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Abstract.
Background: Effective human-robot interactions in rehabilitation necessitates an understanding of how these should be
tailored to the needs of the human. We report on a robotic system developed as a partner on a 3-D everyday task, using a
gamified approach.
Objectives: To: (1) design and test a prototype system, to be ultimately used for upper-limb rehabilitation; (2) evaluate how
age affects the response to such a robotic system; and (3) identify whether the robot’s physical embodiment is an important
aspect in motivating users to complete a set of repetitive tasks.
Methods: 62 healthy participants, young (<30 yo) and old (>60 yo), played a 3D tic-tac-toe game against an embodied (a
robotic arm) and a non-embodied (a computer-controlled lighting system) partner. To win, participants had to place three
cups in sequence on a physical 3D grid. Cup picking-and-placing was chosen as a functional task that is often practiced in
post-stroke rehabilitation. Movement of the participants was recorded using a Kinect camera.
Results: The timing of the participants’ movement was primed by the response time of the system: participants moved
slower when playing with the slower embodied system (p = 0.006). The majority of participants preferred the robot over the
computer-controlled system. Slower response time of the robot compared to the computer-controlled one only affected the
young group’s motivation to continue playing.
Conclusion: We demonstrated the feasibility of the system to encourage the performance of repetitive 3D functional move-
ments, and track these movements. Young and old participants preferred to interact with the robot, compared with the
non-embodied system. We contribute to the growing knowledge concerning personalized human-robot interactions by (1)
demonstrating the priming of the human movement by the robotic movement – an important design feature, and (2) identifying
response-speed as a design variable, the importance of which depends on the age of the user.

Keywords: Aging, human-robot interaction, personalized robotics, socially assistive robotics, movement priming, upper limb
exercise, upper limb rehabilitation

1. Introduction

Intensity of training and transfer to activities of
daily living are key to successful rehabilitation (Ger-
ling et al., 2012; Veerbeek et al., 2017). Intense
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repetitions lead to an improvement in the abil-
ity to perform certain motor tasks, accompanied
by a modification of brain activation patterns in
some cases (Luft et al., 2004). Several recent stud-
ies showed evidence that movement frequency and
patient engagement are the most important factors
that influence the rehabilitation process (Blank et al.,
2014; Kahn et al., 2006). This has led to growing
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interest in developing devices that support the reha-
bilitation process and increase patients’ motivation
(Bertani et al., 2017; Fasola & Mataric, 2012; Macie-
jasz et al., 2014; Schoone et al., 2007). How to
integrate productive rehabilitation tasks with moti-
vational features is an especially challenging open
question (Duret et al., 2015; Nordin et al., 2014).

Early research on systems for upper-limb rehabili-
tation used robotic manipulators to guide the patient’s
hand and arm to the desired positions, typically
immobilizing the patient’s wrist to ensure that the
desired motions were produced (Krebs et al., 1998).
Early clinical trials indicated the clinical benefits of
using robotic manipulators in the rehabilitation pro-
cess, and ensured safety for the participants (Aisen
et al., 1997; Krebs et al., 1998; Lum et al., 1999).
Later devices expanded the capabilities of robotic
manipulators in rehabilitation by adding wrist and
hand modules attached to previously developed arm
devices (Blank et al., 2014) including exoskeletons,
which isolated the motion of specific joints (Lo &
Xie, 2012). Those devices eliminate compensatory
behaviors by targeting specific joints. However, the
trade-off is that they reduce the motion ranges when
compared to one-on-one rehabilitation with a thera-
pist (Lo & Xie, 2012).

Alongside the mechanical design of the rehabilita-
tion system, it is important to design the interaction
with the user, so as to increase users’ motivation to
practice their rehabilitation exercises with the sys-
tem (Matarić et al., 2007; Tapus et al., 2008). One
method to increase patient motivation to exercise is
through virtual reality (VR) gaming environments.
There has been a wide variety of research on using
VR games for upper limb training and rehabilitation
aiming for high patient engagement and motivation
(Harley et al., 2011) leading to numerous repetitions
of a prescribed task (Fasola & Mataric, 2012; Levin
et al., 2015). Compared with one-on-one rehabilita-
tion with a therapist, rehabilitation with VR is more
readily available and requires fewer resources. When
combined with one-on-one rehabilitation with a ther-
apist, VR rehabilitation improves treatment time and
cost efficiency (Levin et al., 2015). In addition, VR
games enable free motions resulting in a larger vari-
ety of motion training and at a low cost (Levin et al.,
2015; Rand et al., 2009).

