 cells toward high expression of G2/M 
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location of selected key genes in or near the respective spots 

(Supplementary Table S1). The overlap plot of clusters and 

treatment groups provides an overview of the relationship 

between the 2 types of classifications (Figure 3B).

C1 is characterized by a specific upregulation of spot C, 

which is enriched with genes found in antigen presentation 

(MHC-II activation) and neural crest-like cells (Table 1). Key 

genes in the MAPK pathway, BRAF, MAPK1, and MAPK12, 

are located near spot C (Figure 2F and Table 1). After MAPK-

inhibitor treatment, cells expressing spot (module) C mainly 

in C1 are lost (Figure 3A). Cells in C2 and C4 are marked by 

activation of spot (module)A, which includes genes involved 

in proliferation, mitosis, and stemness, all related to high 

proliferation, such as MYC and its targets and the cyclin- 

dependent kinases CDK1 and CDK4 (Figure 3A and Table 1). 

Comparing the activation of spot A among treatment groups 

reveals that RVT cells, and to a lesser extent RVC cells, are less 

proliferative than the other groups (Figure 3A). Interestingly, 

proliferating, partly de-differentiated S and RV cells are found 

in C2, while RVC cells are mainly found in C4 (Figure 3B). 

To differentiate better between C2 and C4, we examined the 

expression of genes involved in the G1/S and G2/M phase 

of the cell cycle, respectively, and found a shift from G1/S in 

C2 to G2/M in C4, while cells in C3 show low cycling activity 

(Figure 3C). Cells in C3 upregulated mainly spot (module) 

D, which enriches p53 targets, signature genes of the epithe-

lial–mesenchymal transition, stroma-associated genes, and 

KDM5B, an epigenetic marker of slow cycling in melanomas 

known to associate with drug resistance (Figure 3A, Table 1 

and Figure 2F)23,24. KDM5B targets are known to drive a slow 

cycling state of melanoma after treatment-induced de-differ-

entiation25. Furthermore, C3 and C5 cells show activation of 

genes encoding ribosomal proteins related to translation in 

spot B (Table 1).

All treatment groups have cells in C5, with the dou-

ble-agent-resistant RVT cells showing the largest enrichment 

(Figure 3B). C6 clusters, and to a less extent C4 clusters, are 

specific for double-resistant RVC cells characterized by activa-

tion of spots (modules) F, H, and I. These spots contain genes 

related to pluripotency (OCT4, SETD1A/KMT2F, KLF4, or 

FOXD3) (Figure 3A and 3B, Table 1), which suggests a loss 

of differentiation of the respective cell subtype and acquisi-

tion of transcriptional plasticity. In melanoma, KLF4 (spot H) 

(Figure 2F) plays a pro-tumorigenic and pro-proliferative role, 

inhibits apoptosis, and promotes metastasis in connection with 

ER-stress26,27. Other upregulated genes in C6 indicate activa-

tion of the PI3K/Akt pathway, inflammation, and metastasis 

(Table 1). Cluster C7 (mainly RVT cells) partly reactivates spot 

C (antigen presenting cells), but is mainly distinguished by 

spots E (MAPK reactivation) and G (proteasome) (Figure 3B 

and Table 1). Cells in C7 further express a  variety of genes 

implicated in malignant processes, such as treatment resist-

ance (EPO), proliferation via the JAK/Stat pathway, or inva-

sion (e.g., MARCKS) (Table 1). Taken together, the functional 

patterns of cell clusters and SOM spots suggest that treatment 

resistance activates cell proliferation and de- differentiation, 

epithelial-mesenchymal transition, pluripotency, and MAPK 

reactivation.

