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Abstract: The aim of the present study was to analyze the effect of conservative non-invasive
treatments based on eccentric training, stretching and extracorporeal shock wave therapy (ESWT)
supplemented with β-Hydroxy β-methylbutyric (HMB) or placebo (PLAC) on body composition, pain
and muscular function (jump ability, muscular power and muscular strength) in athletes with patellar
tendinopathy (PT). In a double-blind randomized trial, 8 athletes (4 males and 4 females) performed
a physical rehabilitation for 4 weeks. They were randomly divided into two experimental groups
(two males and two females in each one) that ingested HMB (HMBG) or PLAC (PLACG). In pre- and
post-intervention were assessed body composition, pain, countermovement jump (CMJ), back-squat
(BS) for analyzing peak power (W) (PPPP), load (kg) associated to PPPP (PPKG) and mean velocity
(m/s) (PPMV) in addition to a 5-RM leg extension tests. An interaction intervention·supplementation
(p = 0.049; η2

p = 0.774) was observed in the height reached in the CMJ as an intervention effect in
PPPP detected for the HMBG (p = 0.049). In addition, an enhancement in PPKG (p = 0.028; η2

p = 0.842)
was detected in the intervention, but not in PPMV, as an increase in the intervention in the 5-RM test
(p = 0.001; η2

p = 0.981) was observed. No changes were noted on body composition or pain (p > 0.05).
The combination of eccentric training with stretching and ESWT increased concentric muscular
power and strength after 4 weeks without changes in body lean mass or pain. In addition, HMB
supplementation could enhance the power muscular performance in athletes with PT, optimizing the
intervention adaptions.

Keywords: recovery; injury; patellar tendinopathy; rehabilitation; supplement; sport nutrition

1. Introduction

Patellar tendinopathy (PT) is one of the most common musculoskeletal pain problems
associated with sports, particularly those that includes jumping activities [1], including a
prevalence ~50% in high-level volleyball [2] and basketball players [3], being frequently
called “jumper’s knee” [4]. PT is basically caused by tendon overload [5] and affects the
insertion of the patellar tendon just under the apex of the patella [6]. PT is characterized by
the increased presence of fibroblasts, vascular hyperplasia, increased amounts of proteogly-
cans and glycosaminoglycans, disorganized collagen, absence of inflammatory cells and
prostaglandin [7]. It is accompanied by a symptomatology of pain in the anterior aspect
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of the knee and limits the athlete’s functional capacity and, therefore, the performance of
sports actions that over-solicit the tendon [8].

Invasive strategies, such as platelet-rich plasma [9], intratissue percutaneous electrol-
ysis (EPI), ultrasound-guided galvanic electrolysis technique (USGET) and high-volume
infiltrations [10,11], have shown diverse results in PT treatment. Conservative non-invasive
treatments, such as ultrasound [12] and extracorporeal shockwave therapy (ESWT) [13]
and, mainly, eccentric exercise [14–16] and stretching [17], constitute feasible alternatives to
improve injured patella in athletes. For PT rehabilitation, the decline squat is the most com-
monly used type of specific eccentric exercise used [5]. During eccentric contractions, the
external force is greater than that being exerted by the muscle and hence lead to the muscle
lengthening while tension is generated [18]. After a single session of eccentric exercise, non-
adapted muscles experienced a delayed onset muscle soreness (DOMS), which produces
local pain, reducing muscle functionality by decreasing maximal voluntary contraction and
range of movement (ROM) [19], alters protein synthesis and degradation, and stimulates an
inflammatory response [20]. However, repeated eccentric bouts (eccentric training) foster
an adaption to exercise by which the muscles involved respond more efficiently to DOMS
and its side effects [21]. Besides, eccentric training promotes the alignment of collagen
fibers, generating more resistant fibers, stimulating the fibroblasts activity and preventing
adherences during the healing stage between the tendon and the adjacent tissues [22]. The
combination of eccentric training and stretching has demonstrated a higher effect in the
reduction of pain in athletes with PT [23]. In addition, ESWT could generate high forces
on the tendon producing analgesic benefits by the mechanical disintegration of calcium
deposits and the stimulation of tissue repair [24,25] and optimize a conservative treatment
in athletes with PT [26,27].