Although some rehabilitation VR environments
reflect real-life contexts, such as simulating shop-
ping in a supermarket (Rand et al., 2009), they do
not include all of the sensory-motor interactions that
people experience in a real setting. 3D functional

Activities of Daily Living (ADL) (Gerling et al.,
2012) are activities that people do routinely to accom-
plish everyday goals, and are a key objective for many
rehabilitation settings (Kwakkel & Kollen, 2013).
Examples of ADL are pick-and-place movements:
e.g., picking up a cup from a counter and placing it
on a shelf, as opposed to simply lifting one’s arm
upwards, which does not directly serve a particu-
lar purpose. Functional 3D rehabilitation can also
include handling real-life objects, which give veridi-
cal haptic feedback that is not available when acting
within a fully simulated context. Training which is
not functional limits how well patients can transfer
the benefits of rehabilitation exercises to real world
scenarios (Bertani et al., 2017). For example, stud-
ies that investigated the outcomes of using virtual
environments for upper limb rehabilitation found evi-
dence for increased arm strength, but the effects on
arm use in daily activities were not conclusive (Feys
et al., 2015; Holden et al., 1999).

In parallel to the rapid expansion in the field of
VR, several studies analyzed the importance of phys-
ical presence or embodiment of robotic systems for
motivating completion of various tasks. Matarić and
colleagues designed a socially assistive robot (SAR)
for monitoring and encouraging rehabilitation exer-
cises (Matarić et al., 2007; Tapus et al., 2008). They
showed that the physical presence of the robot moti-
vated participants in the exercises despite the lack of
physical contact with the participants (i.e., they used
a vocal hands-off interaction, where the robot wan-
dered around the participant). Studies by Scassellati
and colleagues showed that physical presence leads
to increased learning performance and motivation
(Leyzberg et al., 2014), and that physical presence
of a robotic system (compared to a live video of the
same robot) leads to a more positive interaction (Bain-
bridge et al., 2011). These studies highlighted the
importance of the social aspect of a robotic entity in
motivating people to perform certain tasks. They fur-
ther reveal the complexity and multidimensionality
of patient motivation in robot-mediated rehabilitation
contexts.

There are many open questions concerning the
effect on motivation of specific robotic parameters,
such as physical embodiment, physical contact with
the patient, speed of response, and the social role
of the robot. This study aims to advance our under-
standing of the effect of some of these parameters on
patient motivation, as well as of how to effectively
integrate motivational parameters with rehabilitation
goals.
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In the current study, a prototype system that inte-
grates a 3D functional task with a robotic system,
using a gamification approach was developed and
tested on young and old healthy individuals. The ulti-
mate goal is to use this system in a rehabilitation
scheme that requires repetition of functional daily
movements, and to turn an otherwise rather boring
task (practicing a pick-and-place movement over and
over) into an engaging one, by harnessing the benefits
of gamification and robotics.

Specifically, the three main goals of the current
study were to: (1) develop and test a prototype
system for the improvement of the upper limb
rehabilitation process; Specifically, design an inter-
active system capable of motivating the patient for
repetitive practicing of 3D functional ADL tasks,
and monitoring performance; (2) evaluate whether
people of different ages respond to and interact
with such a robotic gaming system differently,
and (3) identify whether a robot’s physical entity,
or embodied presence, is an important aspect in
motivating users to complete a set of repetitive tasks.

To achieve these goals, we used a functional pick-
and place task of picking up a cup and placing it
on a shelf. We gamified this task, by designing a
3-D game of Tic-Tac-Toe, where physical cups of
different colors were placed on a shelf grid, at dif-
ferent heights, with each partner attempting to win
by placing a series of three cups of the same color in
sequence.

Two different 3D Tic-Tac-Toe interactive systems
were developed: one using a robotic arm and the
other using a computer-controlled lighting system.
Two different age groups (young and older) were
recruited to evaluate if they interact differently with
the system, since aging affects movement parame-
ters (Levy-Tzedek et al., 2010; Levy-Tzedek et al.,
2016; Levy-Tzedek, 2017a,b), and may also affect
user preferences when interacting with a robotic sys-
tem (De Graaf & Allouch, 2013). The outcomes were
evaluated using the Godspeed questionnaire (Bart-
neck et al., 2009) and a custom-made questionnaire,
together with motion analysis, which was performed
on data captured from a Kinect 2.0 camera.

2. Methods

2.1. Participants

Sixty-two healthy right-handed participants from
two different age groups were tested: (1) 40 young

students aged 25.6 ± 1.7 years, 23 females and 17
males from whom 23 had previous robotics experi-
ence and 17 did not; and (2) 22 older adults aged
73.3 ± 6.2 years, 10 females and 12 males from
whom nine had previous robotic experience and 13
did not. Experience was determined based on a pre-
liminary questionnaire. All participants gave their
written informed consent to participate.

