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Over the past decade, many studies have established linkages between the microbiome and

states of health and disease. By contrast, understanding of the corresponding virome (i.e., the

set of all viruses, both eukaryotic and prokaryotic, in a given niche) has lagged substantially

behind. There are relatively few virome studies in comparison to microbiome studies. None-

theless, in recent years, there has been an increasing recognition of the importance of the vir-

ome as it has been associated with diseases such as HIV and SIV infection [1, 2], inflammatory

bowel disease [3], malnutrition [4], graft-versus-host disease [5], and type 1 diabetes [6, 7].

The identification of virome associations with disease is reminiscent of the descriptive studies

that emerged in the early days of the bacterial microbiome. As was the case then, the most crit-

ical challenge ahead is defining whether the virome plays a causal role in the associated dis-

eases. In addition, there are additional, unique challenges inherent to virome analysis that

render it less tractable than the bacterial microbiome.

Inability to identify all viruses due to the absence of a universal

viral sequence: The challenge of viral “dark matter”

Comprehensive census of the bacterial and fungal microbiome can be achieved through con-

sensus PCR approaches that target the 16S rRNA and internal transcribed spacer (ITS) loci,

respectively. By contrast, there is no such analogous conserved sequence present in all viruses.

The lack of a consensus sequence poses a significant challenge for efforts to systematically

define the set of viruses present in a given specimen. Rather than simply amplifying and

sequencing a signature target locus, metagenomic sequencing of nucleic acid in a sample is

required for virus sequences to be represented in a sequencing library. The increased sequenc-

ing depth necessary dramatically increases the cost compared to 16S or ITS sequencing. More-

over, the relative abundance of viral to nonviral nucleic acids is an important parameter that

drives sensitivity. To mitigate this problem, physical enrichment for viral particles by filtration

and/or nuclease treatment is often necessary. Another consequence of the requirement for

metagenomic sequencing is that the subsequent bioinformatic analysis is also much more

complex; the metagenomic sequences must be aligned at both nucleotide and amino acid levels

to large reference databases of viral sequences (not just to a database of reference amplicon

nucleic acid sequences). Thus, the experimental sequencing depth, computational infrastruc-

ture requirements, and computing costs are significantly higher for virome analyses. The pre-

cise experimental and bioinformatic analysis steps utilized can contribute significantly to

variability and, in some instances, potentially incorrect conclusions. However, a detailed dis-

cussion of both of these is beyond the scope of this review.

Currently, classification of sequence reads as being viral in origin relies primarily upon

detectable primary sequence alignment to reference viruses. One challenge is that, among
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those that are alignable to reference viruses, sequences can be misclassified due to the remote-

ness of the similarity and/or low stringency. An even more significant problem is that in most

virome studies, more than 50% of the sequences in virus-enriched preparations have no detect-

able sequence similarity to any known reference sequences; these unalignable sequences are

referred to as viral “dark matter” [8] and may include novel, highly divergent viruses that are

unrecognizable. Thus, most current virome studies are presenting only a partial view of the

virome because the dark matter sequences are typically ignored. The dark matter clearly har-

bors hidden treasures because mining of the dark matter has led to discoveries such as

crAssphage, the most abundant bacteriophage in human enteric viromes [9].

To computationally address the dark matter, new and improved data mining strategies are

needed. One approach is to apply methods superior at detection of remote homologies, such

as hidden Markov models customized for viral proteins [10]. Other machine learning strate-

gies may include development of primary sequence-alignment–independent classification

approaches [11] or development of artificial neural networks [12]. Experimentally, as

described below, expanding the set of culturable viruses will provide additional reference

sequences that should also decrease the amount of viral dark matter.

Inadequate sampling strategies bias towards DNA viruses and

against RNA viruses

One bias in many virome studies to date is a focus only on sequencing of DNA. This is due in

part to the bacterial microbiome being the primary driver of many studies, and thus at the

time of sampling, experimental measures to extract DNA were employed without regard to

trying to either preserve or recover the RNA. In addition, some studies utilize DNA-specific

amplification strategies such as phi29-mediated whole-genome amplification. These studies

are unable to assess the RNA component of the virome. Yet the majority of the known eukary-

otic viral denizens of the human enteric tract are RNA viruses, such as enteroviruses, rotavi-

ruses, noroviruses, and astroviruses. On the phage side, while it is true that the vast majority of

known phages have DNA genomes, the bias of sequencing exclusively DNA has served as a

self-reinforcing positive feedback loop; however, recent studies examining samples that have

sequenced RNA have demonstrated that there is a much greater abundance and diversity of

RNA phages in the world [13]. Thus, in order achieve a more complete view of the virome, it is

critical that virome studies be designed such that RNA viruses are preserved in the specimens

and that the RNA fraction is incorporated into the sequencing and analysis.

Lack of culture systems to propagate components of the virome

The advent of metagenomics has greatly enhanced our ability to detect known and novel viral

sequences in unbiased fashion and to establish novel associations of these sequences with vari-

ous disease [1–7]. However, it is not known whether the virome plays a causative role or not.