Different studies have proposed that through nutrition it is possible to optimize
physical rehabilitation in sports injuries [28,29]. Specifically, certain sports supplements
have been found to be effective in recovering from injuries or after long periods of im-
mobilization. However, less attention has been paid to the supplementation effects on
musculoskeletal injuries [30]. β-Hydroxy β-methylbutyric (HMB) is a leucine metabolite
resulting from this essential amino acid transamination to α-ketoisocaproic acid (α-KIC),
which is subsequently converted into HMB by dioxygenase [31]. HMB has been proposed
as an ergogenic sports supplement for the maintenance of the nitrogen balance based
on its anabolic and catabolic effects. In vitro, it has been reported that HMB enhances
protein synthesis by its involvement in the mammalian target of the rapamycin (mTOR)
pathway [32], partially explained by an increased activity in the muscle of the growth
hormone/IGF-1 axis that improves protein synthesis via mTOR activation [33]. In addition,
in myoblast cultures, the addition of HMB increases mRNA levels of markers of activated
satellite cells and protein levels of muscle differentiation factors [34]. Moreover, by antago-
nism of the ubiquitin–proteasome pathway, HMB could diminish the rate of degradation
of intracellular proteins [35] and increase the cell membrane integrity by its effect as a
precursor of intracellular cholesterol [36]. Although athlethes frequently consume HMB
supplements to enhance body composition (increasing lean mass and reducing fat mass),
two different meta-analyses have reported a non-significant effect of HMB supplementation
on body composition in athletes [37,38]. Its absence of effects on highly-trained athletes
has been explained by a lower effect on trained athletes and a higher susceptibility in un-
trained individuals, especially during the initial stages of training when untrained subjects
present higher levels of muscle damage compared with the trained population [39]. In fact,
HMB supplementation has demonstrated benefits to preserve or improve muscle mass and
muscular strength in older people with muscle loss [40] and function as an alternative in
the treatment of sarcopenic obesity in the elderly [41].

To date, no study has evaluated the effect of a nutritional intervention in athletes
diagnosed with PT who undergo controlled physical rehabilitation. Physical rehabilitation
of PT based on eccentric training causes a high level of degradation of muscle protein,
such as promoting the synthesis of muscle proteins and collagen and the possible effects
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of HMB supplementation when high catabolic situations exist. Therefore, the aim of the
present study was to analyze the effect of 4 weeks of physical rehabilitation that combined
eccentric training, stretching and ESWT, supplemented with an HMB or placebo (PLAC)
supplementation on athletes diagnosed with PT on body composition, perceived pain, and
muscular function (jump ability, muscular power and muscular strength).

2. Materials and Methods
2.1. Experimental Design

The study involved an experimental double-blind randomized trial in which 8 athletes
(4 males and 4 females) undergoing a 4-week patellar tendinopathy rehabilitation program
of home sessions, in addition to sessions supervised and treated by a collegiate physiothera-
pist. Participants were randomly divided in a placebo supplementation intervention group
(PLACG) or HMB supplementation intervention group (HMBG). Randomization to each
experimental group (HMBG and PLACG), for ensuring a homogeneous sex-participants
distribution (two males and two females in each group), was performed using Research
Randomizer (www.randomizer.org). At the beginning and at the end of the study, the
athletes performed an experimental session in the laboratory, – where anthropometric mea-
surements, pain, jump ability, muscular power and strength were measured (see Figure 1).
Participation in the study was voluntary and all the participants were informed of the
study protocol, schedule and nature of the supplementation, the exercises, and the tests to
be performed before signing an informed consent form. The study protocol adhered to the
Declaration of Helsinki and was approved by an Ethics Committee (code: UI1-PI017).

Int. J. Environ. Res. Public Health 2022, 18, x  3 of 14 
 

 

of HMB supplementation when high catabolic situations exist. Therefore, the aim of the 
present study was to analyze the effect of 4 weeks of physical rehabilitation that combined 
eccentric training, stretching and ESWT, supplemented with an HMB or placebo (PLAC) 
supplementation on athletes diagnosed with PT on body composition, perceived pain, 
and muscular function (jump ability, muscular power and muscular strength). 

