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For many research questions in modern molecular and
systems biology, information about absolute protein
quantities is imperative. This information includes, for ex-
ample, kinetic modeling of processes, protein turnover
determinations, stoichiometric investigations of protein
complexes, or quantitative comparisons of different pro-
teins within one sample or across samples. To date, the
vast majority of proteomic studies are limited to providing
relative quantitative comparisons of protein levels be-
tween limited numbers of samples. Here we describe and
demonstrate the utility of a targeting MS technique for the
estimation of absolute protein abundance in unlabeled
and nonfractionated cell lysates. The method is based on
selected reaction monitoring (SRM) mass spectrometry
and the “best flyer” hypothesis, which assumes that the
specific MS signal intensity of the most intense tryptic
peptides per protein is approximately constant through-
out a whole proteome. SRM-targeted best flyer peptides
were selected for each protein from the peptide precursor
ion signal intensities from directed MS data. The most
intense transitions per peptide were selected from full
MS/MS scans of crude synthetic analogs. We used Monte
Carlo cross-validation to systematically investigate the
accuracy of the technique as a function of the number of
measured best flyer peptides and the number of SRM
transitions per peptide. We found that a linear model
based on the two most intense transitions of the three
best flying peptides per proteins (TopPep3/TopTra2) gen-
erated optimal results with a cross-correlated mean fold
error of 1.8 and a squared Pearson coefficient R2 of 0.88.
Applying the optimized model to lysates of the microbe
Leptospira interrogans, we detected significant protein
abundance changes of 39 target proteins upon antibiotic
treatment, which correlate well with literature values. The

described method is generally applicable and exploits the
inherent performance advantages of SRM, such as high
sensitivity, selectivity, reproducibility, and dynamic range,
and estimates absolute protein concentrations of se-
lected proteins at minimized costs. Molecular & Cellular
Proteomics 11: 10.1074/mcp.M111.013987, 1–16, 2012.

MS-based proteomics has evolved from a qualitative
method focused on identifying proteins in a sample toward a
robust technology for assessing quantitative protein abun-
dance changes. To date, the vast majority of quantitative
proteomic data constitute relative comparisons of protein
abundances between a limited number of samples. Such
relative measurements of protein abundance changes are
very informative and can be used to investigate a wide range
of biological questions that benefit from extensive compari-
sons of protein profiles between, for example, cellular states
(1), multicellular organisms (2), disease states (3), or phosphor-
ylation dynamics (4). However, many fields of research in
modern molecular and systems biology also require the de-
termination of absolute protein concentrations within biolog-
ical samples. For example, absolute measurements of protein
levels are important for kinetic modeling of biological pro-
cesses (5, 6), for the calculation of protein half-lives (7), for the
determination of stoichiometries in protein complexes (8–10),
or for the comparison of concentrations of different proteins
within or across samples or species. Furthermore, absolute
quantification of specific sets of common benchmark proteins
help researchers with data standardization and validation
across different proteomic platforms and laboratories, an im-
portant issue that remains a major challenge for current pro-
teomic studies (11, 12). Especially in the fields of systems
biology and biomarker validation, where large sets of proteins
have to be quantified precisely and reproducibly over many
different samples, the need for absolute measurement of pro-
tein quantities is apparent (13).

However, the absolute quantification of significant seg-
ments of a proteome remains technically challenging. It has
been addressed by a range of experimental strategies, each
one exhibiting specific advantages and limitations. Broadly,
these experimental strategies can be divided into methods
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based on affinity reagents (14) and methods based on quan-
titative MS (15–17). Generally, the field of MS can be further
categorized into two major groups: those based on stable
isotope labeling and those that operate without isotope la-
bels. Absolute quantification based on stable isotope labeling
can be achieved by adding known amounts of stable isotope-
labeled standard (SIS)1 peptides (18, 19), concatenated pep-
tides (20), or complete proteins (21) to the sample of interest.
Commonly, stable isotope dilution techniques feature good
accuracy and reproducibility (11), but they also suffer from
limitations, like incomplete proteolysis during sample prepa-
ration, occurrence of peptide modifications, possible signal
interferences caused by co-eluting components of similar
masses, as well as high labor and reagent costs. Especially
the last limitation presents a real barrier for absolute quanti-
fication of larger sets of proteins, and hence label-free quan-
tification methods are becoming increasingly popular.

To date, absolute label-free quantification has been per-
formed mainly from data generated using data-dependent
acquisition, whereby either the identification frequency of
peptides (spectral counting) (22, 23) or the integrated peak
intensities of peptide precursor ions (7, 24) are used to esti-
mate protein abundance. To convert the arbitrary unit of spec-
tral counts or peak intensities into a measure of concentra-
tion, like copies/cell or mol/liter, typically either the total
number of protein molecules per cell is estimated and split
among all proteins identified in the shotgun MS experiment
(23) or proteome-wide absolute abundances are estimated
based on linear regression (7, 24, 25). For the latter case,
accurate absolute protein abundances need to be determined
for a small number of calibration point proteins, ideally span-
ning the whole protein abundance range. Typically, this is
conducted by spike-in experiments using either purified pro-
teins (7) or SIS peptide mixtures (24).

Absolute, label-free strategies based on spectral counting
are easy to implement, are usable at high throughput, and can
be applied to virtually any data set generated by data-de-
pendent acquisition LC-MS, even retrospectively. However,
spectral counting exhibits intrinsic limitations in accuracy,
particularly for lower abundant proteins with low ion counts,
and its application remains controversially discussed, be-
cause no direct physical property of the quantified peptides is
measured (15). Absolute, label-free quantification using ex-
tracted precursor ion intensities has been performed by sum-
ming the signal intensities of all peptides per protein divided
by the number of theoretically observable peptides (7) or by
considering the “best” peptides, i.e. the peptides with the
highest signal intensities for each protein (“best flyer” meth-

odology) (24, 26–28). The latter approach intends to reduce
ion intensity variations among different peptides of a protein
by focusing exclusively on the most intense (best flyer) pep-
tides per protein. Hence, this approach implicitly uses the
assumption that for each protein of a proteome, the proteo-
typic (tryptic and unique) peptides with the highest ion cur-
rents have approximately equal specific signal intensities. In
comparison with spectral counting, the use of precursor ion
intensities is more robust and less limited by undersampling
and saturation effects (26). It is, however, preconditioned on
the a priori identification and subsequent detection of three
best flyer peptides per protein (26) and prone to interfering
precursor ion signals.

Selected reaction monitoring (SRM, also known as multiple
reaction monitoring) is a targeted mass spectrometric tech-
nique that has favorable performance characteristics com-
pared with other MS techniques (16, 29). To date, SRM has
not been explored in the context of absolute label-free quan-
tification. Specifically, SRM achieves a dynamic range of �5
orders of magnitude (30), is capable of detecting low amol
amounts of analytes on column, even in complex back-
grounds, and achieves a high selectivity, because the signals
of multiple, concurrently measured transitions/peptide can be
integrated in statistical models (31).

In this study, we describe a new absolute label-free quan-
tification method. It is based on SRM and the best flyer
methodology, i.e. it estimates absolute protein abundances in
unlabeled and nonfractionated protein samples by integrating
the signals of selected most intense transitions of best flyer
peptides for each target protein. As a model system, we
choose the human pathogen Leptospira interrogans, an orga-
nism of medium complexity (3658 predicted open reading
frames (32)), which has already extensively been investigated
by absolute label-free measurements based on precursor ion
intensities and spectral counting (24, 27). Specifically, our
technique comprises a two-step procedure. The first step
includes calibration and accuracy estimation, based on a
small number of anchor point proteins (in this study n � 16)
using Monte Carlo cross-validation and results in the gener-
ation of a linear calibration curve. Subsequently, this curve
can be applied in the second step to estimate absolute abun-
dances of a user-definable number target proteins (10–100s
of proteins, in this study n � 23), for which no cost-intensive
standard peptides need to be available. The method de-
scribed is generally applicable, exploits the inherent perform-
ance advantages of SRM, and minimizes the costs of gener-
ating isotopically labeled standard peptides.

