
RESEARCH ARTICLE

Entropy Transfer between Residue Pairs and

Allostery in Proteins: Quantifying Allosteric

Communication in Ubiquitin

Aysima Hacisuleyman☯, Burak Erman*☯

Department of Chemical and Biological Engineering, Koç University, Sariyer, Istanbul, Turkey
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Abstract

It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic prop-

erty of all proteins. Here, we develop a computational method that can determine and quan-

tify allosteric activity in any given protein. Based on Schreiber’s transfer entropy formulation,

our approach leads to an information transfer landscape for the protein that shows the pres-

ence of entropy sinks and sources and explains how pairs of residues communicate with

each other using entropy transfer. The model can identify the residues that drive the fluctua-

tions of others. We apply the model to Ubiquitin, whose allosteric activity has not been

emphasized until recently, and show that there are indeed systematic pathways of entropy

and information transfer between residues that correlate well with the activities of the pro-

tein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex

with human polymerase iota and evaluate entropy transfer between all pairs of residues of

Ubiquitin and quantify the binding susceptibility changes upon complex formation. We

explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Impor-

tant residues taking part in allosteric communication in Ubiquitin predicted by our approach

are in agreement with results of NMR relaxation dispersion experiments. Finally, we show

that time delayed correlation of fluctuations of two interacting residues possesses an intrin-

sic causality that tells which residue controls the interaction and which one is controlled. Our

work shows that time delayed correlations, entropy transfer and causality are the required

new concepts for explaining allosteric communication in proteins.

Author Summary

Allosteric communication is essential for the function of proteins. Recent work shows that

allostery results from dynamic processes in the protein associated with atomic fluctuations

leading to entropic interactions that involve ensemble of pathways rather than discrete

two state transitions. Based on this new picture of allostery, it was proposed that allostery

may indeed be an intrinsic property of all proteins. In order to test this hypothesis, we

derive the computational tools for quantifying allosteric communication, and explain allo-

stery in terms of entropy transfer, a new concept based on information theory. We use
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molecular dynamics simulations from which we calculate the transfer of entropy between

pairs of residues. Results show that certain residues act as entropy sources while others as

entropy sinks. Evaluation of time delayed correlations shows the presence of causality of

interactions that allow us to differentiate between residues that are drivers in allosteric

activity and those that are driven. Identification of driver-driven relations is important for

drug design. Using the example of Ubiquitin, we identify paths of information transfer

that control its binding to diverse partners in the Ubiquitin-Proteasome System. The pro-

posed model can determine and quantify allosteric activity in any given protein.

Introduction

Allosteric communication describes the process in which action at one site of a protein is

transmitted to another site at which the protein performs its activity. The importance of allo-

stery in biological systems has generated significant experimental and computational research.

The basic problem is to identify residues that participate in allosteric communication in the

hope of controlling their behavior related to protein function. Allosteric communication first

requires the identification of two sites, the effector site, i.e., the site that is acted upon, and the

regulatory site where protein’s activity is regulated. Although more than 1000 allosteric sites

are known [1] many more need to be characterized. In fact several pairs of allosteric endpoints

may exist in a protein [2] which increases the number of candidate pairs that communicate.

This problem becomes even more important when one considers the fact that most known

cancers result from disruption of allosteric communication as a result of single mutations [3,

4] and the number of proteins associated with this phenomenon is very large. Expressed in

simple terms, the solution of the problem reduces to finding whether two given residues com-

municate with each other, and if so what the consequences of this communication are. Various

approaches to solve the problem may be found in References [5–16]. The specific aim of the

present paper is to develop a rapid computational technique that identifies interaction of resi-

due pairs based on concepts of information transfer and entropy, to scan a given protein and

identify pairs of sites that communicate and to determine whether these communicating pairs

may be candidates for allosteric activity.

The present work departs from the approaches outlined in the preceding paragraph. We do

not focus either on single allosteric sites or on allosteric paths. We consider the time trajectory

of the fluctuations of two residues, which may be spatially distant, and search for information

transfer from the trajectory of one residue to that of the other. The trajectories are obtained

from long molecular dynamics (MD) equilibrium simulations that give the fluctuation of each

atom at constant temperature. The first requirement for information to be transferred from an

atom i to another atom, j, is that their trajectories should be correlated. The second require-

ment is that this transfer should be asymmetric, i.e., information going from i to j should not

be equal to information from j to i. This requires the use of time delayed correlations of fluctu-

ations which may be asymmetric in contrast to time independent correlations which are sym-

metric by definition and therefore lack information on directionality. If Cij(t,t+τ) denotes the

correlation of fluctuations of i at time t with those of j at time t+τ, then asymmetry requires

that Cij(t,t+τ)6¼Cji(t,t+τ). This introduces directionality and therefore causality into the prob-

lem. If time delayed correlations are asymmetric, then can we quantify the net information

that is transferred? The answer is yes if we pose the problem in terms of entropy transfer.

Before going into the discussion of entropy, it is worth pointing out that information trans-

fer is exclusively based on the changes in the amplitudes and frequencies of fluctuations in the
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system. This was first suggested and modelled by Cooper and Dryden (CD) [17] and reached

larger dimensions by the work of Gunasekaran [18] which suggests that since allosteric com-

munication is a result of correlated fluctuations then allostery should be an intrinsic dynamic

property of all proteins. The dynamics aspect of proteins resides in the fluctuations of atoms

which may be evaluated by experimentally measuring the B-factors of the atoms. The B-factor

of the ith atom is related to its time independent autocorrelation of fluctuations, h(ΔRi)2i, by