Pathway activation

Gene patterns of clusters C1–C7 were mapped onto 4 canon-

ical signaling pathways (MAPK, JAK-STAT, p53, PIK3-AKT; 

Supplementary Figures S2–S5) using the signal flow (PSF) 

approach for estimating gene activity in the pathways28. This 

analysis showed that activation (in C2 and C4) and deactivation 

(in C3) of cell cycle genes appeared to be governed by down-

regulated or upregulated CDKN1A (cyclin-dependent kinase 

inhibitor), and the p53 antagonist MDM2, all involved in mel-

anoma cell cycle de-regulation (Supplementary Figures S2, 

S4, and S5)2. A similar antagonism between CDKN1A and 

cyclin-dependent kinases in melanoma cell lines has been 

genes, while C3 shows low expression of cell cycling genes. Red, blue, and green circles arranged along a triangle schematically illustrate the 
respective archetypal cell types. (D) Expression of AXL and MITF, respectively, gene expression programs in clusters C1–C7. (E) Expression of 
gene targets of low- and high-expression transcription factors (TFs) reveals expression bias toward high TF in C1, C2, and C4 and low TF in C3, 
C6, and C732. (F) Heatmap of melanoma development gene signatures taken from Tsoi et al.33 mapped onto C1–C7 cluster signatures. Neural 
crest-like transitory signature genes are overexpressed in C1; genes characterizing undifferentiated melanoma cells are overexpressed in C2; 
and transitory (between neural crest and melanocytic) signature genes are overexpressed in C3. (G) Gene expression signatures taken from 
time courses after melanoma treatment in a mouse xenograft model activate cells of cluster C1, C3, and C6 at the minimum residual disease 
(MRD) state at T2 (arrows), which marks the transition between sensitivity and resistance for treatment34. Asterisks denote significant differ-
ences (P < 0.05, analysis of variance with Tukey’s post-hoc test).
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reported previously29. Moreover, reactivation of MAPK, p53 

and PI3K/Akt pathways, e.g., via activated protein synthesis 

was observed in C7 and, to a lesser degree, in C6 as a result of 

double-agent treatment (Supplementary Figures S2, S4, and 

S5). Thus, changes in gene expression under treatment appear 

to involve various intracellular signaling pathways.

Epigenetics and comparison with previously 
described signatures of treatment resistance

Next, we assessed how our cell subtyping is related to pre-

viously published melanoma gene signatures. As shown in 

Figure 3D, the A375 cell line showed an upregulated AXL 

program in C2–C5, according to signatures taken from an ear-

lier melanoma single-cell report and returned to baseline in 

C6 and C78. The MITF program decreased during treatment 

resistance (Figure 3D)8. To estimate the possible effect of epi-

genetic factors in treatment resistance, we used expression data 

of chromatin states taken from genomic data of melanocytes 

(Supplementary Figure S6D)30,31. The proliferative clusters C2 

and C4 showed enhanced expression of genes with active pro-

moters and actively transcribed genes (TssA, Tx), indicating that 

proliferating A375 cells use canonical transcriptional programs 

of melanocytes, while genes with repressed and poised promot-

ers (TssP, ReprPC) remain at low expression levels (Figure 3E 

and Supplementary Figure S6D). The latter states are, however, 

activated in double-resistant cells (RVT and RVC) suggesting 

their epigenetic de-repression after epigenetic remodeling as a 

possible mechanism promoting treatment resistance (Figure 

3E). In support of this, we found a separation of clusters into 

2 groups, C1, C2, C4 versus C3, C6, C7, respectively, regarding 

expression of high- and low-transcription factor (TF) charac-

teristics (Figure 3E)32. The high-TF genes are associated with 

regulation of proliferation under TF-control, whereas low-TF 

genes refer to partly repressed genes under epigenetic control. 

Heatmaps of gene expression profiles of clusters C1–C7 and 

SOM spots are shown in Supplementary Figure S6.

Tsoi et al.33 reported a consecutive de-differentiation of 

melanoma cells upon resistance formation, which follows 

a  trajectory from melanocytic via neural crest-like toward 

undifferentiated cells. We found a similar trend in RV, RVC, 

and RVT, namely that neural crest-like-resembling C1 cells 

virtually disappeared while the relative amount of cell types 

C2–C5, expressing different characteristics of undifferentiated 

cells, increased (Figure 3F). The fact that Tsoi et al. described a 

significantly longer time line (up to 90 days) of treatment, until 

development of resistance, might be the reason that we only 

observed a subset of de-differentiation states33. Furthermore, 

the A375 melanoma cells used in the present study originate 

from a long-term melanoma cell culture and will therefore 

have already undergone a degree of de-differentiation. This 

may explain the lack of expression of signatures of differenti-

ated melanocytic cells in our data.