EXPERIMENTAL PROCEDURES

Synthetic Peptide Standards—Two different types of synthetic
peptides were used in this study. The first type are purified
[13C,15N]lysine-labeled or [13C,15N]arginine-labeled standard pep-
tides (SIS peptides) for absolute quantification of proteins. The sec-
ond type are crude, unlabeled synthetic peptides for SRM assay
generation and optimization.

1 The abbreviations used are: SIS, stable isotope-labeled standard;
CE, collision energy; CV, coefficient of variation; FDR, false discovery
rate; SID, stable isotope dilution technology; SRM, selected reaction
monitoring; QQQ, triple quadrupole mass spectrometer; Q,
quadrupole.
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SIS peptides were synthesized, quality-controlled, quantified by
amino acid analysis, and obtained either from Sigma-Aldrich or from
Thermo Fischer Scientific. Crude synthetic peptides were purchased
from JPT Peptide Technologies in a multi-well format. These peptides
represent unpurified products of high throughput Spot-synthesis and
lack a precise peptide concentration determination (33). All of the
peptides were resolubilized in 20% acetonitrile with 1% formic acid
and pooled with equal volumes into four peptide mixes (�45 peptides
each). Subsequently these mixes were analyzed by shotgun and
targeted mass spectrometry to generate full fragment ion spectra,
specific retention time coordinates, and relative transition intensity
information.

Cell Culture and Sample Preparation—The conditions for culturing
cells of L. interrogans serovar Copenhageni strain Fiocruz L1-130 and
methods for protein extraction and digestion were described previ-
ously (24). In the present study, three different biological conditions
were investigated: 1) a control sample grown at 30 °C in exponential
growth phase; 2) a sample treated in exponential growth phase for
12 h with the antibiotic ciprofloxacin (5 �g/ml); and 3) a sample
treated in exponential growth phase for 24 h with ciprofloxacin (5
�g/ml). To assure comparability of protein abundances across the
three conditions, the total protein content of each sample was deter-
mined by a bicinchoninic acid protein assay (34), and an additional
normalization step was performed based on the determined absolute
concentrations of the anchor point proteins after data acquisition (see
“Absolute Quantification Using Stable Isotope Dilution”).

Targeted Mass Spectrometry Setup—All of the SRM measure-
ments were performed on a TSQ Vantage QQQ mass spectrometer
(Thermo Fischer Scientific) equipped with a nanoelectrospray ion
source. Chromatographic separation of peptides was carried out on a
nano-LC system (Eksigent). In each injection, 1 �g of total cell extract,
including 10–50 fmol of spiked in SIS peptides, was loaded onto a
75-�m � 10.5-cm fused silica microcapillary reverse phase column,
in-house packed with Magic C18 AQ material (200 Å pore, 5-�m
diameter; Michrom BioResources). For peptide separation, a linear
30-min gradient from 2 to 35% solvent B (solvent A: 98% water, 2%
acetonitrile, 0.1% formic acid; solvent B: 98% acetonitrile, 2% water,
0.1% formic acid) at a 300 nl/min flow rate was applied. The mass
spectrometer was operated in the positive ion mode using ESI with a
capillary temperature of 280 °C, a spray voltage of �1200 V, and a
collision gas pressure of 1.5 mTorr. SRM transitions were monitored
with a mass window of 0.7 half-maximum peak width (unit resolution)
in Q1 and Q3. All of the measurements were performed in scheduled
mode, applying a retention time window of 3 min, a cycle time of 1.5 s,
and a dwell time of �25 ms (depending on the number of transitions
measured per run, which was in the range of 400–600). Collision
energies (CE) were calculated using the formula CE � 0.03 � m/z �
2.905 for doubly charged precursor ions and CE � 0.038 � m/z �
2.281 for triply charged precursor ions (m/z � mass-to-charge ratio of
the precursor ion) (35). A blank injection was made between each
biological sample to check for sample carry over. All of the samples
were assayed in technical triplicates.

SRM assays were developed by selecting for each crude synthetic
peptide three transitions for the doubly and triply charged precursor
ion, corresponding to the first three fragment ions of the y-ion series
with m/z greater than the precursor m/z value. Upon detection of an
SRM trace exceeding a threshold of 1000 ion counts, acquisition of
full MS/MS scans was triggered. MS/MS spectra were acquired in
dependent scan type, scan time of 1 s, Q1 peak width (full width at
half-maximum) of 0.7 Da, Q3 peak width (full width at half-maximum)
of 0.7 Da, m/z range of 300–1500 Da, and a collision gas pressure 1.5
mTorr. The dynamic exclusion function was not in use.

Shotgun Mass Spectrometry Setup—The LC-MS/MS analysis of
the crude synthetic peptide mixes was carried out on a hybrid LTQ-

FT-ICR mass spectrometer interfaced with a nanoelectrospay ion
source (both from Thermo Electron) and coupled online to a Tempo
one-dimensional plus nano-LC system (Applied Biosystems/MDS
Sciex). The peptides were separated by reverse phase HPLC using an
in-house packed column (75 �m � 11 cm, Magic C18 AQ, 3-�m
diameter, 200 Å pore; Michrom BioResources). The applied linear
gradient started at 98% solvent A (98% water, 2% acetonitrile, 0.15%
formic acid) and reached 30% solvent B (98% acetonitrile, 2% water,
0.15% formic acid) after 60 min at a flow rate of 300 nl/min. The
LTQ-FT-ICR instrument was operated in the data-dependent acqui-
sition mode using a full scan in the ICR cell (m/z range of 400–1600,
100,000 full-width at half-maximum nominal resolution; ICR target
value of 1,000,000) followed by MS/MS scans of the five most intense
ions in the linear ion trap with an overall cycle time of �1 s. MS/MS
spectra were acquired applying a normalized collision energy of 35%,
an activation value Q of 0.25, an activation time of 30 ms, and one
microscan for each spectrum. Only precursor ions matching to a
charge state of 2 or higher were selected for fragmentation and
excluded from reanalysis for 0.5 min using the dynamic exclusion
option. Monoisotopic precursor selection was enabled.

Data Analysis of Full MS/MS Scan Experiments—Xcalibur raw files
were converted into mzXML files using the ReAdW tool (version 4.3.1)
(36). These files were searched against a L. interrogans database,
predicted from the complete genome NCBI genome number NC_
005823 and NC_005824, using the software SEQUEST (SorcererTM-
SEQUEST�, version 4.0.4). In total, the applied database consisted of
7480 protein entries, comprising 3658 L. interrogans proteins, corre-
spondingly reversed sequences for a decoy strategy, as well as
known contaminants such as porcine trypsin, human keratins, and
high abundant bovine serum proteins. Search parameters were set as
follows: enzyme name, Trypsin[KR/�] (cleavage after lysine and ar-
ginine, no proline blocking); maximum missed cleavage sites, 2; pep-
tide mass tolerance, 15 ppm (precursor); static modification, carbam-
idomethyl-Cys; dynamic modifications, oxidation on methionine.
Subsequently the Trans-Proteomic Pipeline (version 4.0.2) was ap-
plied onto the data set (37). The search results were filtered according
to a false discovery rate (FDR) of 2% for the LTQ-FT-ICR data set and
1% for the TSQ Vantage data. The FDR values were determined by
the decoy strategy and equated to a PeptideProphet probability value
of �0.9 in both data sets. Subsequently, a consensus spectrum for
each identified peptide was generated running the software Spec-
traST (version 3.1) (38). The generated MS/MS scan libraries were
uploaded into the SRM software Skyline (39), and all of the assigned
fragment ions were extracted.