Bi ¼ 8p2

3
hðΔRiÞ

2
i. However, knowledge of them is not sufficient for predicting allosteric com-

munication and cross correlations hΔRiΔRji between the fluctuations of different atoms are

needed. Allosteric activity requires not only the modulation of the cross correlations in the sys-

tem but also on time delayed cross correlations, hΔRi(0)ΔRj(t)i, as will be described below in

detail. The CD model is referred to as ’Allostery without conformational change’. In this

respect, it goes beyond the classical Monod-Wyman-Changeux (MWC) [19] model and its rel-

ative, the Koshland Nemethy Wyman (KNW) model [20] both of which relate allostery to dis-

crete conformational changes at the regulatory site. Sending information by changing the

amplitude and frequencies of fluctuations is entropic [21] and depends not only on the value

of the entropy but also on the transfer of entropy from residue to residue during communica-

tion. Entropy as a source of information transfer is widely used in information theory [22]

which is only very recently used for a protein-DNA complex by Kamberaj and van der Vaart

[23]. Through analysis of entropy transfer, they determined residues that act as drivers of the

fluctuations of other residues, thereby determining causality that is inherent in the correla-

tions. Determining residues that act as drivers and those that are driven is important especially

from the point of view of drug design. Entropy transfer and causality is a new paradigm for

studying allosteric communication in proteins, which we elaborate in detail in the present

paper. On a broader scale, our findings show that all proteins may indeed exhibit allosteric

communication and therefore supports the hypothesis by Gunasakaran, [18] which states that

allostery is an intrinsic property of all dynamic proteins.

The quantitative measure of information flow between two correlated processes is intro-

duced by Schreiber [22] in 2000. In the present work, the processes are generated in the form

of trajectories of atomic coordinates using MD simulations from which probabilities of atomic

coordinate fluctuations required for evaluating transfer entropy are calculated. We calculate

the entropies based on atoms and identify the entropy of a residue with the entropy of its alpha

carbon. Denoting the probability of fluctuation of atom i by pi, Callen showed [24] that the

Shannon measure of disorder, � kB
XN

i¼1

pilnpi with N and kB denoting the number of elements

of the system and the Boltzmann constant, is the entropy of the system which is maximized at

constant energy (See Callen [24], Chapter 17. Entropy and disorder: Generalized canonical

formulations). At this point we give here a qualitative explanation of the relationship between

information flow and a physical event such as fluctuations of atoms, and continue this discus-

sion on a quantitative way after we introduce the statistical mechanical basis of the model. Sup-

pose we have two trajectories, one of atom i and the other of atom j. If the fluctuations of i and

j are independent of each other, then knowledge of the fluctuations of i will not give us infor-

mation on the fluctuations of j and the uncertainty associated with the two events will be a

maximum. The total entropy of i and j will be the sum of the singlet entropies, Si+Sj. If, on the

other hand, i and jmove in a correlated way, the fluctuations of i controlling the fluctuations

of j, then we will have more information on the fluctuations of j than if they were uncorrelated.

For example, if i and j were perfectly correlated, then we would know exactly what j will do if

we know what i is doing. This extra information Iij that we gain because of the physical cou-

pling of i and j is obtained by the Shannon equation and is termed as the mutual information

Quantifying Allosteric Communication using Entropy Transfer
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and is always positive. The total entropy, Sij of i and j in this case is written as Sşj = Si+Sj-Iij (see

Eqs 12 and 13 and also Ref. [25]). Thus, correlation of fluctuations, irrespective of whether

they are negative or positive, always decreases the sum of the singlet entropies of i and j. These

arguments and the Shannon equation have been used to obtain entropy changes in proteins at

different levels of approximation [21, 26–38]. However, we need to go beyond the Shannon

equation in order to quantify allosteric communication in proteins which requires, as shown

by Schreiber in 2000 [22], the knowledge of time delayed conditional probabilities of two tra-

jectories. In the interest of determining which residue drives the correlated motions and which

residue responds, van der Vaart applied the Schreiber equation to determine information flow

between Ets-1 transcription factor and its binding partner DNA [23] (Also see references [39]

and [40] in similar context). Since this first work on entropy transfer in proteins there has

been a limited number of studies on information transfer in proteins. Barr et al. [41] quantified

entropy transfer among several residues in a molecular dynamics analysis of mutation effects

on autophosphorylation of ERK2. Corrada et al. [42] analyzed entropy transfer in antibody

antigen interactions. Perilla et al. [43] used the transfer entropy method to analyze barrier

crossing transitions in epidermal growth factor receptors. Qi and Im [44] quantified drive-

response relations between residues during folding. Jo et al. [45] obtained a causality relation-

ship between intramolecular hydrogen bonds and the conformational states of N-glycan core

in glycoproteins. Zhang et al. [46] applied the method to understand changes in the correlated

motions in the Rho GTPase binding domain during dimerization. An extensive overview of

similar techniques is given in reference [47].

In the following section, we define the model on which we build the information theoretical

basis of entropy. We then study the problem of time delayed correlation of fluctuations in pro-

teins. Despite its importance in pointing to directionality of events in proteins, as has been

shown recently for the allosteric activity of K-Ras [48], time delayed functions have not been

studied in detail in the past. We then present a fast and accurate method of calculating entropy

changes in proteins subject to pairwise interactions. Calculation of entropy of proteins is not

new and has already been investigated by several authors [26–28, 49, 50] at different levels of

approximation. Our method of entropy calculation is motivated by the recent finding that the

distribution functions for the magnitude of fluctuations of residues in globular proteins can be

derived from a universal function [51]. The method that we use for calculating the entropy is

fast and accurate, based on histogramming the magnitude of fluctuations of each atom in a pro-

tein where the bin number is chosen according to the Sturges’ rule of determining the widths of

class intervals [52]. We show that the use of Sturges’ rule in our computational method leads to

results that agree with earlier entropy calculations. We benchmark our method with calcula-

tions of Ubiquitin by Fleck et al [38]. The entropy change of Ubiquitin upon binding to human

polymerase iota that we calculate agrees with the value obtained in reference [38] using a differ-

ent method of entropy estimation. The computational method that we adopt is efficient and

plausible, and may directly be applied for evaluating entropy transfer in proteins.