2.2. The game

In a traditional Tic-Tac-Toe game, two opponents
play against each other, using pen and paper. On a
3 × 3 drawn grid, they each, in turn, draw either a cir-
cle or an ‘x’, and aim to win by reaching a sequence
of three circles or three ‘x’s in a row (horizontal, ver-
tical or diagonal). Here, we modified the game, and
used a physical 3D grid with shelves, on which the
participants placed cups of one color (green), instead
of drawing circles or ‘x’s. The system against which
they played either placed blue cups on the grid (in the
case of the robotic system), or turned on blue lights
at the chosen location on the grid (in the case of the
computer-controlled lighting system). The goal here,
as in the original game, was to reach a sequence of
three cups (or lights) of the same color in a row (hori-
zontal, vertical or diagonal). The participants always
placed actual cups on the grid, regardless of the
configuration they played against (robot/computer).

2.3. Equipment

Each of the gaming configurations described below
included a Logitech C270 webcam and 10 cups in two
different colors (five in each color, for each player,
see Fig. 1). Motion quality was quantified using posi-
tion data collected from a Kinect 2.0 tracking system.
The Kinect system outputs a reconstruction of the
participant’s skeleton at a rate of 10 Hz.

2.3.1. Robotic manipulator and motion planning
A KINOVA MICO six-degrees-of-freedom arm

was used to manipulate the physical cups. All possible
motions were pre-programmed by dividing the task
into separate “pick” and “place” actions. The “pick”
actions included five possible positions for each cup
on the table next to the robotic arm (corresponding to
the locations of the five blue cups, placed next to the
robotic arm at the start of each game), and the “place”
actions included nine possible positions on the physi-
cal grid (corresponding to the nine possible locations
for placing a cup on the 3 × 3 grid). The physical
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Fig. 1. The experimental system. Left – a participant playing against the robotic system. Right - The central 60 × 60 cm zone on the larger
1 × 1m physical grid was used for this experiment. The participant stood on one side of the grid, and the robotic arm was placed on the other
side of it. Each had a set of five cups from one color (green for the human, blue for the robot), and placed one cup during each turn. When
using the computer-controlled configuration, the robotic arm was not active, and, rather than placing physical cups, the system indicated its
choice by turning on blue-colored LEDs in the chosen cell. The LED lights were enclosed in white ping-pong balls affixed to the top of each
cell.

grid was a 5 × 5 grid, and within it was the “active
play zone” (3 × 3), where cups could be placed by
the participants (and by the robot, in the embodied
configuration). The grid was designed with 25 cells
with an intention to escalate the difficulty level of
the game in future settings by requiring an extended
reach of the patient. The active play zone on the grid
was 60 × 60 cm in size, while the KINOVA arm reach
is 55 cm. Thus, the KINOVA manipulator was posi-
tioned in the near vicinity of the grid to enable a large
variety of pick and place options on the physical grid.

The robotic motion is inherently limited in speed
due to safety concerns. In order to minimize the time
it took the robotic arm to perform the pick-and-place
action, the robot was programmed to pick the first
cup before the game started, and each following cup
at the end of its turn to play. That is, the robotic arm
waited in front of the grid while holding the next cup
during the participant’s turn, instead of waiting for
the participant to complete his or her turn first before
picking up the next cup.

2.3.2. Non-embodied system
The non-robotic interactive system was imple-

mented with an Arduino Mega 2560 programmed to
control 16 light emitting diodes (LEDs) (Fig. 1). The
Arduino was chosen due to its classical fit to a gaming
system that requires generating a dynamic response
to the user in a short time. Each LED is placed on the
grid and connected to the Arduino Mega board. In the

nine locations corresponding to the active play zone,
the LEDs were covered with ping-pong balls to inten-
sify the visual effect of a LED turning on as a mark
of the system’s location selection. The other seven
LEDs, placed outside the 3 × 3 active play zone, were
programmed to flash after the user made a choice
when playing against the computer-controlled light-
ing system, to simulate a “thinking” process of the
system.

