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Abstract: Glass transition is a most intriguing and long-standing open issue in the field of molecular
liquids. From a macroscopic perspective, glass-forming systems display a dramatic slowing-down of
the dynamics, with the inverse diffusion coefficient and the structural relaxation times increasing
by orders of magnitude upon even modest supercooling. At the microscopic level, single-molecule
motion becomes strongly intermittent, and can be conveniently described in terms of “cage-jump”
events. In this work, we investigate a paradigmatic glass-forming liquid, the Kob–Andersen Lennard–
Jones model, by means of Molecular Dynamics simulations, and compare the macroscopic and
microscopic descriptions of its dynamics on approaching the glass-transition. We find that clear
changes in the relations between macroscopic timescales and cage-jump quantities occur at the
crossover temperature where Mode Coupling-like description starts failing. In fact, Continuous
Time Random Walk and lattice model predictions based on cage-jump statistics are also violated
below the crossover temperature, suggesting the onset of a qualitative change in cage-jump motion.
Interestingly, we show that a fully microscopic relation linking cage-jump time- and length-scales
instead holds throughout the investigated temperature range.

Keywords: molecular glass-forming liquids; glass transition; molecular dynamics simulations

1. Introduction

When a liquid is cooled sufficiently fast below its melting temperature Tm, molecules
do not have enough time to rearrange in an ordered structure and crystallization is
avoided [1,2]. Liquids in these conditions are termed supercooled, and show a dramatic
slowing-down of the dynamics as compared to that of a standard liquid, despite poor
changes in their structure [2,3] (structural changes can be still detected using multi-point
correlation functions and percolative approaches [4–6]). Macroscopic dynamical properties
such as shear viscosity and diffusivity change indeed by several orders of magnitude upon
supercooling [7]. As a matter of fact, below some conventional glass transition temperature
Tg < Tm, the system eventually reaches a non-equilibrium disordered solid-like state, called
glass, in which dynamics is arrested over the accessible timescales [1,8].

On a microscopic level, dynamics near the glass transition shows an intermittent single-
particle motion, commonly known as Cage-Jump (CJ), with an alternation of localized
vibrations inside the ‘cage’ created by the surrounding particles, and sudden ‘jumps’ to
other cages [9–13]. While at high temperatures particles continuously overcome local
energy barriers and smoothly change their neighbours, cage-jump dynamics becomes
progressively more marked on lowering temperature, and is in fact clearly detectable in the
supercooled state.

In the past few years, algorithms to characterize cage-jump events have been success-
fully developed, focusing either on fluctuations in single-particle trajectories [9,14–16], or
on many-particles rearrangement [17–19], or on transitions in the energy landscape [20,21].
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The statistics obtained through these algorithms, such as cage-duration and jump-length
distributions, can then be used as input in simple models of glassy dynamics, like for
example the Continuous Time Random Walk (CTRW) model [22,23].

When dealing with cage-jumps, commonly measured quantities include the caging time
(or exchange time) tc, i.e., the time between two successive jumps, the persistence time tp, i.e.,
the time for a particle to perform the first jump (with respect to an arbitrarily chosen t = 0),
and the jump length ∆rJ , i.e., the distance between two successive cages. The averages of
these quantities identify the main time- and length-scales of the microscopic intermittent
dynamics [11].

The behaviour of such time- and length-scales helps to rationalize several aspects of
the macroscopic dynamics. For example, a successful application stands in the identification
of a microscopic counterpart of the so-called Stokes–Einstein Breakdown (SEB), which is a
common hallmark of many glass-formers [24–26]. In these materials, the two macroscopic
timescales for diffusion and structural relaxation, τD, and τα, respectively, clearly decouple
upon cooling, thus violating the celebrated Stokes–Einstein relation τα

τD
= const. This

behaviour is found to be mirrored on a microscopic ground by the decoupling of the two
fundamental cage-jump timescales, the average caging time 〈tc〉 and the persistence time
〈tp〉, as reported in a number of numerical studies [27–29].