Signatures of de-differentiation were also found in  

single-cell analyses of a melanoma xenograft mouse model 

of treatment resistance to the BRAF inhibitor dabrafenib34. 

Regressing tumors in this model went into a state of min-

imum residual disease (MRD) indicating early treatment 

resistance (Figure 3G and Supplementary Figure S6). In our 

data, the MRD signature was characterized by activated C3 

(stromal-like, slow cycling), C1 (neural crest-like), and C6 

(pluripotency- resembling) cell types, supporting the role of 

de-differentiated cells in C3 and C6 for development of treat-

ment resistance. Taken together, a number of known melano-

ma-related signatures were found to be activated in a cell sub-

type-specific manner in the present study during treatment 

resistance. We found different levels of support for our data by 

directly mapping expression signatures found in cell lines, ani-

mal models, and clinical data onto our data which confirmed 

their impact in a wider context beyond the particular cell line 

studied here.

Pseudotime analysis reveals different 
treatment-dependent trajectories

Next, single-cell transcriptomes were analyzed by multi-

branched similarity trees using the monocle software to identify 

possible trajectories of treatment resistance16. The resulting  

pseudotime trees showed 3 branches, where the major back-

bone consisted of the transformation between S and RV cell 

states (Figure 4A). The side branches accumulated double- 

agent treatment-resistant cells with a split into 2 final states of 

RVC and RVT cells, respectively. Coloring of cells according 

to their cluster memberships provided further details about 

the developing cell states along the branches (Figure 4B). The 

starting point is represented by neural crest-like S cells (C1), 

and the 3 endpoints are represented by cycling RV (C2) and 

de-differentiated double-drug resistant RVC (C6) and RVT 

(C7) cells, the latter both showing low expression of cycling 

and translation-related genes (Figure 4C). G2M-arrested cells 

(C4) link C1 with C2 along the S-to-RV branch, suggesting 

that G2M-biased activation precedes G1S-biased activation in 
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acquiring resistance. The area covered by C4 includes the split 

between single- and double-drug resistance branches where 

stromal-like cells (C3) are present along both sides, thus sug-

gesting their involvement in the development of single- and 

double-drug resistance (Figure 4B). C5 cells are related to ribo-

somal gene expression and are distributed along all branches 

that supports enrichment of melanoma housekeeping genes, 

as taken from Tirosh et al. in this cluster (Table 1)8. Together, 

well-separated developmental trajectories are demonstrated 

after single- and double-agent treatment resistance. We also 

applied URD, an alternative, diffusion-based algorithm for 

reconstructing multibranched developmental trajectories, 

which yielded similar results (Supplementary Figure S7)17.

The cell subtypes are distributed widely along the different 

paths, which may reflect a cell state continuum. The descrip-

tion of changing cell states upon development is directly 

linked to changing gene states in transcriptomic landscapes20. 

Treatment resistance was associated with sequential activa-

tion of SOM spot expression in the transcriptional landscape, 

supported also by difference SOMs (Figure 4D). For example, 

SOMs show a shift from high- to low-expression transcription 

factor (TF) programs (Figure 4D, lower)35. ICA revealed that 

the observed cell subtypes are distributed along 3 independ-

ent components of variation (Figure 4E and Supplementary 

Figure S1A). Overall, pseudotime analysis in cell and gene 

expression space consistently defined clusters C1, C2, C6, and 

C7 as markers of cell subtypes dominating in the 4 treatment 

groups S, RV, RVC, and RVT, respectively. They are connected 

with each other via transitory-state cell types characterized by 

low (C3, C5) or disturbed (C4) proliferation.

RNA velocity analysis of transcriptional 
plasticity upon treatment

RNA velocity analysis offers an independent approach for 

studying developmental dynamics18. It calculates the change of 

mRNA abundance in every single cell and uses this to predict 

its future transcriptional state18,19. In t-SNE cell state space, this 

analysis provides vectors for all cells that are summarized into 

a trajectory field pointing in the direction of the development 

of the cells under the different treatment conditions (Figure 

5A). Cluster C4 (G2M cycling cells) forms a sort of source for 

trajectories pointing in the direction of C2 (G1S cycling cells) 