The association of Shannon equation with statistical mechanical definition of entropy and

quantifying transfer entropy using the Schreiber equation allows us to interpret a wide range

of events in proteins. If entropy transfer is considered in terms of changes in mobility, then

transfer of entropy from i to j implies decrease in the mobility of i due to its correlation with j.
Stated in another way, residue j extracts entropy from i. If binding is considered, one could

then say that transfer of entropy from i to jwould facilitate binding at i due to lowered mobility

of i, although this may not be a general trend and may depend on several other factors. We use

the model to study the directionality of information flow and entropy transfer in the 76 amino

acid protein Ubiquitin which is known to propagate signals allosterically in the cell by binding

to a vast number of substrates [53]. Until the recent work of Smith et al., [54], the allosteric
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mechanisms of Ubiquitin were not widely recognized and it was not generally classified as an

allosteric protein. Using NMR relaxation dispersion measurements, Smith et al., identified a

collective global motion that originates from a conformational switch spatially distant from

the site where Ubiquitin binds to other proteins. The predictions of the model we present

agree with observations of Smith et al. The model goes one step further and predicts the di-

rection of information transfer and therefore explain the underlying causes of the observed

phenomenon. We discuss this in detail in the Discussion Section. In order to identify commu-

nication patterns leading to allosteric effects, we scanned the full Ubiquitin and identified the

pairs of residues whose time delayed correlation functions are asymmetric and we quantified

the amount of entropy transferred between residue pairs. In order to have a feeling of the

effects of entropy transfer on protein-protein interactions, we analyzed the behavior of Ubi-

quitin when complexed with the binding partner human polymerase iota, 2KTF.pdb. We

observed that binding of Ubiquitin to iota modifies the fluctuation patterns on another site

that may affect the binding of a third protein which may possibly affect the formation of a ter-

nary complex [55].

Results

Structure of Ubiquitin

Ubiquitin is a 76 amino acid protein as shown in Fig 1. It consists of 8 distinct secondary struc-

tures that actively take part in its interactions with a large number of proteins.

The interactions of the secondary structures are strictly coordinated by the correlations in

the protein. In Fig 2. we present the results of Pearson correlations of fluctuations, where the

Fig 1. Structure of ubiquitin (1UBQ).

doi:10.1371/journal.pcbi.1005319.g001
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negative and positive correlations are shown in the left and right panels, respectively. The cor-

relations with amplitudes (-1,-0.25) and (0.25, 1.0) are shown in the figure. The strongest nega-

tive correlation is between LEU73 and the three residues PRO37, PRO38 and ASP39. The next

level of negative correlations are among distant pairs that are situated approximately diago-

nally opposite in the structure (examples are correlations between pairs LEU8-GLN31, ILE30-

LYS63, GLU18-LYS33). The negative correlations between these pairs are expected to confer a

breathing type of motion to the protein, which was indeed observed experimentally[54]. We

elaborate on this point in detail in the Discussion Section. Fig 2B shows that positive correla-

tions are mostly along the diagonal, indicating that neighboring residues along the primary

sequence are positively correlated. However, there are off-diagonal regions in Fig 2B showing

positive correlations among residues that are not close along the primary structure. The stron-

gest off-diagonal positive correlation in Fig 2B is between GLU24 and GLY53.

Transfer Entropy in Ubiquitin

We present the results of entropy transfer between all residue pairs of Ubiquitin. We consider

only the alpha carbons, and the values given are divided by the Boltzmann constant. Results

presented below are based on a trajectory of 600 ns. Entropy transfer values calculated from a

duplicate trajectory of 600 ns gave similar results. Results of entropy transfer calculations

for Ubiquitin and its complex presented below showed that convergence is established after

400 ns.

Using Eq 16 we evaluated the values of entropy transfer from alpha carbon i to j, Ti!j(τ),
for all pairs of i and j for τ = 5 ns. Calculations averaged over several time stations between 0

and 5 ns gave approximately the same values for entropy transfer. In the remaining parts we

present τ = 5 ns results only. The characteristic decay time of correlations of fluctuations of

Fig 2. a. The left panel shows the negative Pearson correlations in the range (-1, -0.25), b. the right panel shows positive Pearson correlations in the range

(0.25, 1.0). Pearson correlations are calculated from Eq 9.

doi:10.1371/journal.pcbi.1005319.g002
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alpha carbons, which will be discussed in the following section, is on the average between 1 to

10 ns. The entropy transfer function Ti!j(τ) that we obtain from fluctuation trajectories of alpha

carbons depends on the correlation of two events that are τ ns apart in time. If τ is taken very

small, i. e., around zero, then the difference between Ti!j(τ) and Tj!i(τ) will be very small

because Ti!j(0) = Tj!i(0). If τ is taken much larger than the characteristic decay time, then the

correlations will have decayed to small values and the differences will be vanishingly small. In

agreement with this reasoning, we took τ = 5 ns and calculated entropy transfer at this time. The

results are shown in Fig 3. The abscissa, named as entropy donor, denotes the indices of residues

that act like entropy reservoirs to other residues. The ordinate, named as entropy acceptor,

denotes the indices of residues that act like entropy sinks that absorb entropy from the system.

The columns of black points in the figure show that specific residues, such as ILE3 and

PHE4, ILE13, ILE23, LYS27, GLY53, GLU64, ARG72 provide entropy to several residues of

the protein. The rows of black circles indicate residues such as LEU8, THR9, GLY75 and 76,

that absorb entropy from several residues of the protein. Residues ILE3 and PHE4, ILE13 and

GLU64 form a spatial cluster. Also, the residues ILE23, LYS27 and GLY53 form a spatial clus-

ter. If the allosteric path description is adopted, then we can say that these two spatial clusters

lie on the allosteric path.