2. Materials and Methods 
2.1. Experimental Design 

The study involved an experimental double-blind randomized trial in which 8 ath-
letes (4 males and 4 females) undergoing a 4-week patellar tendinopathy rehabilitation 
program of home sessions, in addition to sessions supervised and treated by a collegiate 
physiotherapist. Participants were randomly divided in a placebo supplementation inter-
vention group (PLACG) or HMB supplementation intervention group (HMBG). Random-
ization to each experimental group (HMBG and PLACG), for ensuring a homogeneous 
sex-participants distribution (two males and two females in each group), was performed 
using Research Randomizer (www.randomizer.org). At the beginning and at the end of 
the study, the athletes performed an experimental session in the laboratory, – where an-
thropometric measurements, pain, jump ability, muscular power and strength were meas-
ured (see Figure 1). Participation in the study was voluntary and all the participants were 
informed of the study protocol, schedule and nature of the supplementation, the exercises, 
and the tests to be performed before signing an informed consent form. The study protocol 
adhered to the Declaration of Helsinki and was approved by an Ethics Committee (code: 
UI1-PI017). 

 
Figure 1. Experimental design. 

BS: back squat; CMJ: countermovement jump; VISA-P: Victorian Institute of Sport Assessment-
Patella. 

Figure 1. Experimental design.

BS: back squat; CMJ: countermovement jump; VISA-P: Victorian Institute of Sport
Assessment-Patella.

www.randomizer.org


Int. J. Environ. Res. Public Health 2022, 19, 471 4 of 14

2.2. Participants

All the participants were federated athletes (including basketball, volleyball, handball,
and athletics) who were diagnosed with patellar tendinopathy by a sports medicine doctor.
They were recruited through direct contact with the federated sports club of the city of
Córdoba (Spain). In addition to being federated athletes and being diagnosed with PT by a
sports medicine doctor and a physiotherapist based on the criteria of Rio et al. (2015) [42],
the participants had to fulfill the following inclusion criteria: (1) aged 18–49 years; (2) not
having previously undergone knee surgery or analgesic or platelet-rich plasma infiltration;
(3) not having consumed any substance that could affect their hormone levels or sport
performance in the previous 3 months, such as sport supplements or steroids; (4) not having
any food intolerance or allergy; (5) not being a smoker; (6) not having any cardiovascular,
kidney or liver disorder.

2.3. Supplementation

HMB (3 g·day−1) in HMBG or PLAC (3 g·day−1 sucrose) in PLACG were ingested in
three capsules 60 minutes before exercise, according to the optimal dose and timing of this
supplement [43]. To ensure blinding, the supplements were provided in #1 nontransparent
red capsules (Guinama S.L.U, 0044634, La Pobla de Valbona, Spain) that were prepared
using a semi-automatic manual filling machine Capsunorm 2000 (Miranda de Ebro, Spain),
guaranteeing food safety measures in the laboratory. In addition, to avoid any possible
ergogenic effect of caffeine during the assessment sessions, a list of foods rich in caffeine
(e.g., coffee, tea, tea soft drinks, cola drinks, mate, energy drinks, chocolate drinks and
chocolate) was provided to all participants to avoid its consumption 24 h prior.

2.4. Physical Rehabilitation

The rehabilitation program was combined with an eccentric training program and
extracorporeal ESWT. During the entirety of the intervention, the participants performed
single-legged eccentric decline squat exercises, knee exercises (decline squat), with 3 sets
of 10 repetitions being performed daily. The exercise involved standing on the painful
leg, performed in a declined plane (25◦) and maintaining an upright trunk while slowly
squatting down in 2 sec until reaching a flexion of 90◦, which guarantees the achievement
point of maximum tension (60◦ in the patellar tendon) [44]. This exercise was complemented
with a weight vest of 5 kg when the visual analogue scale (VAS) for pain assessment
obtained a score of 3 points or less [45]. The eccentric training program was performed
twice a day with 2 min of recovery between sets. Before and after eccentric training,
the participants performed statics stretching based on research that reported gains when
stretching and eccentric training was combined in patellar tendinopathy rehabilitation [23].
In addition, the participants received three sessions (with a 1-week interval) of ESWT and
manual therapy in the clinic with deep manual massage of the tendon and quadriceps
unloading (of both legs). ESWT treatment was applied using a Storz Duolith SD1 (Storz
Medical AG, Tägerwilen, Switzerland) in sessions divided into three phases (the third
was performed in quadriceps, to remove tension in the muscular belly) [46]: R-SW 15 bar,
1500 pulses, frequency 10 Hz; R-SW 2 bar, 2000 pulses, frequency 15 Hz; V-ACTOR 2 bar,
2500 pulses, frequency 25 Hz.