For the sake of clarity, we specify that we here call “macroscopic” a quantity that can
be obtained from a bulk measurement, like the structural relaxation time and the diffusion
coefficient, which can be measured, for example, through scattering techniques. Conversely,
we call “microscopic” a quantity that can be only obtained by resolving the single-particle
dynamics (i.e., by recording single-particle trajectories). The latter is indeed the case for
cage-jump quantities, which are measured by segmenting single particle trajectories. From
an experimental perspective, this implies that our “microscopic quantities” are hardly
measured in molecular liquids. As a matter of fact, while single-particle motion can be
readily monitored in experiments on colloidal model-systems, simulations have long been
the only way to follow single-particle trajectories in molecular systems. Only recently,
important advances in the techniques of single-molecule imaging (e.g., single-molecule
fluorescence microscopy) may provide an alternative to simulations [30–35]: collecting a
sufficiently large number of sufficiently long-lasting trajectories, however, is still a limiting
factor in experiments [33]. For our specific purpose, for example, large ensembles of long
trajectories are necessary to fairly sample the tails of the tc and tp distributions, and to
reliably estimate their averages.

In this work, we perform a comparative study on the characteristic scales of the
microscopic cage-jump motion and of the macroscopic dynamics in a paradigmatic model
of a molecular glass-forming liquid. To this aim we investigate, via Molecular Dynamics
(MD) simulations, the popular Kob–Andersen Lennard–Jones binary mixture (KALJ) [3],
and identify cage-jumps trough application of an established algorithm [14]. Results point
to the existence of two regimes on progressive cooling. At relatively high temperature,
the decoupling between τD and τα (SEB) and between 〈tc〉 and 〈tp〉 is a modest one, and
predictions from Mode Coupling fits, CTRW and “lattice-glass” models [27,28,36] (also
known as Kinetically Constrained Models [37]), drawing on the identified CJs, seem
satisfactory. On further supercooling, by contrast, strong decouplings take place starting
from the same temperature, with the microscopic one being much steeper. In the same
low-temperature range, deviations from the aforementioned predictions become apparent.
Intriguingly, the crossover between the two regimes does not affect the temperature-
dependence of the average square jump length 〈∆r2

J 〉. Similarly, we find that a fully

microscopic relation among CJ time and length scales, 〈tp〉
〈tc〉 ∝ 〈∆r2

J 〉−1, recently reported
for other glass-formers [38], holds in good approximation throughout the investigated
temperature range.
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2. Materials and Methods
2.1. Simulations

To obtain the microscopic observables, we performed NVT molecular dynamics simu-
lations in LAMMPS [39] of a standard Kob–Andersen 80:20 (A:B) binary Lennard–Jones
mixture (KALJ) [3] in the range of temperature T = [0.445 : 0.6], and apply the cage-jump
algorithm described below. The simulated system is made by a total number N = 103

particles, at number density ρ = 1.1998, as in Ref. [40] (in the same work, it was checked
that the slight difference with the number density ρ = 1.204 originally used by Kob and
Andersen [41] has negligible effects on the dynamics). Particles of species i and j interact
via a Lennard–Jones potential with energy scale εij and length scale σij. All particles have
the same mass m. As commonly done in molecular dynamic simulations, units are reduced
so that σAA = εAA = m = kB = 1 (kB is the Boltzmann constant), which implies that the
time is expressed in unit of

√
m

εAA
σAA. Such molecular dynamic unit will be generically

indicated with the symbol mdu in the following figures. The other values of the parameters
are set as follows: εAB = 1.5; σAB = 0.8; εBB = 0.5; σBB = 0.88.

On the other hand, the relaxation and diffusive times plotted in this work are taken
from Ref. [40] and cover a wider range of temperatures, T = 0.39–0.7. These simulations
were performed using the recently introduced Parallel Tempering protocol, also know as
“swap” dynamics [42], which enables system equilibration down to very low temperatures
as compared to standard simulations.

All data presented in this work refer to A-type (small) particles in Kob–Andersen
mixture. At all considered temperatures, supercooled liquids are at equilibrium condition
and, therefore, above any reasonable definition of the glass transition temperature Tg.