Absolute Quantification Using Stable Isotope Dilution—A calibra-
tion data set was generated using 21 SIS peptides representing 16
anchor point proteins (see Table I), spanning the whole protein abun-
dance range of L. interrogans (70–25,000 copies/cell). SRM assay
parameters (most intense precursor charge, five most intense transi-
tions, and retention time) were obtained by SRM-triggered MS/MS
experiments on the TSQ Vantage. Collision energies were calculated
using the equation shown under “Targeted Mass Spectrometry
Setup.” To ensure linearity of the measurement, for each SIS peptide
the linear signal-to-abundance range was determined from dilution
series experiments spanning concentrations of 100–0.1 fmol/�l,
spiked into a constant L. interrogans background (supplemen-
tal Fig. S1). For absolute quantification, a reference peptide master
mix was prepared, wherein peptide concentrations were roughly ad-
justed to the endogenous protein abundance level (either 200 or 40
fmol/�l). To avoid quantitative distortions caused by reference pep-
tide adsorption, the master mix was prepared in glass vials and
handled exclusively with low binding pipette tips (Maxymum recovery
series; Axygen). The master mix was spiked into the trypsinized and
purified samples of interest (1 �g/�l cell extract) with final peptide
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concentrations of 50 or 10 fmol/�l, respectively. Notably, spiking was
performed after protein digestion and peptide purification. Hence, the
obtained absolute quantitative results can neither account for incom-
plete or varying protein digestion efficiencies (40) nor for possible pep-
tide losses from upstream steps of the sample preparation workflow.
Data analysis was carried out using the software Skyline (39). Herein,
integrated peak areas for transitions associated to the reference (heavy)
and endogenous (light) peptide were summed, respectively. From the
obtained light-to-heavy peptide ratios, the absolute endogenous pep-
tide concentration was determined in fmol/�l. The conversion of these
results into the unit “copies/cell” was performed by taking into account
the total number of cells used for sample preparation, assuming a
complete protein extraction efficiency during cell lysis.

For the accurate comparison of protein changes across samples,
we performed a normalization step after data acquisition in addition to
normalization based on protein concentrations determined by the
bicinchoninic acid protein assay. Assuming that the majority of an-
chor point proteins did not change upon antibiotic treatment, we
calculated the outlier-insensitive median of peptide ratio changes
relative to the control. The determined correction factors equaled 1.2
for the 12-h ciprofloxacin-treated sample and 0.97 for the 24-h
treated sample. However, the rather small deviations of the correction
factors from the ideal value 1 demonstrate the validity of the initial
normalization step based on the bicinchoninic acid assay.

Label-free SRM Measurement—For label-free SRM measure-
ments, the five best flying proteotypic peptides per protein (unique,
tryptic, no missed cleavage sites) were selected according to precur-
sor ion signal intensities determined by directed mass spectrometry
(27). For these peptides, SRM assays were established by means of
crude synthetic peptide analogs. Detectable transitions were selected
from SRM measurements of the complete theoretical y-ion series
(singly charged and in the range of 300–1500 Da), as well as from
generated full MS/MS spectral libraries (see “Data Analysis of Full
MS/MS Scan Experiments”). Next, the endogenous detectability of
transitions and peptides was tested in tryptically digested cell lysates
and a comprehensive transitions list comprising 39 proteins, 151
peptides, and 1166 transitions was compiled (supplemental
Table S2). Based on this list, 293 decoy transitions (not shown) were
automatically generated for a subset of 45 peptides, randomly chosen
of the 151 targets. Decoy transitions were calculated by subtracting a
random integer between 3 and 10 from the targeted Q1 value,
whereas for Q3 values a random integer between �5 and 5 was
added (31). Subsequently, a total list with 1459 transitions was com-
piled and measured in three different biological samples of L. inter-
rogans. To maximize measurement sensitivity, scheduled methods
were created (3-min retention time window), and transitions were split
over three sample injections, each comprising �500 transitions. Every
run was performed in technical triplicates; hence for the label-free
data set generation, 27 injections were undertaken in total. SRM data
sets associated with this manuscript have been deposited to the
PeptidesAtlas SRM Experiment Library (PASSEL) and are accessible
via the website http://www.peptideatlas.org/passel/ (51).

Data Analysis Using mProphet—The software tool mProphet inte-
grates multiple types of information from SRM data in a probabilistic
model for automated scoring of truly detected peptides (31). For a
specific monitored peptide, represented by several transitions, this
information includes peak intensity, peak shape, transition concur-
rence, correlation of the measured transition intensities to those de-
rived from full MS/MS scan experiments, and peptide retention time.
Each of these parameters results in a specific subscore (total intensity
score, shape score, concurrence score, intensity correlation with
assay score, and retention time deviation score), which mProphet
integrates to an overall discriminant score, such that the separation
between true peptide targets and false decoys gets maximized. De-

coy transitions were generated and measured as described in the
section “Label-free SRM Measurement.” For the intensity correlation
with assay score and the retention time deviation score, the relative
transition intensities and retention times were applied as obtained
during the SRM assay generation and validation process, preferen-
tially by SRM-triggered MS/MS experiments on the TSQ Vantage or
by shotgun experiments on the LTQ-FT-ICR (see “Data Analysis of
Full MS/MS Scan Experiments”). To estimate the FDR, a null distri-
bution based on the decoy transition data was parameterized (for
more detailed information see Ref. 31).

Model Selection and Accuracy Estimation Using Monte Carlo
Cross-validation—The quantification method described in this study
estimates absolute protein abundances by relating SRM intensities of
best flying peptides and most intense transitions to absolute protein
concentrations using a linear model. Herein, for a protein P, the linear
model takes an intensity sum t(P) of a specified set of peptides and
transitions as predictors for the protein concentration c(P),

log�c�p�� � r � log�t�P�� � s (Eq. 1)

wherein r represents the response factor, and s is the offset param-
eter. The intensity sum t(P) accounts for the intensities Ipt(P) of the tmax

transitions of the pmax peptides of protein P.

t�P� � �
p�1

pmax �
t�1

tmax

Ipt�P� (Eq. 2)

To fully characterize the model, two tasks have to be performed. The
first is the specification of a set of considered most intense transitions
and peptides (model selection). The second is the estimation of the
response factor r and the offset s (parameter estimation). These tasks
were accomplished on the basis of a data set of 16 anchor point
proteins, for which absolute quantities (target values) had been de-
termined using SIS peptides and for which transition intensities had
been monitored by label-free measurements (predictor values). Pep-
tide intensities were defined as the sum of considered transition
intensities and for each setting of tmax peptide signals were ranked
accordingly. Parameter estimation for a given assignment to pmax and
tmax was performed by least square regression. Model selection was
performed by Monte Carlo cross-validation (41). In this analysis, a
random subset (one-third) of the available data points was held out for
use as a validation set. Linear regression was performed with the
remaining data points (training set) and used to predict results for the
validation set. The random reassembly of validation and training
data sets was done iteratively (n � 1000). Finally, the averaged
determined difference between predicted and measured protein
abundances (mean fold error) was used as an overall measure for
the prediction accuracy of our model. A R-script for model selection
with Monte Carlo cross-validation is available at http://ai.stanford.
edu/�manfredc/lfqsrm.html.