2.5. Body Composition Assessment

The anthropometrics measures were carried out with the participants barefoot and in
underwear. The body height was measured with the participants erect and their head in
the Francfort´s plane using a stadiometer (Seca 214, Hamburg, Germany), while the body
composition was measured using a bioelectrical impedance analysis (Tanita MC-780MA,
Tanita Corporation, Japan), ensuring standardized conditions for bioelectrical impedance
measurement [47]. The following variables were analyzed: body mass, body mass index
(BMI), body fat mass (kg), % body fat, body muscle mass (kg) and % body muscle mass.
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2.6. Pain Assessment

For the analysis of pain, the participants completed the Victorian Institute of Sport
Assessment-Patella (VISA-P questionnaire), the only disease-specific instrument to measure
PT symptoms that impact function and the ability to play sport [48].

2.7. Muscular Function Assessment

The jump ability was measured by the countermovement jump (CMJ) test. This test
began with a warm-up, which started with 10 minutes of pedaling on the cycle ergometer
(the first 4 minutes at a free intensity and the next 6 minutes at 75% of the maximum heart
rate (Polar H10, Kempele, Finland)). After a 2 minutes rest, the participants performed
five CMJs of increasing intensity. After a recovery of 3 minutes, the initiated test consisted
of 3 CMJs, with a recovery period of 45 seconds between jumps. During the jump, an
evaluator was at a distance of 1.5 m in the frontal plane to record the jump with a mobile
(cell) phone (iPhone 7; Apple, Cupertino, CA, USA) at a sampling rate of 240 Hz, using the
My Jump app. My Jump is an application which has indicated a good validity with a force
platform (r = 0.995) [49]. The maximum height reached was registered.

Muscle power was assessed by power produced in a back-squat (BS) exercise, in an
incremental BS test, analyzing movement velocity and power during BS with a linear
position transducer (v.4.1, Speed4Lift, Madrid, Spain) which has indicated a good validity
with respect to the gold-standard (Trio-OptiTrack) (r = 0.95–1.00) [50]. Based on previous
studies [51], the incremental BS consisted of 2 repetitions, with 2 seconds of rest between
repetitions, lifting a 20 kg load at a maximum velocity of displacement for optimal muscle
activation. Then, the load was increased, and the bar mean velocity measured displacement
was under 0.80 m/s. When the mean velocity was above 0.80 m/s, the participants
increased the load by 5 kg. The test finished after reaching the peak power (PP). The
variables analyzed were the load (kg) lifted (PPKG), mean velocity (m/s) (PPMV), and peak
power (W) (PPpp) reached in the repetition where PP was registered.

Muscular strength was assessed by a 5-repetition maximum (5-RM) test in leg exten-
sion (Selection Leg Extension, Technogym, Cesena, Italy). The specific warm-up consisted
of 10 repetitions with a load corresponding to 50% of the estimated 10-RM (based on the
individual assessment). After 3 minutes of recovery, the participants initiated the test based
on individual assessment and there was a break of 2 minutes when the participants selected
a load which could lift more or less than 5-RM [52].

2.8. Statistical Analysis

Normality distribution was contrasted with Shapiro–Wilk´s test and equality of vari-
ances with Levene´s test. For analysing the anthropometrics, perception of pain, jump
ability and muscular performance variables, separate 2 × 2 independent analyses of vari-
ance for repeated measures (ANOVA-RM) were applied for each variable. Supplementation
group (HMBG vs. PLACG) was introduced as an inter-subject factor, whereas intervention
(PRE vs. POST) was used as an intra-subject factor. ANOVA-RM effect sizes (ES) were
calculated using partial eta squared (η2

p), considering small to be under 0.25, medium, the
range 0.26–0.63 and large, above 0.63 [53]. A pairwise comparison was performed with
the Bonferroni post hoc test. Statistical significance was set at p < 0.05. All the statistical
tests were performed using the Statistical Package for Social Sciences (version 20.0 for Mac,
SPSS™ Inc., Chicago, IL, USA).