2.4. Procedure

Each participant had two sessions consisting of
five Tic-Tac-Toe games each: one session played
against the robotic system and one session against
the Arduino system. In order to avoid bias towards
one of the systems, half of the participants started
the games against the Arduino system and the other
half started against the robotic system. In each game,
participants performed between three and five pick-
and-place movements, using their right arm, before
the game ended (a game ended when one of the
opponents won, or tie was reached); The purpose
of each player in the Tic-Tac-Toe game was to cre-
ate a sequence of three cups (or lights, in the case
of the computer-controlled system) in three consec-
utive cells – aligned horizontally, vertically, or along
a diagonal. Once the game began, the interactive sys-
tem was fully autonomous, and not directly controlled
by the experimenter. In order to mimic human-like,
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error-prone behavior, it was designed to choose non-
optimal solutions. Specifically, at the start of each
session (with the robot or with the computer), the
system selected non-optimal initial positions that
lowered its chances of winning the game. Once the
user won one game, the system gradually improved its
selections in order to challenge the user and to avoid
boredom. At the end of each game auditory feed-
back was provided. When the person won, a cheerful
sound was played, when the person lost, the sound
played was somber, and when a tie was reached, it
was neutral.

Ethical approval for this study was obtained from
the Ethics Committee (institutional review board) of
Ben-Gurion University of the Negev. All experimen-
tal procedures were performed in accordance with
this ethical approval.

2.5. Performance measures

2.5.1. Objective measures
The following motion analyses were performed on

data from the reconstructed skeleton of the partici-
pants derived from the Kinect 2.0 camera: movement
time, path length, average hand speed, mean acceler-
ation, mean jerk, and the maximal angle between the
upper right arm and the torso. These outcome mea-
sures were chosen, as these are important factors to
track during neurological rehabilitation (Chen et al.,
2017; Laczko et al., 2017; Levy-Tzedek et al., 2007).

Path length was calculated as the integral of the
entire hand path from initiation to termination of each
trial (Levy-Tzedek et al., 2007; Levy-Tzedek et al.,
2012). The vectors that represent the upper right arm
and the torso were defined using three points obtained
from the Kinect exoskeleton (P1, P2, P3), by using
equations 1 and 2 (see Fig. 2):

vec1 = abs (P3 − P1) ; vec2 = (P2 − P1) ; (1)

θ = arccos

(
vec1 · vec2

|vec1| · |vec2|
)

(2)

These locations on the skeleton were chosen since
P1 and P2 define the vector along the central axis of
the body, and P1 and P3 define the vector of the right
arm. The angle between these two vectors is the angle
of the right arm with respect to the torso. The size of
this angle during movement is one of the parameters
of interest during movement rehabilitation (Willmann
et al., 2007).

Fig. 2. Arm-torso angle calculation. This is an illustration of the
angle (θ) calculated between the upper right arm and the torso,
using the Kinect 2.0 output skeleton.

2.5.2. Subjective measures
The effects of the robotic arm’s physical entity

on the participants’ feelings and motivation to con-
tinue playing was evaluated by administering: (1) the
Godspeed questionnaire (Bartneck et al., 2009) after
each of the two game sessions concluded, as well as
(2) a custom-made questionnaire at the conclusion
of the experiment (Table 1). Analysis of the God-
speed questionnaire was conducted according to the
five basic categories defined in the Godspeed original
questionnaire.

Table 1

Questionnaire aimed at determining participants’ motivation to
continue interacting with each of the systems

Questions Possible answers

1.You are required to play two more games.
Select your preferred opponent

� Robot
� Arduino

� No preference

2.You are required to play 10 more games.
Select your preferred opponent

� Robot
� Arduino

� No preference

3.The two systems have different execution
times. If the execution times were equal,
would you change your prior selection?

� Yes
� No
� I didn’t feel a

difference

4.Which system did you like more? � Robot
� Arduino
� I liked both the

same
5.If you could take one of the systems to

your home, which one would you take?
� Robot
� Arduino
� None
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2.6. Statistical analysis

The effects of embodiment of the system (Arduino
vs. Robot) and of age (young vs. older) on the objec-
tive outcome measures was tested using the two-way
ANOVA statistical test. The analysis was performed
on the log-transformation of the data, which was ver-
ified to be normally distributed using a Lilliefors
test (Conover, 1999) and a Q-Q plot (Ghasemi &
Zahediasl, 2012; Thode, 2002) using the MATLAB
statistical toolbox (Mathworks, Natick, MA, v.8.5).

2.7. System design

The system included three parallel processes
denoted as the Intelligent Process, the Interactive
Process, and the Recording Process (Fig. 3). The
Intelligent Process is responsible for game manage-
ment. It schedules the turns between the players
(human or system) and performs the decision mak-
ing for the Interactive Process. The Interactive
Process serves as an I/O (input/output) module which
responds to commands given by the Intelligent Pro-
cess and outputs a corresponding result, e.g. moving
a cup by the robotic arm, or turning on an Arduino-
controlled light at the selected position on the grid.
The Recording Process controls the Kinect 2.0
camera and runs in parallel during the entire game.