RESULTS

We describe and demonstrate a new method to estimate
absolute protein quantities in unlabeled total cell lysates on the
basis of SRM data. It comprises the two-step procedure illus-
trated in Fig. 1. In the first step, we generate a calibration curve
and assess the accuracy of the technique using a small number
of anchor point proteins, which are accurately quantified via
stable isotope dilution mass spectrometry. In the second step,
these results are used to estimate absolute protein concentra-
tions for target proteins of interest. In the following paragraphs,
we describe the procedures and results of each step in detail.
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Step 1: Calibration and Accuracy Estimation

The first step is based on a small set of anchor point
proteins (in this study 16 proteins, see supplemental
Table S1 for detailed protein information). Anchor point pro-
teins serve as calibration points to generate a linear regres-
sion model that can be used to convert label-free SRM signal
intensities into absolute protein concentrations. Hence, an-
chor point proteins need to fulfill two important criteria. First,
their abundance must be distributed over the whole cellular
abundance range of interest, and second, their absolute pro-
tein concentration must be known. In this study, concentra-
tion-wise evenly distributed anchor point proteins were se-
lected based on a published quantitative shotgun data set
(24), and their accurate absolute concentrations were deter-
mined using the stable isotope dilution technology (SID).

I) Accurate Absolute Quantification of Anchor Point Pro-
teins—We first determined the absolute concentration of 16
anchor point proteins by comparing the SRM transition signal
intensities of selected signature peptides with the corre-
sponding signals of synthetic SIS peptides. In total, 21 SIS
peptides were spiked into the sample of interest in precisely
known amounts that were roughly adjusted to the endoge-
nous protein level. Because this quantification is based on a
single concentration calibration point and to avoid artifacts
caused by detector saturation, we determined for each refer-
ence peptide the linear signal-to-abundance range by per-
forming dilution series experiments within the L. interrogans
sample matrix (supplemental Fig. S1). We determined that the
16 anchor point proteins spanned a concentration range from
70 to 25000 copies/cell (Table I). The technical replicate

FIG. 1. Schematic workflow of absolute label-free protein abundance estimation using SRM. The method comprises a two-step
procedure. A, in the first step, a calibration curve is generated based on a defined number of anchor point proteins. For this, protein intensity
values derived from label-free SRM measurements of best flyer peptides are correlated to independently determined absolute protein concentra-
tions using the SID methodology. In this step, the accuracy of the method can be estimated, and the best model of peptide and transition
combinations can be identified. B, in the second step, absolute protein abundances of a user-defined number of target proteins can be estimated
by monitoring also for those proteins best flyer peptides and by applying the model and calibration curve derived from step 1. To ensure optimal
comparability in MS signal responses between anchor point and target proteins, ideally both data sets should be measured simultaneously.
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measurements were highly reproducible, showing on average
a technical coefficient of variation (CV) of 1% and a squared
Pearson coefficient (R2) of 0.999 (supplemental Fig. S2A). For
the five proteins represented by two reference peptides
(ClpP2, Fas1, FliF, GroL, and GroS), individual peptide con-
centrations were averaged to obtain the final protein concen-
tration, and these results showed an average concentration
variability of 30%. These significant concentration differences
between peptides representing the same protein can have
several causes. For example, incomplete and varying protein
digestion efficiencies can lead to different concentrations of
peptides originated from the same protein (40). Further, oc-
currence of modifications, because of either biology or sam-
ple preparation, as well as inaccuracies introduced by the
quantification of the SIS peptides caused by adsorption,
degradation, or other artifacts can also distort absolute
quantitative results. Consequently, inaccurately determined
absolute quantities of anchor point proteins might nega-
tively affect the calibration curve fit. However, the effect of
unusually behaving peptides is expected to average out and
thereby decrease with selecting a sufficiently high number
of anchor point proteins and by using several peptide data
points per protein.

II) Best Flyer Peptide Selection—The label-free approach
for protein abundance estimation described in this study is
based on the best flyer hypothesis. It assumes that the spe-
cific precursor ion signal intensity of the best flying tryptic
peptides per protein is approximately constant throughout a
whole proteome. We selected best flyer peptides from a com-
prehensive data set acquired on a high performance hybrid
LTQ-FT-ICR instrument by directed MS (27). From this data
set, the proteotypic peptides detected per protein (unique,
two tryptic ends, and no missed cleavage sites) were ranked
according to their precursor ion intensities. The five most
intense peptides per protein were selected as best flyer pep-
tides for further analysis. For proteins with fewer MS-detect-
able peptides, the available smaller number was considered.
For the 16 anchor point proteins, in total 77 best flyer peptides
were selected.

III) Most Intense Transition Selection—In contrast to discov-
ery-driven or directed MS experiments, where for each pep-
tide a single precursor intensity value is obtained, in SRM the
total fragment ion intensity of a peptide is distributed over a
varying number of transitions. We therefore systematically
investigated the dependence of quantitative accuracy on the
number of measured transition signals per best flyer peptide
formed during collision-induced dissociation (CID).

To unambiguously identify these transitions, we generated
crude synthetic peptide analogs of the 77 selected best flyer
peptides. We extensively analyzed these synthetic peptides
by shotgun MS on an LTQ-FT-ICR instrument, by SRM-trig-
gered MS/MS on a QQQ instrument, as well as by SRM
measurements of the complete theoretical y-ion series of all
doubly and triply charged precursor ions. Subsequently, we
used the identified transitions for the detection of the corre-
sponding endogenous peptides. Transitions that proved de-
tectable and quantifiable from endogenous proteins were
kept, whereas undetectable transitions and peptides were
excluded from further analysis. Finally, a comprehensive op-
timized transition list comprising 500 transitions correspond-
ing to 66 peptides and 16 proteins was obtained (supple-
mental Table S2). Proteins were represented with two to five
best flyer peptides (Fig. 2A) and with 4 to 14 transitions per
peptide (Fig. 2B). Notably, from the initial 77 best flyer pep-
tides selected based on directed MS data, 85% (66 peptides)
were finally detectable by SRM. The majority of detectable
transitions on the QQQ instrument (TSQ Vantage) were singly
charged y-ions (414 transitions, 83%). Fifty-nine b-ions (12%)
and 27 multiply charged y-ions (5%) constituted the remaining
signals (supplemental Table S2). From the data, we also ex-
tracted additional SRM assay parameters, such as relative
transition intensities and retention time.