In order to have an idea on the mechanism of communication in the system, one needs to

know the transfer of entropy among specific pairs of residues. From the data of Fig 3, we can

find with which residues a given amino acid interacts entropywise. Figs 4 and 5 summarize the

net entropy exchange, Ti!j(5)-Tj!i(5), between the labeled residue in each panel and the jth

residue of the protein. Fig 4 shows some examples with mostly positive entropy transfer from

the labeled residue to others. The top left panel in Fig 4 shows entropy transfer from ILE3 to

other residues. Specifically it transfers the largest entropy to LEU8 and GLY75 and GLY76.

Both ILE3 and LEU8 are at the opposite extremities of β1. ILE3 is a spatial neighbor of GLU64.

GLU64 is hydrogen bonded to GLN2, and the entropy of GLU64 is transferred to ILE3 via the

stated hydrogen bond. ILE3 contributes entropy to several other residues of the protein as may

be seen from the figure. Entropic interactions of residues PHE4, ILE13, ILE23 and LYS27 are

Fig 3. a. Entropy transfer from residue i to residue j. Abscissa represents residues which provide entropy to residues shown along the ordinate. Entropy

transferred from residue i to residue j is obtained from Eq 16. Values between 0.0035–0.35 are recorded. Values below 0.0035 are not shown in order not to

crowd the figure. Ti!j(τ) values are calculated from Eq 16 with τ = 5 ns., b. Three dimensional description of entropy transfer in Ubiquitin. Red regions denote

the residues with large contributions to transfer entropy. The figure is a 3-D version of Fig 3A.

doi:10.1371/journal.pcbi.1005319.g003

Quantifying Allosteric Communication using Entropy Transfer

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005319 January 17, 2017 7 / 23



very similar to those of ILE3 and are not given as a separate figure. The top right panel in Fig 4

shows the interactions of GLY53 with the rest of the protein. GLY53 is situated on the long

loop between β3 and β4, and is hydrogen bonded to the main alpha carbon of GLU24 which is

at the end of α1. Fig 4 shows that GLY53 contributes to the entropy of the segment between

VAL17 and LYS29. It also transfers entropy along the chain to LEU56. GLU64 contributes

entropy to several residues, in a way similar to that of ILE3. ARG72 has a unique pattern of

contribution, specifically to ASP39 which is its spatial neighbor, to the loop between α1 and β2,

to PHE45 and LEU56, both of which are spatially distant from ARG72. It also contributes to

the mobility of the C-terminal. Fig 5 gives two examples for mostly negative values of Ti!j(5)-

Tj!i(5). The left panel in Fig 5 shows that LEU8 and GLY76 absorb entropy from most of the

residues of the protein.

The net transfer of entropy from residue i, defined by Eq 17 is presented in Fig 6. Positive

values denote net entropy transfer out from a residue, and negative values denote net entropy

into a residue. Similar to the pattern observed in Fig 3, we see that certain residues behave as

entropy sources for the rest of the protein and some behave as entropy sinks.

Fig 4. Entropy transfer from a given residue to other residues of the protein. The residue from which entropy is transferred is marked in each panel.

Calculations are based on the relation Ti!j(5)-Tj!i(5).

doi:10.1371/journal.pcbi.1005319.g004
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We see that β1 and β2 act as an entropy sources as well as part of the helix α1. The largest

amount of entropy is provided by the loops between β3β4 and β4β5. The two major entropy

sinks are the loop between β1 and β2 and the last two residues of the C-terminal. Entropy

sources are located mostly at secondary structures or at their extremities. The three residues

PHE4, THR14, GLU64 are spatial neighbors. Similarly, LEU43, LEU50, are spatial neighbors.

The entropy source and sink residues are shown in three dimensions in Fig 7.

Time Delayed Correlations of Ubiquitin

Fluctuations of amino acids in Ubiquitin display characteristic decay times that are in the

order of 1 to 10 ns as may be observed from the decay of the curves to 1/e of their original val-

ues. Differences arise from the unique conformational features of the amino acid and its envi-

ronment. In Fig 8, we show the autocorrelations of THR7 and LEU71.

Fig 5. Entropy transfer from residues of the protein into LEU8 and GLY76. The residue from which entropy is transferred is marked in each panel.

Calculations are based on the relation Ti!j(5)-Tj!i(5).

doi:10.1371/journal.pcbi.1005319.g005

Fig 6. Net entropy transfer from one residue to the rest of the protein, calculated by Eq 17. A residue

with a positive (negative) value of net entropy transfer is an entropy source (sink).

doi:10.1371/journal.pcbi.1005319.g006
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The autocorrelation function for THR7, i.e., the time required to decay to 1/e of the original

value is 5 ns. LEU71 decays slightly slower with a decay time of 10 ns.

Fig 7. Structure of ubiquitin, residues that are colored in red are entropy acceptors and residues that

are colored in blue are the entropy donors.

doi:10.1371/journal.pcbi.1005319.g007

Fig 8. Autocorrelations functions for THR7 and LEU71 calculated from Eq 7 for i = j. The abscissa

denotes the time delay parameter, i.e., the time between two observations, one at time zero the other at the

indicated time on the axis.

doi:10.1371/journal.pcbi.1005319.g008
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The time delayed cross correlations of the fluctuations of two amino acids are of interest

because they yield information on the causality of events. The static correlations presented in

Fig 2 are symmetric, i.e., Cij(τ) = Cji(τ). However, time delayed cross correlations of fluctua-

tions of two amino acids show asymmetries which we discuss in this section.

In Figs 9 and 10, we present two cases that show significant causality. The strongest asym-

metry is between LEU7 and THR71, shown in Fig 9.