The Intelligent Process flow is as follows: first, the
process is semi-manually calibrated (the camera is
positioned in its home position) to ensure successful
detection of the environment. It then opens a TCP

Client-Server communication channel with the Inter-
active Process. The Intelligent Process then initializes
the game parameters (i.e., the current game score,
whose turn it is to play). When the person is play-
ing, the system waits for a cue that the person
completed his or her turn (by pressing the ‘enter’
key on a computer keyboard) and then activates the
object detection scheme. When it is the system’s turn
to make a move, the system chooses the response
position for the Interactive Process and sends it for
execution. Once the Interactive Process completes
the task of responding (picking and placing a cup or
turning on a light) on the grid, it sends an acknowledg-
ment to the Intelligent Process, to activate the object
detection scheme.

The object detection module (Section 2.2.1)
detects the position of the cups placed by the user
and determines the game status. The system repeats
those actions until one of the players wins the game
or there is a tie.

2.8. Object detection algorithm

An online image processing algorithm was devel-
oped to detect the cup location based on the 3D
natural index difference (NDI). An NDI algorithm
was chosen because it helps to eliminate illumina-
tions, reflections and shadows (Perez et al., 2000;
Vitzrabin & Edan, 2016). The algorithm was imple-
mented using OpenCV 3.0, a Logitech C270 RGB
camera and on Intel I7, 2.0 GHz laptop computer
with 8GB memory. The algorithm transfers the RGB

Fig. 3. System-design flow chart.
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image captured by the camera to the NDI space
(Fig. 4B) using eq. (3). where NDI1,2,3 refers to the
NDI generated channels and R, G, and B are the red,
green and blue channels of the original image.

NDI1 =
(

R − G

R + G

)
;

NDI2 =
(

R − B

R + B

)
; NDI3 =

(
B − G

B + G

)
(3)

The objects are segmented from the background
using a threshold determined by the user and followed
by morphological operations to eliminate noise (see
Fig. 4B). The entire process and detection algorithm
is detailed in the Appendix.

3. Results

Participants won in 38% of all games while playing
against the robot and in 35% while playing against the
non-embodied Arduino system. The rest of the games
were split between a tie (37% and 39% respectively)
and a system win (25% and 26% respectively). These
results suggest that both systems presented a similar
challenge for the participants.

3.1. Motion analysis

Data collected from the 62 participants included
2395 pick-and-place trials for playing against the
Arduino system and 2383 trials against the robotic
system. The number of trials differs between the sys-
tems because each game required between five and
nine turns until one of the opponents (system or par-
ticipant) won, or until a tie was reached. Each trial
was analyzed separately. 121 (5%) trials of playing
against the Arduino and 136 (6%) trials of playing
against the robot were not recorded due to connectiv-
ity failures with the Kinect and therefore these were
not included in the analysis. These connectivity fail-
ures occurred during games played by four of the
participants. The recorded data were analyzed, and
the following outcome measures were calculated: the
total path length traversed by the participant’s hand
in each trial, the time it took to complete each trial,
the maximal angle reached during the trial between
the torso and the right arm, the average speed of the
participant’s movement, the average acceleration and
average jerk of the movement. Table 2 shows the
mean and the standard deviation for each outcome
measure, as well as the p-values for the comparisons
between the robot and the Arduino, the compari-
son between the two age groups, and the interaction
between these factors.

Fig. 4. Image processing flow. Shown here is an example of the algorithm processing a scenario of three green cups while neglecting blue
cups. A – RGB image. B – Image in NDI space. C – Image after morphological operations.

Table 2

Results of the statistical analysis for: path length, maximal arm-torso angle, average velocity, average acceleration and average jerk during
each trial. Significant differences for these metrics between the Arduino and the Robot systems or between the young and the older age

groups are marked in bold

Path Time Max angle Mean Speed Mean Acceleration Mean Jerk
length (m) (min) (degree) [m/sec] [m/sec2] [m/sec3]

Arduino vs. Robot p-value 0.603 0.006 0.878 0.001 0.881 0.089
Young vs. Older p-value 0.24 0.76 0.21 0.001 0.28 0.97
Interaction p-value 0.60 0.12 0.79 0.16 0.69 0.98
Lilliefors test p-value 0.127 0.269 0.329 0.493 0.407 0.105
Mean 1.73 4.3 77.2 0.25 1.15 10.9
Standard deviation 0.35 1.4 9.88 0.04 0.29 4.70
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Fig. 5. Normality testing. Shown here is a QQ-Plot for normality testing of the path length (left) and speed (right) metrics.

Results from the Q-Q plots (Fig. 5) showed that
the values of all the outcome measures were drawn
from a normal distribution. Results from the Lilliefors
test for normality support the normality assumption
for each of the outcome measures (see the 4th row
in Table 2 – a p-value greater than 0.05 supports
the normality assumption, needed in order to use the
ANOVA test).