2.2. Cage-Jump Algorithm and Microscopic Observables

The statistical features of the intermittent dynamics have been investigated using
the cage–jump algorithm introduced in Ref. [14]. We associate to each particle, at each
time t, the fluctuations S2(t) of its position computed over the interval [t− 10tb : t + 10tb],
with tb being the ballistic timescale. The trajectory of each particle is then segmented in
cages and jumps, considering a particle to be in a cage at time t if S2(t) is smaller than the
Debye–Waller factor u2(T), defined as in Ref. [43]. Otherwise, the particle is considered to
be jumping. This procedure gives access to the caging time tc, the persistence time tp and
the jump length ∆rj. Microscopic observables 〈tc〉, 〈tp〉 and 〈∆r2

j 〉 are then computed by
averaging over all segmented trajectories.

2.3. Macroscopic Observables

The structural relaxation time τα is obtained from the Intermediate Self Scattering
Function, defined as

Fs(q, t) =
1
N

N

∑
j
〈e−iq·[rj(∆t)−rj(0)]〉

where 〈·〉 denotes average performed over time origin, q is the probing wave-vector and
q = |q|. In particular, τα is defined as the time at which Fs(q∗, t) reaches an arbitrary
threshold of 1/e, with q∗ = 7.25 being the wave-vector corresponding to the first peak of
the static structure factor S(q) [44].

The diffusion timescale τD represents the average time for a particle to diffuse over

the length scale of its diameter. Precisely, it is defined as τD =
σ2

AA
6D , D being the diffusion

constant estimated from a linear fit 〈r2(t)〉 = 6Dt to the long-time Fickian regime of the
mean square displacement.

3. Results

We start our investigation by showing, in Figure 1a, the relevant timescales (both
microscopic and macroscopic) as a function of temperature T. As stated in Section 2, the



Int. J. Mol. Sci. 2022, 23, 3556 4 of 10

microscopic times, 〈tp〉 and 〈tc〉, are extracted through CJ algorithm from MD simulations
performed in the range T = 0.445–0.6; Macroscopic datasets, instead, are taken from a
work by Coslovich and coworkers [40], who explored an unprecedentedly broad range of
temperature, T = 0.39–0.7. The macroscopic timescales, τα and τD are defined from the self
scattering function Fs and the diffusion coefficient, respectively, (see Section 2).
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Figure 1. (a) Macroscopic (τα and τD) and microscopic (〈tp〉 and 〈tc〉) timescales as a function of
temperature. Dashed lines are MCT-like fits (T − TKA

c )−γ with TKA
c = 0.435, γ = 2.2 for τα and

γ = 2.0 for τD. Fitting parameters are taken from [3,44]. Green vertical solid line represents the
critical temperature TKA

c , red vertical dashed line marks T = 0.47. (b) Mean square jump length
〈∆r2

J 〉 as a function of temperature.

Figure 1a shows that τα is the most steeply growing timescale upon cooling, while 〈tc〉
is the least increasing one. In the figure, it should also be noticed that the range covered
by the macroscopic timescales extends well below the “effective” critical temperature of
dynamical arrest TKA

c = 0.435 estimated by Kob–Andersen [3] and confirmed in later
works (e.g., Ref. [45]). Such an effective temperature was obtained by means of fits to
the data inspired by Mode Coupling Theory (MCT), i.e., through power-laws of T− TKA

c
with sligthly different exponents for τα and τD. However, it is worth remarking that ideal
MCT would return a significantly higher critical temperature and a unique power-law
exponent for those two timescales. As a matter of fact, data in Figure 1a obey an MCT-like
trends (dashed lines) for temperatures higher than about T = 0.47; at lower temperatures,
instead, deviations from this behaviour are observed. Both timescales increase slower than
power-law prediction, with no hint to a finite temperature divergence, consistently with
other studies [46,47]. Below T = 0.47, τα remains lower but increases pretty faster than
τD, with the two timescales closely crossing at very low T. Thus, the present datasets of
macroscopic timescales include a crossover between two distinct temperature regimes.

Microscopic data actually cover a range of temperatures that entirely lies above TKA
c .