In this figure, the black curve is for correlation of THR7 at time t and LEU71 at t+τ. The

red curve is for LEU71 at t and THR7 at t+τ. The black curve decays significantly slower than

the red curve, indicating that the effect of the fluctuations of THR7 on later fluctuations of

LEU71 persists for longer times whereas the converse is not true. We therefore say that the

Fig 9. Cross correlation of fluctuations of THR7 and LEU71. Black line is for correlations where THR7

precedes LEU71. The red line is for correlations where LEU71 precedes THR7. The abscissa denotes the

time delay parameter, i.e., the time between two observations, one at time zero the other at the indicated time

on the axis. The curves are calculated from Eq 7.

doi:10.1371/journal.pcbi.1005319.g009

Fig 10. Cross correlation of fluctuations of THR14 and GLY53. Black line is for correlations where THR14

precedes GLY53. The red line is for correlations whereGLY53 precedes THR14. The abscissa denotes the

time delay parameter, i.e., the time between two observations, one at time zero the other at the indicated time

on the axis. The curves are calculated from Eq 7.

doi:10.1371/journal.pcbi.1005319.g010
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motions of THR7 drive the motions of, LEU71 i.e., THR7 is the driver and is LEU71 driven.

Since LEU71 is located on the C-terminal segment, and THR7 is at the end of β1, we can say

that the β1 strand controls the fluctuations of the C-terminal. We see that the black curve

remains approximately constant after a rapid initial decay. This shows that the driver action of

THR7 on LEU71 persists for longer times.

In Fig 10, the black curve is for the correlation of the fluctuations of THR14 with later fluc-

tuations of GLY53. The red curve is for the reverse case, fluctuations of GLY53 affecting later

fluctuations of THR14. This figure shows that THR14 is the driver and GLY53 is driven.

THR14 is on the β2 strand and GLY53 is on the long loop connecting the α310 helix to β4.

Discussion

The entropy transfer model that we developed for understanding allosteric communication in

proteins measures the amount of information transfer between the trajectories of two atoms, i
and j. Knowing the fluctuations of atoms i and j at time t, the model evaluates the amount of

uncertainty reduced in the future fluctuations of atom j. One extreme case is where the fluctua-

tions of i have no effect on the fluctuations of j, i.e., their trajectories are uncorrelated. In this

case, Eq 16 equates to zero, and no entropy will be transferred to residue j from i. The other

extreme case is where the fluctuations of i ar time t are perfectly locked into those of j at time t
and the knowledge of the present values of i and j fluctuations will reduce the uncertainty of

the future fluctuations of j. In this case, the second term S(ΔRj(t+τ)|ΔRi(t),ΔRj(t)) in Eq 15 will

be modified as S(ΔRj(t+τ)|ΔRj(t))-S(ΔRi(t)), which states that the reduction in uncertainty is due

to the locking in of the fluctuations of i. Substituting these into Eq 16 leads to Ti!j(τ) = S(ΔRi).
The range of values of entropy that may be transferred from i to jwill lie within the interval

0� Ti!j(τ)� S(ΔRi). In the absence of symmetry, Ti!j(t) 6¼ Tj!i(t), we talk of a net transfer of

entropy from i to jwhich will lie in the interval -S(ΔRj)� Ti!j(τ)-Tj!i(τ)� S(ΔRi). If (Ti!j(τ)-
Tj!i(τ)) is greater than zero, we say that the fluctuations of atom i drive those of atom j.

Based on these explanations, we now compare the predictions of the model with experi-

mental data. Progress in NMR spectroscopy and Relaxation Dispersion measurements allows

for reliable experimental determination of correlations of fluctuations of residues that may be

spatially distant[54, 56, 57]. Such long range correlations are candidate mechanisms that

require information transfer, and hence may be seen as suitable indicators of entropy transfer.

We show that measured correlations and patterns of entropy transfer that we calculate are

complementary to each other.

Comparison with Experiment

Strong correlations between two residues, ILE23 and ASN25 have been observed by NMR

studies of Ubiquitin [58, 59]. A more detaild investigation by Ban et al., [57] using the recently

developed NMR Relaxation Dispersion technique showed a strong correlation between ILE23,

ASN25 and THR55. Later work by Smith et al., [54] using Relaxation Dispersion measurements

showed that the two residues GLU24 and GLY53 act as a conformational switch and their corre-

lated fluctuations induce breathing-like motions in the overall protein which affect the substrate

binding region of Ubiquitin. Our Pearson correlation analysis shows that GLU24 and GLY53

are strongly positively correlated and there is significant entropy transfer from GLY53, which

is located on a loop, to GLU24, located on the helix, as may be seen from Fig 3B and the top

right panel of Fig 4. According to these figures, GLY53 is a strong entropy source for GLU24.

Thus, we see a strong directionality in the interactions of the two residues that form a conforma-

tional switch that controls the overall motions of the protein: GLY53 drives the fluctuations of

GLU24. In turn, GLU24 drives residues LEU8, GLN40 and the C-terminal residues.

Quantifying Allosteric Communication using Entropy Transfer
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Secondly, based on the predictive features of our model, we discuss the possible conse-

quences of ligand binding and mutation, both of which are of significant relevance to drug

design.

Changes upon Complex Formation of Ubiquitin

Ubiquitin forms complexes with a multitude of proteins. Here we studied its complex with

Human Polymerase Iota which is a small protein of 28 amino acids, 2L0G.pdb, it binds to the

following residues of Ubiquitin: LEU8, THR9, GLY10, GLY47, ARG42, ILE44 and the C-ter-

minal. Net entropy transfer in Ubiquitin in the bound and free states is compared in Fig 11.

The solid and dashed curves are for the bound and free states, respectively. Entropy transfer

characteristics of four residues of Ubiquitin show significant changes upon complex forma-

tion. LEU8 which was and entropy sink in the unbound Ubiquitin is no longer a sink. GLU24,

GLY53 and GLU64 which were strong entropy sources in the unbound state cease to be so in

the complex. A possible interpretation of this observation is that GLY53 no longer drives

GLU24 which in turn does not excite the breathing like motions of Ubiquitin, and the entropy

transfer characteristics of Ubiquitin is now completely changes in favor of conformations that

prefer complexation.