The results from the two-way ANOVA (Table 2)
show a significant difference between the non-
embodied Arduino-controlled system and the robotic
system for the time it took to complete each game
(F1,116 = 7.87, p = 0.006) and the average hand speed
during the reaching movement (F1,116 = 24.49,
p = 0.001). Interestingly, these results suggest that the
speed of the participants’ movements was primed
by the system they played with (robotic or non-
robotic). That is, they moved at a speed that
was faster or slower, depending on the response
speed of the robot or the non-embodied system.
The only statistical difference between the young
and the older groups was found in the average
speed of their hand movement (F1,116 = 10.54,
p = 0.001) (Table 2), where the young participants
were 15% faster than the older participants, see
Fig. 6.

3.2. Gaming strategies

Analysis of the frequency of approaching each cell
(Fig. 7) revealed that the participants tended to select
cells based on a combination of two factors: the cell’s
physical proximity to the location where they stood,
and its strategic value in winning the game. Specif-

Mean Speed [m/sec] VS Group type/opponent

Fig. 6. Average hand speed. Shown here per age group (left) and
per system (right). Error bars denote standard error. An asterisk
denotes a significant difference between the two groups or systems
(p = 0.001).

ically, the number of repetitions of cup placing per
cell on the physical grid shows that cell number five
was infrequently approached (Fig. 7). This cell was
at the farthest column on the grid from the location
where the participants were instructed to stand (to
the left of the grid), and did not have a strategic value
for winning the game. A potential explanation for
this finding is that the distance and associated energy
costs of reaching for a cell that does not offer strategic
benefit, caused participants to choose closer cells or
ones that have more strategic value (i.e., corner cells).
This result is interesting as it implies that game design
should include consideration of the natural tenden-
cies of participants. This could be used to direct
the participants to specific otherwise less-reached
cells, which would result in more extended arm
movements.
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Fig. 7. Number of cell selections by participants.

3.3. Subjective measures

Both age groups demonstrated a preference for
playing two more games with the robotic arm, com-
pared with the non-embodied system. In the young
group, 60% indicated a clear preference for playing
with the robotic system, compared to 41% in the older

group (59% of this group did not have a clear prefer-
ence, see Fig. 8). When participants (both young and
older) were asked to play 10 more games, their pref-
erence towards the robotic system decreased. 55% of
the young participants and 13% of the older preferred
the Arduino system (question 2, Fig. 8) as opposed
to 33% and 0% that preferred the Arduino in the case
of playing only two more games (question 2, Fig. 8).
This is most likely due to the fact that the robotic sys-
tem was slower in its reaction time as the robotic arm
had to actually complete a movement compared to
the Arduino system, which acted faster (all that was
required to mark a choice by the system was to turn
on an LED, which is instantaneous). Similar results
were obtained for the rest of the questions, where, in
general, the robotic system was preferable for both
the young and senior age groups (questions 3,4 and
5, Fig. 8).

When asked to explain their preferences, the major-
ity (10 out of 11) of the senior participants stated
that they did not perceive a difference between the
systems. Senior participants who preferred the

Fig. 8. Participant preferences. These were measured at the end of the experiment.
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Table 3

Results for the Godspeed questionnaire, summarized by categories. Scale was from one to five,
where five was the highest

Arduino Robot
Average Standard Average Standard

deviation deviation

Anthropomorphism 3.02 2.04 3.40 1.14
Animacy 2.79 1.39 3.14 1.27
Likeability 3.31 1.22 3.61 1.09
Perceived intelligence 3.74 1.09 3.81 1.05
Perceived safety 3.79 1.31 3.83 1.31
Perceived safety without 4.29 0.86 4.35 0.82

Quiescent – Surprised question

robotic system claimed that it felt more human-like
(in 10 out of 11 cases). The young participants that
preferred the robotic system explained that it was
more interesting, fun and appealing (17 out of 25),
the rest reported it was more human-like (8 out of 25).
Young participants that preferred the Arduino stated
that it was due to timing issues in 7 out of 13 cases,
three of them felt it was more sophisticated and the
remaining three did not specify a reason. When the
young participants were asked, “would they change
their preference if there were no timing differences
between the systems,” eight of the 13 who preferred
the Arduino said they would prefer the robot. Thirty
four out of 40 young participants (85%) noted they
would prefer the robotic system if there were no tim-
ing differences.