Yet, the investigated temperature range fully encompasses the just mentioned crossover
around T = 0.47. Indeed. CJ timescales data also show a signature of the same crossover:
〈tc〉 and 〈tp〉 closely coincide at “high” temperatures (they would exactly coincide in a stan-
dard Brownian motion), and sharply decouple at “low” temperatures. Such a decoupling
can be rationalized by considering that short waiting times, corresponding to the “fast”
particles performing many jumps in a short time interval, have a major impact on 〈tc〉, but
poorly affect 〈tp〉. Indeed, 〈tp〉 is obtained by averaging only over the waiting times before
the first jump of each particle, and is therefore more sensitive to the “slow” particles. We
notice that the decoupling between 〈tp〉 and 〈tc〉 resembles the decoupling between the
characteristic relaxation times of the late and early relaxation processes, also known as the
α and the β (or Johary–Goldstein) relaxations [1]. This, in turn, would suggest a connection
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between 〈tp〉 and τα and between 〈tc〉 and τβ. At a qualitative level, the connection between
τα and 〈tp〉 is ascribed to the fact that both times are controlled by the “last” particles
leaving their original cages [14,27,28,48]; this connection will be quantitatively tested here.
On the other hand, the link between 〈tc〉 and τβ is more elusive. As a matter of fact, the just
mentioned similarities between decouplings suggest that there is not a clear-cut separation
between the β-relaxation time (i.e., when particles start “feeling” the constraint of their
cages) and the total caging time of the fast particles.

Turning to the spatial feature of cage-jumps. in Figure 1b we report the mean square
jump length 〈∆r2

J 〉 as a function of temperature. 〈∆r2
J 〉 is found to decrease roughly linearly

by a factor 5 on lowering the temperature. For this quantity, then, there is no sign of
the crossover.

To analyze similarities and differences between microscopic and macroscopic timescales,

we start with a comparison of the temperature dependence of the two ratios τα
τD

and 〈tp〉
〈tc〉

(Figure 2). Both ratios, normalized here by their value at T = 0.6, show a modest increase
while in the high temperature regime, and a sharp growth below the crossover. However,

down to T = 0.445 (the lowest available temperature for microscopic timescales), 〈tp〉
〈tc〉

increases approximately by factor 6, whereas τα
τD

goes only up to 2. For the macroscopic
ratio to attain the six-fold increase of the microscopic ratio, it is necessary to go down
to temperature as small as T = 0.39 (the smallest available temperature even exploiting
“swap” dynamics [40]).
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1.6

1.8
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/τ

D
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Figure 2. (a) τα
τD

and 〈tp〉
〈tc〉 as a function of temperature. Ratios of microscopic and macroscopic

timescales have been divided by their own value at T = 0.6, which is the highest available temperature
for the CJ dataset. Red vertical line indicates T = 0.47 (b) Scatter plot of the macroscopic versus
microscopic timescales ratios, rescaled as in panel (a).

Thus, the decoupling of 〈tp〉 and 〈tc〉 is not only a proxy of macroscopic SEB, as
suggested elsewhere [27–29,38,48–51], but also a precursor of this phenomenon, being
already clearly detectable just below the crossover temperature.

To catch a further evidence of the crossover, we show in Figure 2b a scatter plot of
the two ratios in the temperature regime where both of them are available. Two regions
can be readily distinguished in the figure, corresponding in fact to the two aforementioned
temperature regimes. Below the crossover, the scatter plot apparently shows a linear
increase. High temperature data are still compatible with a linear increase, although with
a much larger slope. Of course, inferring a trend in the high-temperature regime is less
robust, just because the two ratios remain there always close to unity.

To further explore the connections between macroscopic and microscopic CJ dynamics,
and how those are affected by the crossover, we now test some predictions from CTRW and
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lattice models. We plot in Figure 3 τD vs. 〈tc〉
〈∆r2

J 〉
. In the high temperature regime, the trend

of the data is well captured by a linear fit (dashed line), which agrees with the prediction
τD ∝ 〈tc〉

〈∆r2
J 〉

of the standard CTRW model [23]. Of course, we have implicitly assumed that

tc and ∆rj, as measured with our CJ algorithm, play the role of the exchange time and the
step size in the CTRW model.

102 103 104

〈tc〉/〈∆r2J〉 [mdu]

102

103

104

τ D
[m

d
u
]

T = 0.47

Figure 3. Scatter plot of τD versus 〈tc〉
〈∆r2

J 〉
. Dashed black line represents a linear fit, corresponding to

the CTRW prediction.

Below the crossover temperature, i.e., for the highest points in the figure, deviations
from the CTRW prediction appear, with the measured τD increasingly exceeding the
theoretical values.