3. Results

No differences were observed in the analysis of the anthropometric variables during
the intervention, supplementation, or intervention supplementation (p > 0.05) (see Table 1).
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Table 1. Anthropometric variables result.

Variable Supplementation
Intervention p-Value

Intervention
p-Value

Supplementation

p-Value
Intervention·

Supplementation
PRE POST

Body mass
(kg)

HMBG 79.7 ± 9.3 80.3 ± 10.7
0.950 0.924 0.456PLACG 79.5 ± 7.3 78.8 ± 8.4

BMI
HMBG 24.3 ± 2.7 25.1 ± 2.1

0.387 0.927 0.367PLACG 24.9 ± 1.9 24.7 ± 2.1
Body fat
mass (kg)

HMBG 13.9 ± 7.2 14.8 ± 6.9
0.223 0.984 0.168PLACG 18.2 ± 5.6 18.6 ± 5.4

%Body
fat mass

HMBG 18.2 ± 11.0 18.9 ± 10.0
0.160 0.876 0.371PLACG 22.8 ± 7.0 23.6 ± 7.0

Body muscle
mass (kg)

HMBG 63.3 ± 14.3 62.2 ± 13.1
0.460 0.621 0.277PLACG 57.8 ± 7.9 57.7 ± 7.1

%Body
muscle mass

HMBG 77.7 ± 10.6 77.1 ± 9.8
0.710 0.544 0.888PLACG 73.1 ± 7.0 72.8 ± 6.4

Data presented as M ± SD. BMI: body mass index; HMBG: β-Hydroxy β-methylbutyric group; PLACG:
placebo group.

In the perception of pain, neither was reported any effect for intervention (p = 0.080;
η2

p = 0.694), supplementation (p = 0.251; η2
p = 0.401) nor intervention·supplementation

(p = 0.418; η2
p = 0.226) (see Figure 2).
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HMBG: β-Hydroxy β-methylbutyric group; PLACG: placebo group; VISA-P: Victorian
Institute of Sport Assessment-Patella.

The performance in the jump ability did not report differences in intervention (p = 0.085)
or supplementation (p = 0.694); however, a significant effect for the interaction intervention
supplementation (p = 0.049; η2

p = 0.774) was observed. In the incremental BS tests, an
enhancement was noted in the post intervention in PPKG (68.0 ± 5.1 kg vs. 62.2 ± 4.0 kg;
p = 0.028; η2

p = 0.842), with no differences for the supplementation factor (p = 0.948) or
the interaction of intervention supplementation (p = 0.335). In addition, higher values of
PPPP in the post-intervention were recorded (544.8 ± 40.2 W vs. 467.3 ± 40.5 W; p = 0.002;
η2

p = 0.971), with statistical differences detected only in the HMBG (p = 0.049). No dif-
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ferences were observed for supplementation (p = 0.842) or the interaction intervention
supplementation (p = 0.142) in PPPP. Nor were any differences noted for intervention
(p = 0.296), supplementation (p = 0.268) or intervention supplementation (p = 0.796) in
PPMV. As to muscular strength, a significant decrease in the weight loaded in the 5-RM
test was observed (74.1 ± 2.4 kg vs. 64.4 ± 1.6 kg; p = 0.001; η2

p = 0.981), with differences
detected as PLAG (p = 0.030) like in the HMBG (p = 0.015) (see Table 2).

Table 2. Performance variables in the CMJ, BS incremental test and 5-RM test.