Koch’s postulates remain the gold standard for microbial disease causality, and thus the first

step is to establish culture systems for viruses associated with the disease of interest. The lack

of culture systems for viruses identified in virome studies, for both eukaryotic viruses and

phages, is pronounced. As an example, although dozens of novel eukaryotic viruses have been

identified in the mammalian enteric tract by metagenomic sequencing, culture systems for

only a very limited number have been described to date [14, 15]. Likewise, for phages, genomic

sequences of thousands of novel phages can be identified in a single study [16, 17], but very

few have been isolated [18]. Thus, while (in the past) discovery of novel viruses was rate limit-

ing, today the rate-limiting step has shifted to development of culture systems for the viruses

that have been molecularly identified.
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How can this be addressed? To some extent, this is simply a matter of effort. In all likeli-

hood, no effort has been made to culture the vast majority of the novel viruses identified in vir-

ome studies, and some will surely succumb to standard culture conditions once applied.

Limitations in quantity or quality of primary specimens containing viable virus can contribute

to the problem. In part, it is challenging for labs to obtain funding to culture novel viruses, par-

ticularly in the absence of any strong disease association. Moreover, the risk of a negative

result, exemplified by many decades of unsuccessful attempts to culture human norovirus, is

substantial. Nonetheless, given that the lack of ability to culture a virus is perhaps the most fun-

damental barrier to progress in the study of that virus, dedicated efforts to develop culture sys-

tems are absolutely necessary.

For some of the more recently discovered eukaryotic viruses, the advent of primary, differ-

entiated culture systems has been key to unlocking this riddle. For example, the respiratory

viruses bocavirus and coronavirus HKU1 can be propagated using primary airway epithelial

cells [19, 20]. In the enteric tract, the development of enteroids and organoids and recognition

of the need for additional enteric tract components have opened the frontier for propagation

of human norovirus [21, 22]. Broader application of these systems will undoubtedly lead to

increased success in culture of some eukaryotic viruses. On the phage front, one significant

challenge is that many of the bacterial host species are themselves unculturable using standard

bacterial-growth media. Thus, efforts to propagate novel phages will also entail improving sys-

tems for bacterial in vitro growth. Some approaches toward this include development of biore-

actors [23, 24] and other systems that better mimic the natural environment [25], but

additional new and innovative strategies are needed.

The need for experimental animal-infection models

For the majority of complex diseases, in vitro systems are not adequate to assess viral contribu-

tions to pathogenicity, and thus appropriate animal-disease models are required that also reflect

the potentially complex interactions with the host, bacteria, and eukaryotic microbes that may

be present. In bacterial microbiome studies, a powerful approach has been the ability to colonize

mice with either a single defined bacteria of interest or a consortia of bacteria. By analogy, it

would be ideal if the virome could be functionally interrogated in similar fashion. However, a

prerequisite for eukaryotic viruses is that one must first be able to establish infection in the rele-

vant animal model. As with establishing cell-culture systems, the paucity of animal-infection

models for novel viruses stems in part from lack of effort to develop such systems. Moreover,

the challenge is exacerbated by the multitude of potential infection routes that need to be evalu-

ated, need to overcome the immune response, cross-species transmission barriers, and (even

within a species) potential impact of varying genetic backgrounds. Use of transgenic animals

that are immunodeficient [26] or that have been partially humanized [27] has enabled develop-

ment of murine models for some viruses. In an ideal world, animal models for all eukaryotic

viruses identified in virome studies would be established, enabling the roles of any single virus

(or cocktail of viruses) to be functionally evaluated. Likewise, having an extensive library of cul-

tivated phages (see above) will allow them to be combined in defined proportions along with

eukaryotic viruses for experimental studies. For phages, presuming they act by modulating the

bacterial community, the animal model must harbor the relevant bacterial host species, and

thus the bacterial microbiome may need to be manipulated as well. Notably, some recent studies

have suggested that phages may also interact directly with eukaryotic host cells [28, 29]. Overall,

significant effort and resources must be expended to establish robust animal-infection models

suitable to define the role of the virome. This is a step that is absolutely necessary in order to

move virome studies beyond the realm of mere association studies.
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Dichotomy between eukaryotic virus and phage communities

A barrier to progress in the virome field is the division between virologists who study viruses

infecting eukaryotes versus those that infect bacteria. Very few scientists today have expertise

in both. This balkanization of virology leads to challenges when an eukaryotic virologist dis-

covers in a virome study that the strongest disease association is with a phage (or vice versa).

Lack of familiarity with the field and relevant experimental approaches often limits further

investigation. These communities have been largely segregated, often holding separate confer-

ences and distinct grant-review panels. To illustrate this point, the United States National

Institutes of Health (NIH) virology study sections address only “non-bacteriophage viral

genetics, infection and replication, cellular and host responses to viral infections, and mecha-

nisms of viral disease pathogenesis.” Thus, there is a great need to bring these disparate com-

munities together in order to collectively attack questions associated with the virome,

especially as more complex trans-kingdom interactions are identified linking phages, bacteria,

eukaryotic viruses, and eukaryotic cells.

In conclusion, the coming years will undoubtedly be witness to many more studies demon-

strating associations of the virome with various diseases. Hopefully, there will be commensu-

rate development of new computational approaches that significantly decrease the fraction of

viral dark matter and an increase in the fraction of studies that holistically evaluate the virome.

With new cell-culture systems and animal models for novel viruses, there will ideally be studies

that attribute causal roles for some of the associations. Finally, it may be that virome studies

will serve as a catalyst to help integrate the eukaryotic viral and phage communities.
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