The results of the Godspeed questionnaire
(Table 3) are consistent with the outcomes from the
custom-built questionnaire, and were collected as
subjective scalar grades from one to five. On aver-
age, participants gave a higher grade to the robotic
system compared with the Arduino system in terms
of anthropomorphism (3.4 vs. 3.0, respectively), like-
ability (3.61 vs. 3.31) and animacy (3.14 vs. 2.71)
(Table 3). The average score in all three categories
being close to 3 (out of 5), suggests that there is poten-
tial for developing more engaging robotic interactions
(e.g., by personalization of the system, or by adding
human-like features to the robotic entity).

A stronger preference for the robotic system was
revealed in their responses to the Godspeed question-
naire. For example, when participants were asked, “Is
the system more stagnant or lively”, the participants
gave a 3.4 average score (std = 1.0) for the robot vs. a
2.6 average score (std = 1.3) for the Arduino. Another
important outcome of the Godspeed questionnaire is
that the overall perceived safety of the systems was
rather high (3.8 for both systems). It is worth noting
that a large number of participants did not understand
the question of “Quiescent – Surprised” (which is part

of the questions in the perceived safety). When omit-
ting this question, the average grade for perceived
safety increases to 4.3 for the robot and 4.4 for the
Arduino system.

4. Discussion and conclusions

The three main goals of the current study were (1)
to design and test a prototype system, to be ultimately
used for the improvement of upper limb rehabilitation
processes; (2) to evaluate whether people of different
ages respond to and interact with such a robotic gam-
ing system differently; and (3) to identify whether
the robot’s physical entity is an important aspect in
motivating users to complete a set of repetitive tasks.

An interactive physical gaming prototype system
for the improvement of upper limb rehabilitation
that encourages repetitive practice of 3D functional
tasks was designed and the feasibility of its imple-
mentation was tested with young and older healthy
adults. The findings suggest that the system could
motivate participants to complete repetitive exer-
cises that simulate the motion required in daily tasks
(such as placing a cup on a shelf). Further stud-
ies with stroke patients should assert whether this
gamified approach to encourage the performance of
a rote repetitive task indeed enhances therapeutic
value during the rehabilitation period. The system
also provided important outcome measures regarding
the motion quality, specifically the reaching distance,
arm extent and the arm-torso angle with this setup.
Older participants were found to move at a signif-
icantly lower movement speed compared with the
younger adults. Both groups preferred to interact with
the embodied robotic system in the short term, but
their preferences were modified depending on the
extent of time they were asked to continue playing
with the system. The clear preference for the robotic
system in the short term (when asked to play two more
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games), demonstrated by the young group, dropped,
and the older group chose the non-embodied system
more frequently when asked to play 10 more games.

Another key finding revealed differences between
how the senior population and the young population
related to the response time of the system. Some of
the participants in the young group expressed impa-
tience with the time it took the robot to make its
moves, while the participants in the senior group,
who themselves often perform slower movements
(Levy-Tzedek et al., 2016), did not express dissat-
isfaction with the slower reaction time of the robotic
system, compared to the computer-controlled one.
This finding suggests that system personalization
should also take into account the user’s movement
response time. For example, patients who suffered
an injury, which might limit their response time, may
prefer a robotic system with slow response time,
while patients who are able to respond faster may
prefer a faster-moving robotic system.

It cannot be ruled out that the preferences of the two
age groups were affected by their internal representa-
tions evoked by the terms “robot” and “Arduino” – the
former is a familiar concept to most people, whereas
the latter is a platform that is likely more familiar to
the younger group.

This system is the first, to the best of our knowl-
edge, which incorporates a robotic device as a partner
in a game designed for rehabilitation, with the goal
of performing a real-life 3D functional task. Now
that we have demonstrated the feasibility of the sys-
tem, and its acceptance by a group of older people,
a future study should directly examine the effects of
this proposed intervention on stroke patients.

An important feature of the proposed system is
the ability to track the performance of the patients,
in terms of success rates, as well as in terms of
exact movement patterns. In future elaborations of
the setup, this information can be used to monitor
patients’ performance in real time, and adjust the
game parameters (e.g., timing, or locations selected
by the robot) or the feedback that the users receive
on the quality of their movements. Their performance
over multiple sessions can be recorded and compared
to detect changes over time, and adjust the exercise
program accordingly.

The findings suggest that the embodiment of the
system improves the participants’ motivation to con-
tinue the interaction. Both age groups preferred the
robotic system over a computer-controlled lighting
system despite its slower speed, in the short term.
These results are in line with previous research that

showed positive effects of using robotic embodiment
to encourage repetitive task completion and learning
(Leyzberg et al., 2014; Matarić et al., 2007; Tapus
et al., 2008). By its very nature, the non-embodied
system cannot physically move cups, and therefore
it must indicate its choice of a cell on the grid in
some other fashion (here we designed it to be a sys-
tem of computer-controlled lights). This difference
between the action of the participant (picking and
placing a cup) and that of the system (turning on a
light) may have affected the preference of the partic-
ipants when asked to choose between the embodied
and the non-embodied systems.