Passing to a comparison with lattice models, we notice that the temporal statistics of
jumps will play the role of the temporal statistics of lattice steps. On the other hand, the
variable ∆rJ cannot be considered at all, of course, since this quantity is “by construction” a
constant in lattice models. In spite of this, the comparison of our data with lattice models
confirms the emerging scenario. Both the predictions τD ∝ 〈tc〉 and τα ∝ 〈tp〉 [27,28,36],
tested in Figure 4a,b, respectively, are well obeyed in the high-temperature regime, while
significant deviations are observed below the crossover temperature. Also in this case, the
predictions underestimate the macroscopic timescales.

Finally, in Figure 5, we test an interesting result, recently obtained for different glass-

forming liquids [38], namely, the linear relation 〈tp〉
〈tc〉 ∝ 〈∆r2

J 〉−1, providing a connection
among the three CJ microscopic quantities. We do find that this fully microscopic relation
works very well also for the 3d KALJ liquid investigated here. Interestingly, the robustness
of this relation is not affected by the temperature crossover, except for minor deviations at
the very highest temperatures.
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Figure 4. Scatter plots of (a) τD versus 〈tc〉 and (b) τα versus 〈tp〉. Dashed black line represents a
linear fit, corresponding to the lattice-model predictions.
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Figure 5. Scatter plot of 〈tp〉
〈tc〉 versus 〈∆r2

j 〉−1. Solid line represents a linear fit.

4. Discussion

In this work, we made a comparative study of microscopic CJ motion and macroscopic
dynamics of a paradigmatic model of molecular glass-former, namely the 3d KALJ liquid.

The overall behaviour of time and length scales show the generic features expected
for glass-forming systems [16,28,29,48].

Both couples of macroscopic and microscopic timescales markedly separate upon cool-
ing, and especially do so below a crossover temperature T ' 0.47, which then discriminates
between two distinct regimes. Interestingly, such crossover temperature also coincides
with the onset of deviations from MCT-like behaviour. We find that, at variance with other
systems, in which the two ratios τα

τD
and 〈tp〉

〈tc〉 are linearly related on decreasing tempera-
ture [38], in the present case the microscopic ratio actually increases quite faster than the
macroscopic one when the low-temperature regime is entered. Hence, the decoupling of
the CJ timescales 〈tp〉 and 〈tc〉 in 3d KALJ liquid not only is a proxy of the macroscopic SEB,
but can also be seen as an “early-warning” (in temperature) of its occurrence. We further
find that, above the crossover temperature, CTRW and lattice-glass predictions relating
the macroscopic and microscopic scales fairly-well describe our data. By contrast, those
predictions are violated in the low-temperature regime. Such deviations may perhaps be
ascribed to the emergence of correlations between successive jumps of a particle (e.g., back
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and forward movements), as suggested elsewhere [50], which would be rich of implications.
For example, the identification of correlated jumps would prevent a direct mapping with
the steps of a CTRW. We may also notice here that the presence of anti-correlated jumps in
the statistics (a sort of “false positive event”) would obviously lead to an underestimate of
the average CJ times, which would explain the discrepancy shown in Figure 3.

Finally, we find a linear relation between 〈tp〉
〈tc〉 and 〈∆r2

j 〉−1, which suggests the existence
of a correlation between the fundamental length and time scales of CJ motion. Noticeably,
this feature appears also in other glass-forming liquids [38]. It is interesting to underline
that this fully microscopic relation seems to be unaffected by the crossover between the
the two temperature regimes. Similarly, the temperature dependence of the microscopic
length-scale 〈∆r2

J 〉 does not show any hint of the crossover.
As for perspectives, it would be interesting to elucidate the origin of the fully mi-

croscopic relation 〈tp〉
〈tc〉 ∝ 〈∆r2

j 〉−1, which at present is not understood on a theoretical
background. Other main outlooks include studying the relevance of jump correlations
occurring in the low temperature regime, and the possibility to define CTRW-like jumps
over a wider temperature range. Finally, we would like to emphasize that recent progresses
of single-molecules imaging may open the way to an experimental study of the cage-jump
motion in molecular supercooled liquids [30–35], provided that satisfactory trajectory en-
sembles could be collected. Such advanced experiments are, of course, on demand to
complement and validate the picture emerging from molecular dynamics simulations.
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