IV) Label-free SRM Measurements—To quantify the 16 an-
chor point proteins in a label-free manner, we used the SRM-
assays developed above and performed technical triplicate
measurements on a total cell lysate from the microbe L.
interrogans (control sample). Peptide identification and calcu-
lation of FDR were performed applying the scoring algorithm

FIG. 2. Best flyer peptide selection, transition selection, and FDR estimation. A, distribution of endogenously detectable best flyer
peptides for the 16 proteins used as anchor points. B, 66 selected best flyer peptides were endogenously detectable by SRM with 4–14
transitions. C, the complete label-free SRM data set was scored using the algorithm mProphet, which takes into account information from
measured target (gray) and decoy (black) peptide peak groups (31). Discrimination between target and decoy peptides led to an estimated FDR
of �1%.
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mProphet (31) (see “Experimental Procedures”). In Fig. 2C,
the distribution of scored target (gray) and decoy (black) pep-
tide peak groups is illustrated, indicating a good discrimina-
tion between true and false positive identifications. The esti-
mated FDR of the complete data set (also including additional
target proteins and samples; see later sections) was �1%.
Subsequently, for each measured transition, the SRM signal
intensity (peak area) was extracted from the mProphet output
file. The label-free technical triplicate measurements were
highly reproducible, showing on transition level an average CV
of 6% and a squared Pearson coefficient R2 of 0.99
(supplemental Fig. S2B). A comparison of the technical repro-
ducibility between label-free and SID measurements showed
an even higher degree of reproducibility for the SID measure-
ments (average CV of heavy/light peptide ratio � 1%), mainly
because the availability of heavy and light transition signals in
the same peak group can be used to account for system and
experimental variability, such as injection variability, ion sup-
pression effects, or varying chromatographic performance.
However, our data show that also the label-free workflow
achieves excellent technical reproducibility. Notably, we also
tested the use of peak height instead of peak area as the unit for
label-free quantification but observed a slightly decreased tech-
nical reproducibility performance (data not shown). Hence, in
this study we solely focused on the peak area values.

V) Model Selection and Accuracy Estimation—Next, to es-
timate the accuracy of the label-free quantification method,
we investigated the correlation between the quantities deter-
mined from the label-free SRM data set and the measured
absolute protein concentrations. As in the label-free data set,
each anchor point protein is represented by a varying number
of best flyer peptide and transition intensities. First these
values were assembled to a single intensity value per protein.
To find the most accurate model for this assembly, we sys-
tematically tested the effect of varying transition and peptide
counts on the protein quantification accuracy. Specifically, we
ranked all of the measured transitions per peptide by decreas-
ing signal intensity and increased the number of summed
transitions from one to six in subsequent analyses. In cases
where doubly and triply charged precursor ions were de-
tected, they were defined as one transition group/peptide.
Additionally, we also varied the number of summed peptides
per protein from one to four, again ranked by decreasing
peptide intensity. Herein, the peptide intensity was defined as
the sum of all considered transition intensities. In cases where
fewer than four peptides per protein and fewer than six tran-
sitions per peptide were detected, the lower number of avail-
able data points were considered. As shown in Fig. 2 (A and
B), for more than three-quarters of the data set, the full pep-
tide and transition count was available.

The thus determined protein intensities were log-trans-
formed, and each was plotted against the determined log-
transformed absolute protein quantities. Subsequently linear
regression was performed. To assess the ability of each linear

fit to estimate absolute protein abundances on new data, we
determined the expected fold errors by Monte Carlo cross-
validation (see “Experimental Procedures”). This analysis re-
vealed that the best prediction accuracy could be obtained by
considering only the best flying peptide per protein, i.e. mean
fold errors increased with the number of summed peptides
per protein (Fig. 3A). Furthermore, summing of the two most
intense transitions per peptide led to improved abundance
predictions, regardless of the number of considered peptides
(Fig. 3A). The statistically most accurate model considered the
summed signal intensities of the six most intense transitions
of the best flying peptide per protein (TopPep1/TopTra6; Fig.
3B), showing an estimated mean fold error of 1.76. However,
performance differences across all peptide and transition
combinations tested were small (mean fold error ranging
from 1.76 to 2.03). Specifically, the model TopPep3/Top-
Tra2 predicted absolute protein abundances with a mean
fold error of 1.83 and a maximal detected error of 4.5-fold
(Fig. 3C). The linear calibration curves from TopPep1/Top-
Tra6 and TopPep3/TopTra2 were highly similar (squared
Pearson coefficient R2 � 0.90 and 0.88, respectively; com-
pare Fig. 3 (D and E)), and estimated absolute protein abun-
dances differed in average by only 4%. This indicates that
several combinations of best flyer peptides per protein and
transition signals per peptide showed a reasonable and
robust ability to predict absolute protein quantities from
SRM data sets. Finally, we selected TopPep3/TopTra2 as
the model of choice for further analysis, because the esti-
mation of protein abundance based on three independent
peptide measures per protein is beneficial, because this
represents a less sensitive model toward peptide outlier
values, which is an especially important issue when working
within complex biological samples.

Reproducibility of Model Selection—To test the biological
reproducibility of the obtained mean fold error distribution
based on peptide/transition combinations, we performed a
Monte Carlo cross-validation analysis on two additional L.
interrogans samples. The samples were total cell lysates from
cells treated for 12 or 24 h with the antibiotic ciprofloxacin. For
each sample, we determined absolute protein abundances
(Table I) and generated a label-free best flyer peptide data set
using SRM (supplemental Table S2). The above described
mean fold error trends were highly similar over all three sam-
ples (compare Fig. 3A with Fig. 4, A and B), supporting the
universality of the results for the given sample type.

Reproducibility of Calibration Curve Generation—Further,
we investigated the reproducibility of the linear calibration
curve for multiple measurements of a complex study. Specif-
ically, the sample set consisted of 36 sample injections, which
were measured over �70 h (including blank runs between
samples). These 36 injections included three different bio-
logical samples (control, 12 h of ciprofloxacin, and 24 h of
ciprofloxacin), each measured with four injections/sample in
technical triplicates. For each biological sample, we gener-
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ated the corresponding calibration curve individually, by
applying the TopPep3/TopTra2 model onto each data set
(technical replicates were averaged). Subsequently, we cor-
related for each sample the obtained label-free protein in-
tensities to the determined absolute anchor point protein
concentrations, respectively. The overlay of those three lin-
ear calibration curves as shown in Fig. 4C indicates that
measured mass spectrometric responses were reproducible
over the whole measurement period of 3 days and for all
tested biological conditions, even though isolated protein
abundances did change significantly between samples. This
result suggests that in the present study, the unique gener-
ation of the calibration curve based on one sample would
have been sufficient for the estimation of protein abun-
dances also on all subsequent samples. However, a repet-

itive calibration curve generation is recommendable, espe-
cially over long measurement periods, because it will help to
account for matrix effects and instrument sensitivity drifts
and generally allow an optimal monitoring of the instrument
performance.

Step 2: Absolute Label-free Quantification of Target
Proteins

The most important motivation for the approach described
here is the ability to estimate the absolute quantity of a pre-
determined set of proteins by SRM without the need for
cost-intensive SIS peptides for each protein of interest. To
demonstrate this capability, we chose 23 target proteins from
L. interrogans (for detailed protein information see supple-

FIG. 3. Model selection and accu-
racy estimation using Monte Carlo
cross-validation. A, heat map visualiza-
tion of the predictive measurement ac-
curacy, represented by the cross-vali-
dated mean fold error, applying different
models based on varying peptide and
transition counts. Each square repre-
sents one particular linear model, which
considers a specific number of summed
best flyer peptides and most intense
transitions, as annotated by the axes.
Ranking of peptides and transitions was
performed based on decreasing signal
intensity. B and C, prediction error his-
tograms for the linear models consider-
ing either the single best flying peptide
per protein (TopPep1/TopTra6) or the
summed intensity of the three best flying
peptides (TopPep3/TopTra2). D and E,
linear regression curves for the two
models TopPep1/TopTra6 and Top-
Pep3/TopTra2, respectively.
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mental Table S1). These target proteins, like the anchor point
proteins, were selected by their even distribution over the
whole cellular abundance range. The selection of best flyer
peptides and most intense transitions was performed as de-
scribed before. In total, 666 transitions corresponding to 85
peptides and 23 target proteins were endogenously detecta-
ble and measured by label-free SRM (supplemental Table S2).
Distributions of peptides per protein ranged from 1 to 5, and
each peptide was represented by 3 to 14 transitions (supple-
mental Fig. S3). Subsequently, the quantification model Top-
Pep3/TopTra2 and the linear calibration curves generated for
each sample of interest, respectively (Fig. 4C), were applied to
estimate absolute protein quantities (anchor point and target
proteins, in total 39 proteins). The resulting concentrations for
the three different biological samples are summarized in
supplemental Table S3. The results were in good agreement
to recently reported abundances based on shotgun MS (24)
(R2 � 0.81) or directed MS (27) (R2 � 0.82; supple-
mental Fig. S4).