Mutations, although we have not performed simulation on such systems, are expected to

significantly modify the entropy transfer characteristics of those residues that exhibit strong

entropy transfer in the wild type. For example, mutation of GLU24 or GLY53 would abolish the

driver-driven relations and change the functional dynamics of Ubiquitin significantly. In fact

Smith et al. [54]performed mutations experimentally and observed that the affinity toward ubi-

quitins binding partner weakened twofold in both mutants. Mutation of residues LEU8 and

GLN40 should also lead to strong changes in allosteric behavior of Ubiquitin because these resu-

dues also have important role on entropy transfer, as was discussed in the preceding paragraphs.

Entropy transfer is computed only for alpha carbons in the present work. In principle, the

calculations may be extended to include sidechains also since molecular dynamics trajectories

are performed for all atoms of the system and the information for sidechain entropies is pres-

ent in the trajectories. In the interest of brevity and clarity of presentation, only alpha carbons

were treated at this preliminary analysis of entropy transfer in proteins. It is worth stating,

Fig 11. Net entropy transfer of residues in unbound Ubiquitin (dashed curve) and in the complex

(solid curve) Curves are obtained by using Eq 17.

doi:10.1371/journal.pcbi.1005319.g011
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however, that NMR measurements on backbone carbon and nitrogen were sufficient to char-

acterize the allosteric dynamics of Ubiquitin [54, 58]. Sidechains and amino acid types will

undoubtedly affect residue-residue communication, especially when considering differences

between the bound and unbound states, and should be included in a more detailed analysis.

Binding of iota to Ubiquitin modifies the fluctuation patterns of residues ILE3, ILE23, GLY53

and GLU64 which are on a surface that is susceptible to the binding of a third protein, a case

which may possibly affect the formation of a ternary complex [55].

In conclusion, we used the Schreiber’s model of entropy transfer and presented a detailed

analysis of allosteric communication in Ubiquitin. Based on the analysis of time delayed

events, we showed that information may be transferred between pairs of residues. The alloste-

ric mechanisms of Ubiquitin have been understood only very recently. Our work shows that

there is significant information transfer between residue pairs in this system. From the entropy

transfer point of view, all proteins may exhibit allosteric communication. This observation

supports the recent hypothesis by Gunasekaran et al [18] that allostery is indeed an intrinsic

property of proteins. Our work shows that the knowledge of time delayed correlations and

entropy transfer is needed in order to quantify allosteric communication in proteins. Time

delayed events have not been widely used in studies of protein function and allosteric commu-

nication. Recently, it was shown that causality introduced by time delayed correlations plays

significant role on allosteric communications in K-Ras. In this respect, time delayed correla-

tion functions may be viewed as a new tool for studying allosteric communication in proteins.

A three dimensional map of entropy transfer, as shown in Fig 3B may be useful for visualizing

allosteric communication between pairs of residues more easily. Based on Fig 3B and the

entropy transfer propensities of residue, the model serves as a suitable tool for explaining the

basis of allosteric mechanisms in proteins.

Finally, it is worth noting that the present approach which maps the causality, driver-driven

relations, and entropy exchange into pairs of residues, as seen in Fig 3B, should be of great sig-

nificance for allosteric drug design because it tells us which residues to manipulate. In this

respect, a driver residue is more critical than the driven residue and manipulating the driver

will be perturb the existing correlations more efficiently. The effects of mutation on allosteric

communication may be quantified by calculating the changes in entropy transfer. As we

showed in the UBQ-Human Polymerase Iota complex, binding may result in entropy changes

in the exposed residues of the complex and change the binding propensities of the complex to

other molecules such as another protein, a small molecule ligand or a DNA segment.

Methods

Molecular Dynamics Trajectories

We perform molecular dynamics simulations for a protein in equilibrium and extract station-

ary trajectories for each atom. The trajectories for the atoms are expressed as

RðtkÞ ¼ RðR1ðtkÞ;R2ðtkÞ;R3ðtkÞ; ::;RNðtkÞÞ k ¼ 1; 2; ::; nT ð1Þ

Here, Ri(tk) is the position vector of the ith atom at the kth time tk, expressed in terms of its Car-

tesian coordinates, Xi(tk), Yi(tk) and Zi(tk),N is the total number of atoms and tk is the time in

the kth step.k ranges from 1 to nT, the total number of steps in the simulation. If the total time

isT, then the length ξ of each time step is ξ = T/nT. Each atom has a unique equilibrium mean

position defined by

�R ¼ Rð�R1;
�R2;

�R3; ::;
�RNÞ ð2Þ
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We denote the instantaneous state of fluctuation of a protein at time tk by the vector

DRðtkÞ ¼ RðtkÞ � �R ð3Þ

which reads in vector form as

DRðtkÞ ¼ DRðDR1ðtkÞ;DR2ðtkÞ;DR3ðtkÞ; . . . ;DRNðtkÞÞ ð4Þ

For each tk, Eq 4 has N entries. For the purposes of the present study, we need the magni-

tude of the fluctuations only. In the following, we will let ΔRi(tk) represent the magnitude of

the fluctuation at time tk.

Evaluation of Probabilities

The most general expression for the probability of fluctuation ΔR is the joint probability p(ΔR)
p(ΔR1, ΔR2, ΔR3,.. ΔRN). This expression contains information on all orders of dependence

between atoms and is too general for use. In the other extreme, the simplest expression is the

singlet probability function pi(ΔRi) which is obtained from the most general expression by

pðDRiÞ ¼
Z 1

0

� � �

Z 1

0

� � �

Z 1

0

� � �

Z 1

0

pðDR1;DR2;DR3; ::;DRNÞdDR1; . . . ::;DRi� 1; ::;DRiþ1; ::;DRNð5Þ

N such functions define the probability of fluctuations of the N residues within the singlet

approximation.