Variable Supplementation
Intervention p-Value

Intervention
p-Value

Supplementation

p-Value
Intervention·

SupplementationPRE POST

CMJ (cm) HMBG 38.1 ± 10.4 41.1 ± 11.7
0.850 0.694 0.049λPLACG 37.0 ± 6.0 35.6 ± 4.7

PPKG (kg) HMBG 59.4 ± 13.0 71.5 ± 17.0
0.028 * 0.948 0.335PLACG 65.0 ± 17.8 64.4 ± 11.6

PPMV (m·s−1)
HMBG 0.78 ± 0.12 0.81 ± 0.05

0.296 0.268 0.796PLACG 0.74 ± 0.04 0.79 ± 0.03

PPPP (W) HMBG 455.5 ± 105.5 # 575.3 ± 138.8
0.002 * 0.842 0.142PLACG 479.0 ± 125.3 514.4 ± 107.0

5-RM test (kg) HMBG 55.0 ± 4.1 # 68.1 ± 3.1
0.001 * 0.081 0.184PLACG 73.8 ± 10.5 # 80.0 ± 9.4

Data presented as M ± SD. BS: back squat; CMJ: countermovement jump; HMBG: β-Hydroxy β-methylbutyric
group; PLACG: placebo group; PPKG: peak power kg lifted; PPMV: peak power mean velocity; PPPP: peak
power; 5-RM: five-repetition maximum; #: significant effect of a group in the post-intervention vs pre-intervention;
*: significant effect for intervention; λ: significant effect for intervention·supplementation.

4. Discussion

The main findings of this study were that height reached in the CMJ presented an
interaction from intervention supplementation (p = 0.049; η2

p = 0.774) as an effect of the
intervention in PPPP that was only detected in the HMBG (p = 0.049). In addition, an
enhancement in PPKG (p = 0.028; η2

p = 0.842) and in the load weighted in the 5-RM test
(p = 0.001; η2

p = 0.981) was detected for the intervention. In addition, an important finding
is that these changes in muscular function were not accompanied by any modification
in body composition variables (p > 0.05) and pain, measured by the VISA-P punctuation
(p > 0.05).

Regarding the muscular strength, this study observed an enhancement in the 5-RM
leg extension test after 4-weeks intervention of eccentric training combined with stretching
and ESWT. This result is similar to another previous study that reported an enhancement
of one repetition maximum (1-RM) on leg press after 20 weeks of eccentric training of
athletes with PT [54]. Nevertheless, Romero-Rodríguez et al. (2010) found an improvement
on maximal eccentric, but not concentric force after 6-weeks of eccentric training using a
flywheel device in athletes with PT. These authors suggested a specific effect of eccentric
training on the eccentric force [55]. However, the leg extension exercise employed in our
study, the leg press exercise selected by Bahr et al. (2006), analyzes concentric strength [54].
Thus, our results confirm that, during eccentric training in athletes with PT, it could be
effective to increase the concentric strength.

In relation to muscle power, two previous studies analyzed the effect of an eccentric
training program in subjects with PT through an isokinetic exercise [56,57]. In the study
carried out by Biernat et al. (2014) no effect was observed in the knee flexion or extension
in an isokinetic machine after 12 or 24 weeks [56], whereas Frohm et al. (2007) observed an
increased power production in concentric isokinetics strength at 90 ◦C after 12 weeks of
decline squat eccentric training [57]. In the present study, muscle power was considered to
be one of the major determinants of sport performance in several sport modalities [58,59],
because a common target for athletes is to apply maximum power levels to a given work
load [51]. We, therefore, selected the progressive incremental BS test to determine the
maximal concentric power, recognizing that the power output reflects the relation between
the load and the movement velocity in the BS execution. In our research, an increase in
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PPKG and PPPP, but not in PPMV, was observed after the intervention. These results reflect
an enhancement in the power explained by an increase of the force, but not in movement
velocity. The study’s results were in accordance with previous works that reported an
enhancement of PPPP occurring at a same PPMV, but with a higher PPKG, considering
the velocity of movement at a load corresponding to peak power to be constant [51].
However, the most important finding of this study was an interaction from intervention
supplementation (p = 0.049; η2

p = 0.774) in the height reached in the CMJ. Previously,
different studies did not observe any effect on the height reached in the CMJ after 12,
20 or 24 weeks of eccentric training based on decline squat [54,56], or after 6 weeks with a
flywheel device [55].