and C3 (stroma-like, slow cycling cells) under untreated condi-

tions (S) or single-agent treatment resistance (RV). Cluster C4 

points toward C6 or C7 of double-agent treatment resistance 

(RVC and RVT). This result is in agreement with the pseudo-

time trees, where C4 cells are accumulated near the branch-

ing points, leading to the different cell subtypes at their ends, 

namely C2, C6, and C7 cells (Figure 4). RNA velocity dynamics 

further supports the view that these cell clusters represent sta-

ble attractor states under the different treatments. Stable attrac-

tors under untreated conditions are C1 (neural crest) and C2 

(proliferation) cells. In contrast, C4-type cells appear to form 

a transient state, which tends to further develop into the other 

types. C3 cells represent attractors under single-agent treat-

ment (RV), but a transient state under the other conditions.

The RNA velocity concept was also applied to gene state 

space (SOMs), where RNA velocity indicates to the rate 

change of mRNA expression in each metagene-pixel of the 

SOM (Figure 5A)20. The velocity vectors in untreated (S) and 

single-agent-resistant (RV) cells point away from spot A (cell 

cycle) in the left upper part of the map toward spots C (neural 

crest) and D (stroma) in the right part of the SOM. This is in 

agreement with the source characteristics of spot A expressing 

C4 cells as well as the attractor characteristics of C1 and C3 

cells in S and RV. Trajectories of double-agent treatment resist-

ance point toward the regions related to pluripotency and epi-

genetic reprogramming (in RVC) as well as MAPK pathway 

reactivation (RVT), in the lower part of the SOMs. Especially 

in the latter case, trajectories were disturbed by local attractor 

regions, which possibly reflects a more plastic transcriptional 

landscape.

RNA velocity estimates directional alterations of mRNA 

abundance, which are expected to be related to total expres-

sion levels (Figure 5B). High overall expression was observed 

in highly proliferating (C2 and C4) and translating (C5) cells 

referring to the high-expression transcription factor (TF)-

regulated cells, while C3 (stroma-like) and C6/C7 cell types 

were on relatively low expression levels (Figure 5B).

of Wouters et al.35. Difference SOM portraits (right) between different treatment groups reveal differentially upregulated and downregulated 
gene spots (red and blue color, respectively). Note that blue activation patterns after double-drug treatment are similar for RVC and RVT.  
(E) Schematic representation of paths of resistance analyzed by independent component analysis.
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Taken together, RNA velocity analysis provided support 

for developmental paths induced by single- and double-agent 

treatment resistance. Interestingly, the G2M cycling cells in C4 

form a bifurcation-like transcriptional state at the crossroad 

toward treatment resistance acquired in C3, C6, and C7.

Discussion

The present single-cell transcriptomic study describes the 

diversity of cellular states and trajectories of phenotypic 

changes of A375 melanoma cells during the development 
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Figure 5 RNA velocity dynamics in cell and gene state space. (A) RNA velocity vector fields in t-Distributed stochastic neighbor embedding 
(t-SNE; cell space) and self-organizing map (SOM; gene space) plots for the different treatment groups. A part of the groups (C1, C2, C3) are 
sinks of vectors (arrow heads pointing toward these cell clusters), whereas other groups (C4, C5) are sources (arrow heads pointing away 
from these clusters). In the gene space, the vector field points from the left upper corner (high proliferation) toward the right lower part (low 
proliferation) part of the SOMs. (B) Total expression values in treatment groups (left) and transcriptome clusters (right) either per cell (ranked 
with increasing expression), per group, or as number of cells exceeding a threshold.
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of treatment resistance to targeted therapy. Overall, 7 cellu-

lar states described as clusters C1–C7 were discernable under 

the 3 conditions of treatment resistance (RV, RVC, RVT) and 

the untreated reference state (S). The gene expression land-

scape of each state is characterized by its specific SOM portrait 

(Figure 6). About 30% of MAPK inhibitor-sensitive cells belong 

to cluster C1, consisting of antigen-presenting cells with neural 

crest-like gene expression patterns. The remaining 70% of cells 

were equally distributed among 4 different clusters, C2–C5, 

which consist of highly cycling (C2 and C4) cells and slowly 

cycling stroma-like (C3) and translationally active (C5) cells. 