The next simplest probability is the pair probability p(ΔRi, ΔRj) obtained from the most gen-

eral expression by

pðDRi;DRjÞ ¼
Z 1

0

� � �

Z 1

0

pðDR1;DR2;DR3; ::;DRNÞ

dDR1; ::;DRi� 1; ::;DRiþ1; ::;DRj� 1; ::;DRjþ1; ::;DRN
ð6Þ

For N atoms, there are
NðN� 1Þ

2
equations for pair probabilities.

In Eqs 5 and 6, ΔR’s are treated as continuous. In the remaining of the paper, we will adopt

a discrete representation for them in terms of histograms. The histograms will be expressed in

terms of n bins. We refer to each bin as a state. The variables in the probabilities will then be

functions of state variables. Thus we write p(ΔRi(k))where k goes from 1 to n where n is the

number of states that define ΔRi. Similarly, p(ΔRi(k), ΔRj(l)). In order to simplify the notation,

we will suppress the state index, and write p(ΔRi(k)) as p(ΔRi). Similarly, p(ΔRi(k), ΔRj(l))�
p(ΔRi, ΔRj).

Time Delayed Correlation Functions

We let p(ΔRi(t), ΔRj(t+τ)) denote the joint probability of observing the fluctuation ΔRi at time t
and ΔRj at time t+τ. In this simplified notation, ΔRi(t) represents the value of ΔRi in state k at

time t, which is identical to ΔRi(k,t). ΔRj(t+ τ)may be affected by the earlier fluctuations of

ΔRi(t). The extent of this effect may be quantified by the time delayed correlation function

CijðtÞ ¼

XnT � t=x

k¼1

DRiðtkÞDRjðtk þ tÞ=ðnT � t=xÞ

" #

D
ðDRiÞ

2
E1=2

ðDRjÞ
2

D E1=2
ð7Þ

This is a conditional correlation where ΔRi comes before ΔRj. In general, p(ΔRi(t),ΔRj(t+τ))6¼
p(ΔRj(t),ΔRi(t+τ)). This leads to directionality in the structure, known as causality, and
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consequently,

CijðtÞ 6¼ CjiðtÞ ð8Þ

If the fluctuations of residue i control the fluctuations of residue j, i.e., if residue j is driven

by i, then the decay time for Cij(τ)will be larger than that of Cji(τ).
When τ = 0, time independent Pearson correlation function is obtained as

Cijð0Þ ¼
hDRiDRji

D
ðDRiÞ

2
E1=2D

ðDRjÞ
2
E1=2

ð9Þ

Entropy

The entropy for a pair of subsytems, i and j, the entropy S2,ij is given as

S2;ij ¼ � kB
X

k

X

l

pijðk; lÞln pij ðk; lÞ ¼ � kBhln piji ð10Þ

In Eq 10, the indices k and l denote the indices for the states of the respective subsystems,

the states being obtained from the histograms described in the preceding section. For the case

of pairwise interactions, the expression pij(k,l) represents the joint probability where subsystem

i is in state k and the subsystem j is in state l. We used the notation pij(k,l) = p(ΔRi(k), ΔRj(l))
for brevity of presentation.

In Eq 10, S2,ij signifies the joint entropy for two subsystems with pair probabilities.

We now divide and multiply the entropy expression by the singlet probabilities:

S2;ij ¼ � kB ln
pij
pipj

pipj

 !* +

ð11Þ

which leads to the expression

S2;ij ¼ � kBhln pii � kBhln pji � kB ln
pij
pipj

 !* +

ð12Þ

S2;ij ¼ S1;i þ S1;j � I2;ij ð13Þ

where, S1,i = -kBhlnpii is the singlet entropy and I2;ij¼ kB ln pij
pipj

� �D E
is the mutual information

of the system.

Using statistical mechanics arguments given by Callen [24], each subsystem may be treated

as a canonical ensemble that exchanges energy with its surroundings, represented by the car-

toon in Fig 12. The surroundings of Subsystem 1 for example is the protein which contains

Subsystem 2 also. We may choose the subsystems arbitrarily, an atom, an amino acid, or a sec-

ondary structure such as a helix, beta strand, loop or a tail. The subsystem may also be in con-

tact with the surroundings of the protein. Mutual information is zero if the fluctuations of i are

independent of the fluctuations of j. Otherwise, mutual information is always greater than

zero. This leads to the conclusion that correlations always decrease the sum of the individual

entropies in a system.

Conditional Entropy

We consider two trajectories, ΔRi(t) and ΔRj(t). We now consider two events separated in time

by τ, with the condition that ΔRi coming before ΔRj. The conditional entropy for these two
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events is defined by

SðDRjðt þ tÞjDRiðtÞÞ ¼ �
X

pðDRiðtÞ;DRjðt þ tÞÞlnpðDRjðt þ tÞjDRiðtÞÞ

¼ hlnpðDRjðt þ tÞjDRiðtÞÞi

¼ ln
pðDRiðtÞ;DRjðt þ tÞÞ

pðDRiðtÞÞ

* +

¼ hlnpðDRið0Þ;DRjðtÞÞi � hlnpðDRið0ÞÞi

ð14Þ

where, the summation is over all states for i and j, and the condition of stationarity is used in

the last equation.