Notably, within our investigated protein set five low abun-
dant proteins (FlgE, FlgK, FliD, FliG, and FliM) were described
as not quantifiable by the shotgun method based on precur-
sor ion intensities (24). Using the SRM approach, each of
these low abundant proteins was successfully quantified with
one to four peptides per protein, resulting in protein concen-
trations ranging from 40 to 580 copies/cell (supplemen-
tal Table S3). These data confirm the highly sensitive and
selective performance of the SRM technology, which makes it
especially suited for the reliable quantification of low abun-
dant analytes.

Biological Application of Absolute Quantitative Informa-
tion—Finally, we were interested in evaluating the obtained
absolute quantitative results in the context of biologically
relevant interrogations. Therefore, we first investigated protein
abundance changes upon varying exposure times to the an-
tibiotic ciprofloxacin (supplemental Table S3). For the identi-
fication of significant protein changes, thresholds were de-
fined based on a protein ratio � 2 and a p value 
 0.01
(calculated by a two-tailed and heteroscedastic t test) (Fig. 5).
Herein, three proteins showed a significant up-regulation after
12 and 24 h of ciprofloxacin treatment (recA, LIC_12210 and
hsp15). In all three cases, these results confirmed regulative
trends previously reported (24, 27). Furthermore, according to
the applied filter criteria, three proteins were identified as
significantly down-regulated after 12 h (Mcp, LIC_11769, and
FliG), whereas only Mcp remained down-regulated also after
24 h of ciprofloxacin treatment. The detected down-regulated
ratios were generally smaller than the up-regulated ones.
Notably, in our analysis the statistical t test analysis has been
performed based on technical replicates, but typically biolog-
ical variability exceeds the technical SRM measurement error.
Hence biological replicates are required for confident identi-
fication and quantification of especially small protein expres-
sion differences. However, here our focus was not the reliable

FIG. 4. Biological reproducibility of model selection and calibra-
tion curve generation. A and B, to test the reproducibility of the
determined mean fold error distributions based on varying peptide and
transition combinations, we performed the Monte Carlo cross-validation
analysis on three biological L. interrogans samples: a control sample
(Fig. 3A), 12 h of treatment with ciprofloxacin (A) and 24 h of treatment
with ciprofloxacin (B). C, overlay of linear calibration curves generated
for the three different biological samples over a measurement period of
70 h. Each data point represents an averaged value of three technical
replicates.
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quantification of new protein changes upon antibiotic treat-
ment, but the validation of our quantitative data by confirming
previously reported regulations.

In a second biological interrogation, we compared the de-
termined absolute protein abundances with literature-de-
scribed complex stoichiometries. This analysis requires the
comparison of different protein quantities within one sample,
which represents a unique type of information extractable
from absolute but not from relative quantitative data sets. To
date, four protein complex assemblies, comprising at least
two protein components quantified in this study, have been
published in the RCSB Protein Data Bank. None of these
structures is derived from the presently investigated organism
L. interrogans; however, in each case, the corresponding
proteins from Escherichia coli, Thermus aquaticus, Bacillus
sp. ta2.a1, or Thermus thermophilus represent highly homol-
ogous versions (sequence identity in average 50%). In Table
II, the Protein Data Bank-derived stoichiometries and the cor-
responding values determined in this study are compared for
all three investigated biological samples. The comparison re-
vealed a generally good correlation, i.e. the total abundance
levels of proteins known to be complex-assembled showed a
reasonable stoichiometric conformance within the expected
error range of �2-fold. Further, for three complexes (DNA-
directed RNA polymerase, ATP synthase, and 30 S ribosome),
the quantitative MS information was highly consistent
throughout the antibiotic treatment, whereas for the GroEL-
GroES chaperone complex, the stoichiometric composition

changed stepwise, indicating a possibly altered complex as-
sembly. However, it is important to consider that with the
described technique, the absolute protein quantities can only
be estimated averaged over the whole cell population. Hence,
a discrimination between proteins present in their unas-
sembled or complex-assembled form cannot be realized.

DISCUSSION

In this study we extend the previously described best flyer
peptide approach for absolute protein abundance estimation
based on precursor ion intensities (24, 27, 28) onto the SRM
technology. The best flyer hypothesis assumes that the spe-
cific MS signal intensity of the most intense tryptic peptides
(best flyers) per protein is approximately constant throughout
a whole proteome. Hence, those intensities can be used to
directly estimate protein abundances and to compare pro-
teins within and across samples. To convert the signal inten-
sity unit (counts/s) into a protein concentration unit (mol/liter
or copies/cell), a linear calibration curve is applied that is
based on accurate absolute protein abundances determined
by stable isotope dilution MS for a small number of anchor
point proteins.

The application of the best flyer approach onto the SRM
technology was not straightforward, because peptide SRM
signals are composed of several transition intensities,
whereas in discovery-driven or directed MS data sets, a pep-
tide is represented by only a single intensity value. In SRM, the
respective transition intensities depend on peptide-specific

FIG. 5. Identification of significant protein abundance changes between control and antibiotic-treated samples. Logarithmic protein
changes (log2) of the 12 h of ciprofloxacin treatment (A) and 24 h of ciprofloxacin treatment (B) relative to the control condition were correlated
to their respective logarithmic (log10) p values, calculated by a t test analysis. Threshold settings of protein changes �2-fold and p values 

0.01 (black lines) were applied to identify significantly regulated proteins.

TABLE II
Comparison of protein complex stoichiometries

Complex name Involved proteins
(gene names)

Protein Data Bank
code

Protein Data Bank
stoichiometrya

Control
stoichiometry

Ciprofloxacin
stoichiometry

12 h 24 h

DNA-directed RNA polymerase rpoA, rpoB, rpoC 1L9U 2:1:1 3.7:1:1.0 3.7:1:0.8 3.7:1:0.9
ATP synthase atpA, atpD 2QE7 1:1 1.6:1 1.6:1 1.6:1
30 S ribosome rpsE rpsF 3ORA 1:1 1.0:1 1.0:1 0.9:1
GroEL-GroES chaperone groL, groS 1WE3 2:1 0.9:1 1.3:1 1.5:1

a Shown Protein Data Bank-derived complex stoichiometries are based on crystal structure information from highly homolog protein
complexes out of E. coli, T. aquaticus, Bacillus sp. ta2.a1, or T. thermophilus.
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fragmentation characteristics, which introduces a new level of
complexity for the absolute label-free protein abundance es-
timation. We comprehensively investigated the application
and performance of the method in a sample of medium com-
plexity, i.e. total cell lysates of the microbe L. interrogans. Our
data showed that on a TSQ Vantage QQQ platform, label-free
SRM measurements were highly reproducible over a time
period of 3 days, exhibiting an average technical CV of 6% (in
SID measurements average CV � 1%).