Under single-agent (vemurafenib) resistance, C1 cells almost 

completely disappeared. In contrast, the other cell states, C2–

C5, were enriched and formed a reservoir of heterogeneous, 

treatment-resistant cellular states. Thus, a loss of differentiated 

neural crest-like cells and enrichment of highly proliferative, 

stroma-like and undifferentiated phenotypes appears to be an 

initial feature of single-agent treatment-resistant melanoma 

cells. Tumor plasticity per se, i.e., the ability of cancer cells to 

dynamically switch between different cell differentiation states, 

represents an important oncologic process that can be shaped 

by drugs. Sensitivity includes total eradication of cell states 

such as C1, but also changes in the relative amounts of C2–C7 

due to the heterogeneous effects of treatment on the fitness of 

these cell states. C6 and C7 clusters presumably arise because 

of specific survival advantages in double-agent-resistant  

RVC and RVT cells and are related to MAPK reactivation and 

pluripotency.

Support for a de-differentiated phenotype under BRAF-

inhibitor treatment resistance came from an earlier single-cell 

study36. Melanoma cells under BRAF inhibitor treatment 

developed signatures of neural crest stem cells and epitheli-

al-to-mesenchymal transition, expressing genes associated 

with elevated invasiveness and migration36. In a subsequent 

study, 2 different trajectories of BRAF inhibitor resistance 

were characterized by either a proliferative cell state and 

NGFR/AXL expression or MITF/MART expression37. These 

findings are in line with our observations showing that highly 

proliferative clones are major components of single-drug (RV) 

and double-drug (RVC) resistant clusters. De-differentiation 

of melanoma cells has also been described in another report, 

based on signatures derived from melanocyte differentiation 

programs38.

In a recent study using single-cell technology, the authors 

showed melanoma cell lines and patient specimens to be com-

posed of a series of transcriptionally distinct states, consist-

ent with the results reported here39. Importantly, the cell state 

composition was dynamically regulated in response to BRAF 

inhibitor therapy, and the transcriptional state composition 

predicted therapy response. The differences in fitness between 

the transcriptional states were relevant and informative for the 

optimization of therapy schedules to retain the drug- sensitive 
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population. These findings might argue for the use of an inter-

mittent treatment modality in which drug withdrawal permits 

the re-emergence of sensitive cells, possibly rendering the 

tumor treatment-sensitive again. However, clinical investiga-

tions supporting these findings are missing.

Tsoi et al.33 defined different developmental states in mel-

anoma cell lines based on bulk transcriptome sequencing. 

Resistance trajectories after BRAF inhibition started either 

as pigmentation or neural-crest like cell types and ended up 

as de-differentiated cell types and partly overlapped with 

proliferation patterns. In line with this, the A375 vemu-

rafenib-sensitive (RV) cells in our experiments started as neural- 

crest-like transitory cells on their trajectory and passed via a 

stromal and a highly proliferative, de-differentiated cell type 

under single-drug treatment to treatment resistance.

It has been shown that slow-cycling cells expressing the 

marker gene KDM5B (a histone H3K4 demethylase, also 

termed JARID1B) were involved in long-term melanoma 

growth24. KDM5B expression was also observed in resist-

ant clones in a study from Shaffer et al.40. Recent research 

revealed that expression of KDM5B follows a highly dynamic 

equilibrium across melanoma cells24. When challenged with 

drugs, the intrinsically slow-cycling KDM5B high expression 

cell state became initially enriched, whereas under persis-

tent drug-exposure melanomas decrease KDM5B expres-

sion again to re-enter cell proliferation for long-term tumor 

repopulation. Accordingly, KDM5B appears to represents a 

checkpoint for coordinating differentiation of melanoma 

cells via transcriptional reprograming, and cell cycle delay. 