Transfer Entropy

Following Schreiber’s work [22], we write the transfer entropy Ti!j(τ) from trajectory i to j at

time τ as

Ti!jðtÞ ¼ SðDRiðt þ tÞjDRiðtÞÞ � SðDRjðt þ tÞjDRiðtÞ;DRjðtÞÞ ð15Þ

Using the last of Eq 14, this may be written as

Ti!jðtÞ ¼ � hln pðDRjð0Þ;DRjðtÞÞi þ hln pðDRið0Þ;DRjð0Þ;DRjðtÞÞi

þ hln pðDRjð0ÞÞi � hln pðDRið0Þ;DRjð0ÞÞi
ð16Þ

Fig 12. Energy exchange between protein and its subsystems.

doi:10.1371/journal.pcbi.1005319.g012
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Through the term p(ΔRi(0), ΔRj(0), ΔRj(τ)),, Eq 16 requires the evaluation of triple probabil-

ities. If trajectories i and j are independent, then Ti!j(τ) = 0 entropy transfer from i to j will be

zero. In general, Ti!j(τ) 6¼ Tj!i(τ) and this will determine the net transfer of entropy from one

event to another separated in time by τ. Different values of τ shows how entropy transfer

depends on prior interactions. In this study, we will take τ = 5 ns as the representative correla-

tion time of cross correlations.

Net Entropy Transfer from an Atom

Eq 16 gives the entropy transferred, Ti!j(τ), from atom i to j. The net entropy transferred from

to all other atoms is obtained by summing over all j as

Net transfer from residue i ¼
XN

j¼1

ðTi!jðtÞ � Tj!iðtÞÞ ð17Þ

Molecular Dynamics Simulation

All-atom Molecular Dynamics simulations were performed for unbound (PDB ID: 1UBQ)

and bound states (PDB ID: 2KTF) of Ubiquitin, using NAMD 2.11 simulation program with

CHARMM22 All-Hydrogen Parameter set for Proteins and Lipids. TIP3P water model was

used to represent water molecules. Counter ions are placed to neutralize the system. Time step

of simulations were 2 fs and periodic boundary conditions were applied in an isothermal-iso-

baric NPT ensemble with constant temperature of 300 K and constant pressure of 1 bar. Tem-

perature and pressure are controlled by Langevin thermostat and Langevin piston barostat,

respectively. System coordinates were saved every 1 ps. 1–4 scaling is applied to van der Waals

interactions with a cutoff of 12.0 Å. Energy of the system was minimized and system is heated

to 300 K for 50 ps and further subjected to MD production run for 600 ns. Frames in trajecto-

ries were aligned to the first frame of the simulation by using VMD 1.9.2 to eliminate all rota-

tional and translational degrees of freedom and the analysis is done with the aligned Cartesian

coordinates.

Entropy Calculations

Amplitude of fluctuations were calculated for each atom from Cartesian coordinates, Ri(tk), of

the trajectory and the mean amplitude of fluctuations, �Ri was subtracted from each Ri(tk) and

the ΔRi..N(tk)matrix was generated with (tk,N) dimensions, where N is the number of atoms

and tk is the number of frames selected for calculations. All of the calculations in this study will

be based on the alpha carbon of each residue unless otherwise stated. Initial data up to equili-

bration was excluded from the calculations as equilibration. A binning approach was used to

calculate configurational entropy, for individual and pairwise dependent atoms. Calculations

were performed using MATLAB R2015b. Histogram function of MATLAB was used to cluster

data into 8 bins with specified widths and partitioning of data is adaptive according to the

maximum and minimum of data. Calculations were performed using 8 discrete bins. Number

of bins were selected according to the Sturges’ rule. The optimum number, nopt, of bins is cal-

culated from the Sturges’ rule according to

nopt ¼ mean fluctuation � ð1þ log
2
NÞ ð18Þ

Here, the mean of fluctuations, i.e., the average fluctuation of the N alpha carbons divided

by maximum fluctuation is calculated from the trajectories and is equal to 0.4. For a trajectory

of 600,000 time steps, the optimum number of bins is obtained as 8 which is used throughout

the calculations. After partitioning the fluctuation of each atom into 8 discrete bins, the

Quantifying Allosteric Communication using Entropy Transfer

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005319 January 17, 2017 18 / 23



probabilities were calculated from the frequency of occurrences and entropy was expressed in

individual and pairwise mutual information terms. For comparison with benchmark calcula-

tions, the change of configurational entropy was calculated for all heavy atoms by subtracting

pairwise mutual information term from individual entropy term as given by Eq 12. By using

Eq 16, transfer entropy from atom i to j was calculated with a delay value of 5 ns for alpha car-

bons by subtracting the triple conditional entropies from pairwise conditional entropies.

Result of configurational entropy calculations were compared with benchmark data and trans-

fer entropy results were used to study changes in entropy transfer patterns when Ubiquitin

forms a complex.

Amount of mutual entropy depends on the distribution of the individual entropies and it is

bounded by individual entropy terms.

I2ði; jÞ � minfSðiÞ;SðjÞg ð19Þ

Estimated entropy from a finite sample may be affected by some systematic errors and a

correction term is required to get rid of this error [60]. Corrections were applied according to

the previous studies [61]

Strue
1
� Sestimated

1
þ
M � 1

2N
ð20Þ

Where Sestimated
1

is the raw entropy, M is the number of histogram bins with non-zero probabil-

ity. Since mutual entropy is the sum of entropies, this formula can also be used to correct I2(i,j)
terms.

Itrue
2
� Iestimated

2
þ
Mij � Mi � Mj þ 1

2N
ð21Þ

Where Mij,Mi andMj represent the numbers of the corresponding histogram bins with non-

zero probabilities.

Benchmark for Entropy Calculations

Our method of configurational entropy calculations which we need for calculating transfer

entropy are based on a histograming method using Sturges’ rule. We compare the results of

our configurational entropy calculations with those of MIST(Mutual Information Spanning

Trees) method of PARENT [38]. The mean entropy change result of Ubiquitin upon complex

formation with human polymerase iota, 2KTF.pdb was obtained by our method as -47.64

(standard deviation of 12.33) calculated from 5 different portions from a simulation of 1200

ns. For the same system, MIST gave a mean of -40.59 (standard deviation of 28.99) for 5 differ-

ent MD simulation sets for Ubiquitin and its complex. The error between the means of our

result and of MIST is 17.4%, which is within 1 standard deviation of PARENT results.
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