An injured tendon presents a loss of the longitudinal collagen fibers, an abruption in
the collagen bundles and a relative expansion of the tendon [24,27]. The discontinuous
and disorganized collagen fibers of the injured tendon reflect a loss in the functionality
of this tissue [27,60]. A lower tendon stiffness and Young´s modulus, compared with
healthy controls, has been observed in volleyball players with PT [61], while other studies
have reported a tendon strain in subjects with PT [62]. A decrease in tendon stiffness
increases the deformation to a determined force and, therefore, might be a potential cause of
tendinopathy [63] and influence, over time, the muscle response (electromechanical delay)
to applied force [64], which is another important risk factor for musculoskeletal injuries [65].
An effect on stiffness implies an alteration of the joint moment-angle and moment-velocity
properties [66] and could explain the decreasing knee extensor in athletes with PT [67].
Thus, impairments in the muscular strength of the knee extensor muscles may be caused
by a decrease in the energy-absorption capacity of the muscle-tendon complex [68]. The
increased mechanic load causes an increase in the synthesis collagen [69,70]; the load caused
by eccentric training could increase the content of collagen and foster the alignment of
collagen fibers. This would increase the resistance of fibers and the activity of the fibroblasts
and prevent adherences during the healing stage between the tendon and the adjacent
tissues [22].

Eccentric training based on the 25 ◦C decline squat selected in our study has shown
an increased knee extensor electromyography (EMG) compared to the squat performed on
a flat surface [71]. The decline squat has allowed for optimizing the muscular strength of
eccentric training [71] and could increase the patellar tendon strain. Moreover, it has been
observed how, in the treatment of PT, interventions based on eccentric exercises seem to
have shown a greater efficacy in reducing knee pain compared to an intervention based on
concentric exercises [72]. In addition to the exercise selected (25 ◦C decline squat), we have
included stretching training because an impairment flexibility in the quadriceps [73] and
hamstrings has been reported [73,74] in athletes with PT. Limited hamstrings flexibility has
been proposed as a factor that increases knee extensor muscles to overcome the passive
resistance offered by the hamstrings [75,76], whereas flexibility deficits in knee extensors
have presented strong abnormalities in the patellar tendon [77,78]. Only one study to
date [23], with a methodology similar to ours, has investigated the effectiveness of eccentric
training with static stretching exercises in the management of PT for 4 weeks, obtaining a
greater effect of reducing pain and improving function at the end of treatment and at the
follow-up when the participants performed additional static stretching. In the intervention
proposed in our study, a treatment with ESWT was also carried out. ESWT has been
effective at reducing muscular pain in athletes with PT by its capacity to stimulate fibroblast
activity [79], type I collagen production, and tissue remodeling [80], as well as the inhibiting
afferent pain-receptor function [81]. The combination of eccentric training, stretching and
ESWT could potentiate the effect of this intervention on the muscular improvement in the
5-RM test and the PP in the BS tests even in the CMJ in the HMBG.

The interaction of intervention supplementation in the height reached in the CMJ
and the improvement in the PPPP in the HMBG, but not in the PLAG, suggests a positive
effect of this supplement in combination with supervised physical therapy. Four different
studies have analyzed the effect of HMB after a single eccentric training session [82–84].
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Paddon-Jones et al. (2001) did not observe any effect during 6 days of supplementation
(3.4 g/day) in a session consisting of 3 sets of 6 maximal eccentric elbow curls on an
isokinetic peak torque or DOMS [83]. Nevertheless, in a study with the same protocol
supplementation (3 g/day during 6 days), Knitter et al. (2000) observed a significantly
lower creatine kinase (CK) and lactate dehydrogenase (LDH) response over 4 days after a
20-km run on moderately-trained athletes [82], whereas Van Someren et al. (2005) observed
a lower decrease in the maximal concentric strength and the CK and DOMS peak after an
eccentric session consisting of 3 sets of 10 repetitions of biceps curl unilaterally at a rate of
10 seconds for each repetition, with a load corresponding to 70% 1-RM [84]. As the CK and
LDH in blood are considered commonly used markers of sarcolemma damage, the previous
studies suggest that HMB supplementation over 2 weeks could decrease the muscle damage
as a component within the muscle cell membrane [85] or as a precursor of intracellular
cholesterol that enhances the cell membrane integrity [36]. As it is considered that eccentric
exercise-induced muscle damage (EIMD) and acute losses in muscle strength, imbalances
in muscle protein breakdown and protein synthesis [86], the anticatabolic effect of HMB
could improve training adaptations [30]. In fact, a recent study carried out by Tsuchiya et al.
(2019) observed an interaction of time·supplementation in subjects who were supplemented
with HMB (3 g/day) during 2 and 4 weeks in the maximal voluntary isometric contraction
torque, range of motion, DOMS and muscle stiffness after a session consisting of 6 sets
of 10 maximal voluntary eccentric contraction on elbow flexors [87]. Hence, mediated
by muscular stiffness, HMB could affect the acute lower muscular power production
after an eccentric session. In fact, the authors speculate that a protection of the muscle
membrane and muscle satellite cells may inhibit the decrease in muscle performance after
eccentric exercise [87]. Given that an increase in the mechanic load causes a rise of synthesis
collagen [69,70] and the positive correlation between collagen content of tendon and tendon
stiffness [69,70,88], it is possible that the improvement in the recovery after each eccentric
session could increase the muscular and tendon adaptation that causes an enhancement
in the power lower limb observed in the CMJ and BS test in the athletes of HMBG. Also,
according to the different meta-analysis performed on highly-trained athletes [37,38], HMB
supplementation does not affect body composition. Our results inform that no difference
in body composition is detected nor HMBG nor PLACG. Therefore, it is possible that
eccentric training is effective in maintaining lean mass in athletes with PT. Regardless, it
is necessary to consider that hypertrophy is not detected before 5 weeks of an eccentric
training program [89] and that HMB could increase the neuromuscular adaptations during
physical rehabilitation of PT. Regarding pain, different studies have observed a positive
effect of eccentric training on the increase of the VISA scale above 6 [55], 12 [57,90] and
20 [54] weeks. Considering our results, where no positive effect for diminishing pain for
the intervention (p = 0.080; η2