In line with this, we found that the KDM5B-high cell state 

C3 (spot D) was located at the crossroads between sensitive/ 

single-agent treatment resistant to double-agent treat-

ment-resistant groups. Hence, it is located at a pivotal 

 position along the developmental trajectories leading to 

treatment resistance, which is in line with the above-men-

tioned findings. Interestingly, the cyclin-dependent kinase 

inhibitor CDKN1A was co-expressed with KDM5B, which 

suggests cooperation between modes of transcriptional reg-

ulation, governed by transcription factors and epigenetic 

mechanisms upon developing treatment resistance. Such 

cooperation is a hallmark of stem cells and argues for a stem-

like patterns, in combination with pluripotency, leading to 

treatment resistance in melanoma cells41. Pluripotency is 

a characteristic of stem cell-like populations, and pluripo-

tency transcriptomic patterns are found to make up a sig-

nificant proportion of double-agent treatment resistant cells 

in the present study (C6). Moreover, in the present study, 

the increased diversity of cellular states after treatment was 

associated with activation of pluripotency markers such as 

OCT4 and KLF4 (C6 cells), which suggests loss of differen-

tiation and development of cellular plasticity. This trend is 

further supported by the enrichment of targets of so-called 

low expression transcription factors, reflecting epigenetic 

regulation, e.g., via changing the histone code32.

Tumor resistance was found to be associated with extra-

cellular matrix deposition in an earlier single-cell study of a 

murine model of BRAF-mutant melanoma42. In the present 

study, stroma-like cell phenotypes were observed especially 

in C3 cells, which were distributed over all treatment groups. 

Thus, extracellular matrix re-organization appears to be a 

mechanism of treatment resistance to targeted treatment. In 

line with this, fibroblast signatures have been shown to impact 

on immune cell infiltration via expression of different com-

plement factors as shown in the above mentioned single-cell 

melanoma study8. Single-cell trajectories as derived from 

pseudotime analyses of a xenograft mouse model for mela-

noma treatment with the BRAF inhibitor dabrafenib showed 

that an early proliferative state developed via 2 different devel-

opmental trajectories into 2 types of highly proliferative stem 

cells, namely neural crest-like and starved-like melanoma 

cells, which are enriched in a minimal residual disease (MRD) 

state34. These signatures showed analogies with C1-, C3-, and 

C6-type cells in our study.

MAPK reactivation appears to be a common feature of 

melanoma treatment resistance to double-agent treatment as 

shown in earlier DNA or RNA sequencing studies, in which 

mutational mechanisms such as amplifications of mutant 

BRAF, mutations in NRAS, and mutations in phosphoinos-

itide kinase (PI3K)/Akt pathway were common drivers of 

pathway reactivation43-46. In the present study, MAPK path-

way reactivation was observed in C7 (RVT) cells at late stages 

of pseudotime trajectories on a transcriptional level. These 

findings underline the impact of treatment resistance driven 

by transcriptional reprogramming. In one of these studies, 

transcriptomic patterns in single- and double-drug-treated 

disease progressors, compared with patient-matched baseline 

melanoma tissues, indicated upregulated gene expression of 

tumor and stromal genes45. Among the top downregulated 

genes were genes involved in antigen presentation (B2M, 

HLA-A, HLA-B, and TAP1). This finding is in line with our 

observation of a loss of the C1 cluster (antigen-presentation) 

in treatment resistance. 
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Conclusions

The cellular plasticity of cancer cells and phenotypic hetero-

geneity remain a major challenge for the treatment of mel-

anoma and other types of cancer47,48. In the present report, 

it is shown that melanoma cells have the capacity to switch 

their phenotype under treatment from a differentiated phe-

notype to a more de-differentiated phenotype. Single-cell 

transcriptomes of melanoma cells revealed insights into 

responses to targeted treatment on a cellular level. SOM por-

traits provided the underlying transcriptomes with single-cell 

resolution. Trajectories of treatment resistance were charac-

terized by transcriptional patterns of cellular proliferation, 

 de-differentiation, and slow-cycling stromal states, finally 

leading to patterns of pluripotency and MAPK reactivation, 

partly driven by epigenetic mechanisms. This heterogeneity of 

cellular states appears to be crucial for developing treatment 

resistance. These findings argue for a continuous development 

of treatment resistance in a dynamic equilibrium of cellular 

states, with possible consequences for future treatment options 

targeting early markers of the de-differentiation process. 

These new options may include substances directed against 

AXL kinase, mitochondrial inhibitors targeting slow-cycling 

cells, or glutathione peroxidase 4 (GPX4) inhibitors target-

ing de-differentiated cells states, as previously described48. 

Together, targeting cellular plasticity represents a promising 

option for future treatment approaches.
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