Further, we determined the predictive accuracy of our
method via Monte Carlo cross-validation using 16 indepen-
dently quantified anchor point proteins spanning the whole
cellular abundance range. We studied the influence of sys-
tematically varied best flyer peptide and transition intensity
sets onto the quantitative results. Our cross-validation study
revealed that performance differences across all tested pep-
tide and protein combinations were small (cross-correlated
mean fold error in the range of 1.76–2.03). However, we
consistently observed that considering too many transitions
and peptides per protein decreased model performance. On
the first sight this finding seemed counterintuitive because
considering a higher number of input data points should
translate into considering more information for abundance
estimation and therefore improve performance. It is, however,
conceivable that certain transitions are not informative or even
misleading about protein abundance. Noisy, low intense tran-
sitions are likely to belong to this type of transitions, which can
lead to overfitting of the respective models and a deteriorated
prediction performance on new data. Hence, it is beneficial to
confine the models to fewer but maximally informative tran-
sitions. Further, as described previously, the best flyer ap-
proach is based on the hypothesis that the specific MS signal
intensity of the most intense tryptic peptides per protein is
approximately constant over all proteins of the proteome. This
assumption does not necessarily gain in relevance when tak-
ing into account an increasing number of peptide intensity
values/protein. Hence, a direct improvement in model per-
formance based on an increased peptide number cannot
necessarily be expected, as reflected in our experimental
data. On the other hand, protein quantification based on a
single peptide value is sensitive toward peptide outliers,
caused for example by false-positive identifications, chemical
and biological modifications, or incomplete and unspecific
digestion procedures. To address these issues, we selected
the model based on three best flying peptides per protein with
the two most intense transitions per peptide (TopPep3/Top-
Tra2) as the model of choice for absolute quantification, which
showed compared with the statistically most accurate model
(TopPep1/TopTra6) quantitative performance parameters that
were impaired to only a minor extent. Subsequently, we used
this model to estimate absolute protein abundances for in
total 39 target proteins upon varying exposure times to the
antibiotic ciprofloxacin. Herein five low abundant proteins,
previously not quantifiable by shotgun proteomics (24), were

included. With SRM, each protein was reproducibly detecta-
ble with one to four peptides per protein, highlighting the
improved measurement sensitivity of the SRM technology.
We evaluated and validated our quantitative results by com-
paring the thus determined absolute protein quantities to two
recently published data sets (R2 � 0.81 and 0.82 (24, 27);
supplemental Fig. S4) and by investigating and confirming
significant protein changes upon ciprofloxacin treatment. For
the latter relative comparison, absolute protein concentra-
tions are not necessarily required. Instead protein changes
could have been also directly determined based on transition
intensity ratios between the samples. Notably, in such a rel-
ative label-free quantification experiment, measured intensity
ratios originating from different transitions and peptides of the
same protein are expected to have similar values, although
exceptions because of interferences, modifications, or other
technical artifacts might exist. Hence, based on the variance
of all input ratios per protein, the quality of the obtained
quantitative results can be assessed for each individual pro-
tein, and outlier values can generally be identified with greater
confidence. In contrast, for the described absolute quantifi-
cation approach, the multiple transition intensities need to be
assembled to a single readout for each protein, leading to only
a single reported protein ratio. These considerations render
relative label-free quantification more sensible in detecting
subtle though statistically significant abundance changes.
However, a second important point needs to be considered,
which is the issue of data normalization. Although absolute
protein quantities are intrinsically normalized and can directly
be compared between samples, experiments, or even labo-
ratories, relative sample comparisons require an additional
normalization step. Conclusively, for the accurate determina-
tion of protein changes between samples, relative as well as
absolute approaches do have particular strengths and limita-
tions that need to be considered carefully depending on the
applied workflow.

Finally, we also analyzed and verified our absolute quanti-
tative data set by comparing stoichiometric compositions of
proteins known to be complex-assembled with crystal struc-
ture derived stoichiometries. We observed a generally good
agreement, i.e. in all cases, the observed stoichiometries
confirmed crystal structure values within the expected error
range of �2-fold. Further, for three of four investigated protein
complexes, the quantitative MS information was highly con-
sistent throughout the antibiotic treatment, whereas for the
GroEL-GroES chaperone complex, the stoichiometric com-
position changed stepwise. Importantly, with the described
technique, complex stoichiometries can only be estimated
averaged over the whole cell population. Depending on the
specific complex of interest, not necessarily all subunits need
to be fully assembled, but also free subunits or proteins
shared between different complexes might exist in a time-,
cellular compartment-, and condition-dependent manner.
With the described method exclusively, population-wide ab-
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solute protein abundances can be estimated, from which
stoichiometric complex compositions can be calculated and
investigated under various conditions for known complex as-
semblies. Subsequently interesting candidate complexes can
be subjected to further analyses and validations preferably
using specialized techniques on the single-cell or purified
complex level.

In the following section, we discuss limitations, require-
ments, and advantages of the presented absolute label-free
quantification method to provide a guide for appropriate fields
of application. In all quantitative MS experiments, precision
and accuracy represent two important characteristics, which
both need to be investigated and considered carefully for a
meaningful interpretation of quantitative data. In terms of
measurement precision, label-free MS workflows tend to be
less precise than workflows based on the SID technology,
because label-free methods cannot account for numerous
potential sources of error, including the following: 1) variations
in system sensitivity within or across LC-MS/MS runs; 2)
chromatographic performance differences; 3) variable ion
suppression effects; 4) interferences from co-eluting and con-
taminating substances; 5) electrospray instability; and 6) vari-
ations in injection volume. However, the present work, as well
as a previous comparative study between label-free and SID-
based SRM (42) shows that label-free SRM measurements
can be performed with good reproducibility also over longer
time periods and that protein abundance differences greater
than 2-fold can be monitored confidently, particularly in cases
where substantially similar samples are being analyzed.

The CE applied during CID can affect the fragment ion
spectrum and therefore the measured transition intensities.
Significant changes in the recorded transition intensities
would be expected to compromise the quantitative accuracy.
However, recent studies regarding CE optimization consis-
tently reported for singly charged y-ion fragments minor
changes between the usage of predicted and empirically op-
timized CE values (below 8% variation) (35, 43). In this study,
we targeted predominantly singly charged y-ions (85%) and
used an optimized equation for the TSQ Vantage instrument
type to predict CE values for each peptide (35). We therefore
expect the transition signal intensities to be quite robust.
However, we do not rule out that depending on instrument
type and sample, the process of CE optimization will be
worthwhile and help to further improve absolute protein abun-
dance estimation.

False-positive peptide identifications, i.e. erroneous pep-
tide to SRM trace matches, may also affect precision and
accuracy of the method, because in those cases protein
quantities are estimated based on erroneous peptide data
points. Hence, a thorough investigation and control of the
underlying FDR for a given MS data set is important. In the
present study, we used the mProphet algorithm (31) and
the associated decoy strategy to control and limit the FDR.
The determined FDR of �1% showed that even in the ab-

sence of isotope-labeled standards, confident peptide iden-
tifications could be realized based on transition concurrency,
peak shape, intensity, and intensity correlations to a spectral
library. However, we would like to sensitize users of the SRM
technology that the introduction of stable isotopes can be-
come crucial for confident peptide identifications, especially
in cases where low abundant analytes are targeted in com-
plex samples. Notably, for the purpose of improved peptide
identifications, it is not necessary that SIS peptides are spiked
into the sample of interest for every protein. Significantly
cheaper isotope labeling techniques, such as those based
on metabolic, chemical, or enzymatic labeling (for an over-
view see Ref. 15), can be equally applied, although leading
to a significant increase in sample complexity. To further
minimize the erroneous effect of false-positive identifica-
tions onto the quantitative result, several peptide data
points per protein should be considered, as performed in
this study by applying the TopPep3/TopTra2 model for ab-
solute label-free quantification.