p = 0.694) was observed, it is possible that the duration of the
intervention (4 weeks) could be too little to detect a statistical difference in pain.

The importance of this study is the novelty of using a sport supplement intervention
in competitive athletes of sport modalities characterized by a high prevalence of PT caused
by a similar injury mechanism. However, this study is not absent of limitations. Firstly, this
study included a small sample size that included only 4 participants in each experimental
group, limiting the statistical power of the results presented. Studies focused on female
athletes are lower than studies focused on male athletes. Based on this, sex and exclusion
criteria were not included. Nevertheless, ovulatory phases during the experimental session
weren’t controlled, which could be a limitation for a possible interaction with physical
performance in female participants. Thirdly, duration of the study could be a limiting
factor, because four weeks could reflect neural adaption to physical training but is not
sufficient for detecting structural adaptations. Finally, the absence of inclusion of a group
that only uses HMB supplementation impairment to analyze the effects of HMB in PT
athletes independently of doing a supervised rehabilitation program. Considering all these
limitations, this study must be considered as a pilot study and future study must conducted
to analyze the effect of an intervention with a higher sample size and duration
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5. Practical Implications

Considering that PT sometimes brings the athlete’s career to an end [90], the results of
this study demonstrate that the combination of different conservative treatments (stretching,
eccentric training and ESWT) can optimize rehabilitation with respect to an intervention
with less treatment. In addition, the positive effect of the CMJ in the HMBG suggests that it
is possible to overcome jumper’s knee with a significant change in the sport performance.
Consequently, through a nutritional intervention, the return period to the neuromuscular
performance required for sport could be reduced.

6. Conclusions

The inclusion of eccentric training, selecting a decline squat (25 ◦C) in combination with
stretching and ESWT, has reported increasing concentric muscular strength and concentric
muscular power, without changes in perceived pain and body lean mass. Considering
the high prevalence of PT in the athletics population and the positive results of the non-
invasive treatment of the injury in just a period of 4 weeks, it is recommended to include
the combination of these three treatments (eccentric training, stretching and ESWT) in the
rehabilitation programs of athletes.

The results of the present study have demonstrated that a nutritional intervention can
potentiate the effectiveness of a rehabilitation of PT in athletes; thus, a supplementation
with HMB (3 g·day−1) can enhance the power of muscular performance in athletes with
PT, optimizing the adaptions of an intervention for the non-invasive treatment of the in-
jury. Nevertheless, due to the small sample size of the present study, this study must be
considered as a pilot study. In addition, future studies should analyze the possible useful-
ness of other sport supplements (i.e., whey protein and creatine) during the rehabilitation
programs in athletes with PT.
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