Having established a preference for the robotic
entity, the robot’s appeal could likely be strength-
ened, from the mid-range scores the robotic system
received in this study to higher scores in the future
by adding more engaging features to the design.
Bretan et al. (2015), found that user engagement can
be increased using a robotic system that focuses on
facial expressions and gaze. Thus, it should be exam-
ined in future studies whether a different robotic
design (e.g., a more human-like interface) might
improve the perception of the system by the users, and
increase their motivation to practice repetitive tasks.
Previous research showed that robots with display
screens are perceived as smarter and with a better per-
sonality compared to robots without one (Broadbent
et al., 2013).

Finally, we found that the speed of the system
(embodied and non-embodied) primed the speed of
the participants’ movements. This is in line with our
previous findings of movement priming by a robotic
arm (Kashi & Levy-Tzedek, 2018). It is an impor-
tant design feature that should be taken into account
when designing a human-robot interaction: the move-
ment of the robot is likely to affect the movement of
the user. This finding is likely related to the fact that
humans tend to adapt to their partners’ movement
pattern (Roy & Edan, 2017; Stoykov et al., 2017),
and can be used to influence the timing of the human
movement if and when needed (for example, to speed
up the movements to increase the challenge or slow
down movements to reduce user fatigue).

5. Summary

In summary, we demonstrated the feasibility of
the proposed system to be used as a tool to
both encourage the performance of a repetitive 3D
functional movement, and track users’ movement
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profile during the task. We found that the move-
ment speed of the participants was primed by the
speed of the system with which they interacted (robot
vs. non-robot), which is important to consider when
designing human-robot interaction systems. We also
found differences between the age groups in the
importance they ascribed to the movement timing of
the robotic system. Both groups indicated a prefer-
ence for the embodied system over a non-embodied
one. The results of this study indicate the impor-
tance of tailoring human-robot interactions to the
specific characteristics of the users, with age being an
important factor.
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Appendix: Object detection (NDI)

The algorithm includes two stages, a six-step
offline stage followed by a seven-step online stage,
Fig. S1. The RGB image is first divided into its three
channels. Each of the channels is then transformed
to the NDI space using eq. 4. Prior to the conver-
sion, each channel is converted to a representation
of float 32bit to avoid overflow in the conversion to
the NDI space. The transformation results in a num-
ber between –1 and 1, thus to complete this stage
another transformation to the classical representation
of 0–255 is conducted, eq. 5. Where Ch1,2,3 refers to
the NDI generated channels and R, G, B are the red,
green and blue channels of the original image.

Ch1 =
(

R − G

R + G

)
; Ch2

=
(

R − B

R + B

)
; Ch1 =

(
B − G

B + G

)
(A1)

Ch1 =
(

Ch1 + 1

2

)
· 255; Ch2

=
(

Ch2 + 1

2

)
· 255; Ch3 =

(
Ch3 + 1

2

)
· 255 (A2)

The third sub-stage is where both the offline and
online stages begin to differ. In the offline stage, a
combination of three thresholds (one for each of the
NDI channels) is searched. The best combination that
will yield the best detection for a specific object must
be selected, and thus for this matter a simple user
interface was developed, Fig. S2. The user interface

allows the user to manually adjust the selected thresh-
olds while viewing in parallel their influence on the
image. Once the thresholds are selected, morphologi-
cal operations are performed to fill and combine close
detected pixels, and to reduce noise in the detec-
tion. The noise reduction is conducted using erode
and dilatation. The effects of the entire process are
displayed to the user, which can store the selected
thresholds.

The third sub-stage of the online detection uses the
pre-calculated thresholds to segment the object from
the rest of the image. It then continues with morpho-
logical operations, followed by detecting the object
positions based on their contours. The filling oper-
ation prevents situations where the object might be
sliced in the middle and thus will result in finding two
contours for one object. Finally, the detected objects
are converted from image pixels to physical grid posi-
tions using eq. 6. Where xGridPos and yGridPos
are the physical cell positions on the grid, objX and
objY are the centers of the detected contour and the
normalization to frame width and height keeps the
detection inside the physical limitations. The multi-
plication with 5 and 4, is done to fit the unsymmetrical
image to the physical grid which includes a 5 × 5 cell
grid. An illustration of the detection process and the
results are shown in Fig. 4.

xGridPos = objX · 5

frameWidth

yGridPos = objY · 4

frameHeight
(A3)