To assess the accuracy of an absolute MS measurement is
challenging, because it is difficult to control variability in pro-
tein extraction, protein digestion, and protein recovery (42).
Importantly, these issues apply for any MS-based absolute
quantification approach, including the SID technology, which
represents the most widely accepted method for absolute
protein quantification in complex protein samples. The use of
full-length protein standards can help accounting for diges-
tion and protein recovery effects during sample preparation
(21), but a complete extraction of the whole cellular proteome
for accurate determination of copy per cell numbers is still
hardly controllable. However, assuming that deviations from
accuracy are equally distributed, accurate comparative stud-
ies of different proteins between samples or within one sam-
ple are feasible.

Conclusively, precise and accurate absolute label-free
quantification of proteins represents a challenging task, im-
paired by multiple potential sources of error. However, these
errors can be minimized to a satisfactory level, if sample
preparation, MS measurement, and data analysis are ad-
justed to the respective sample type under investigation and
if each step of the workflow is conducted thoroughly and
reproducibly.

In the following section, we discuss three important require-
ments that need to be fulfilled to perform the presented ab-
solute label-free quantification method. They are: 1) selection
of a set of anchor point proteins for data calibration; 2) selec-
tion of best flyer peptides for the proteins of interest, including
anchor point and target proteins; and 3) design of SRM as-
says for all selected best flyer peptides.

The anchor point protein set should comprise an appropri-
ate number of proteins spanning the whole cellular abun-
dance range. Importantly, for each anchor point protein, the
absolute concentration must be known or determined accu-
rately. In this study, we used a set of 16 proteins that were
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selected based on label-free quantitative shotgun data (24)
and determined their quantities using SRM and SID. It is not
essential that anchor point proteins remain invariant across
samples and conditions; however, a distribution over the
whole abundance range is important for generating meaning-
ful linear regression curves. Although the selection and gen-
eration of suited anchor point proteins is crucial for the per-
formance of the approach and demands a significant
investment of time and costs, it needs to be performed only
once per organism. The typical SIS peptide amount provided
by the manufacturer (5 nmol) is sufficient for thousands of
LC-MS sample injections. Hence, once established, an an-
chor point SIS peptide mix can be used universally for a given
organism of interest over many samples and experiments.
Alternatively to SIS peptides also a mixture of purified proteins
from another species can be added to the sample to anchor
the quantification calculations. In particular, the commercially
available universal proteomic dynamic range standard 2
(UPS2; Sigma), which comprises 48 recombinant human pro-
teins ranging from 50 pmol to 500 amol, has already been
shown applicable for absolute label-free quantification based
on precursor ion intensities (7). This sample, if properly tested,
could potentially also serve as an anchor point protein set for
absolute label-free SRM analysis of any species other than
human.

The second important topic for absolute label-free SRM
quantification is the selection of best flyer peptides for each
targeted protein. This is an especially crucial point in the
context of the SRM, where confident best flyer peptide infor-
mation must be available a priori, and in contrast to discovery-
driven or data-independent MS, where quantitative informa-
tion for a higher number of detectable peptides per protein is
gathered. Overall, in the present method the same peptide
selection criteria are applicable as for other types of SRM
measurements (29, 44). We only selected proteotypic pep-
tides (45) and eliminated nontryptic or partially tryptic pep-
tides. Further filter criteria, for example the exclusion of me-
thionines, were not applied. Ideally, best flyer peptide
selection should be performed based on empirical MS data,
i.e. on the basis of precursor ion intensities or spectral counts
from in-depth MS experiments. Preferably, these data sets
should also include sample fractionation for increased sensi-
tivity and proteome coverage. Such extensive MS analyses
are labor-, time-, and cost-intensive; however, for various
organisms qualitative and quantitative peptide identifications
are already publicly available, including in-depth proteome
cataloging experiments executed by various specialized labs
(46, 47). Thanks to latest improvements in MS instrumenta-
tions, even more comprehensive proteome catalogs of an
even broader range of organisms can be expected in the
future, further facilitating the identification of best flyer pep-
tides. Alternatively, for proteins or organisms lacking any em-
pirical MS data, best flyer peptide selection can also be
performed using predictive algorithms (44, 45).

The third requirement for the described method is the avail-
ability of SRM assay information, which includes parameters
such as most intense transitions per peptide, retention time,
and relative transitions intensities. This type of information
can be obtained either from shotgun-based full MS/MS scans
(48, 49) or from crude synthetic peptide analogs investigated
by SRM triggered full MS/MS scans (50). In this study, we
applied the latter approach, which has the intrinsic advantage
that low complex synthetic peptide mixes are analyzed di-
rectly on the MS instrument of interest, yielding comprehen-
sive and high quality MS/MS scans. Currently efforts are
being undertaken to generate SRM assays for all MS-detect-
able proteins within a specific organism of interest (50).2

Hence, in the future, comprehensive SRM assay databases
can be expected. Prospectively, these databases would be
ideally suited to include information regarding best flyer pep-
tides per protein and corresponding SRM assays, which will
make absolute label-free quantification easily accessible for
all users of the SRM technology.

Taking into account the strengths, requirements, and limi-
tations discussed above, when and how can the described
absolute label-free SRM method be applied? It is generally
applicable to any SRM data set that includes measurements
of the best flyer peptides per protein with a sufficient number
of most intense transitions. For the conversion of protein
intensities into absolute protein concentrations, a calibra-
tion curve is required. To generate this curve, accurate
absolute abundance information for the anchor point pro-
teins within the sample of interest need to be determined
and correlated to label-free monitored best flyer peptides of
the same proteins. Hence, the calibration curve generation
necessitates an additional sample preparation step, i.e. the
spiking of SIS peptides into the sample of interest, and
additional measurement time (in this study �300 transi-
tions). Other than these variations, the estimation of abso-
lute protein quantities using the described method is iden-
tical to conventional SRM measurements.

In conclusion, the presented SRM-based method for abso-
lute label-free quantification, like similar techniques based on
precursor ion intensities or spectral counts, does not repre-
sent a highly accurate protein abundance measurement.
However, for a sample of medium complexity, it supports the
estimation of absolute protein abundances with an averaged
error of �2-fold, if reproducible sample preparation and MS
workflows are provided. Hence, it can be applied for confident
determination of protein abundance differences greater than
that, not only for comparative studies between different sam-
ples but also for comparisons of different proteins within one
sample. The presented SRM-based technique realizes per-
formance advantages over previously mentioned techniques,
like improvements in reproducibility, precision, sensitivity, and

2 P. Picotti, et al., A complete mass spectrometric reference map
for the analysis of the yeast proteome, manuscript in revision.
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dynamic range, which can be exploited for the simultaneous
abundance estimation of 10s to 100s of target proteins at
minimized costs for labeling reagents. We expect that the
method can serve as a valuable supplement to discovery-
driven or directed techniques, with particular strengths in
analyzing low abundant proteins and in working with large
cohorts of complex biological samples.

SRM data sets associated with this manuscript have been
deposited to the PeptideAtlas SRM Experiment Library (PAS-
SEL) and are accessible via the website http://www.
peptideatlas.org/passel/. A R-script for model selection with
Monte Carlo cross-validation is available at http://ai.
stanford.edu/�manfredc/lfqsrm.html.
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Selevsek, N., Aebersold, R., Moritz, R. L., PASSEL: The PeptideAtlas
SRM Experiment Library, 2012, Proteomics, in press

Absolute Protein Abundance Estimation Using Label-free SRM

10.1074/mcp.M111.013987–16 Molecular & Cellular Proteomics 11.3


