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A Novel Paradigm of enhancing  
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and Programmed Death Ligand-1 
Blockade Therapy
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Blockade of programmed death 1 (PD-1) protein and its ligand programmed death 
ligand 1 (PD-L1) has been used as cancer immunotherapy in recent years, with the 
blockade of PD-1 being more widely used than blockade of PD-L1. PD-1 and PD-L1 
blockade therapy showed benefits in patients with various types of cancer; however, 
such beneficial effects were seen only in a subgroup of patients. Improving the efficacy 
of PD-1 and PD-L1 blockade therapy is clearly needed. In this review, we summarize the 
recent studies on the effects of gut microbiota on PD-1 and PD-L1 blockade and dis-
cuss the new perspectives on improving efficacy of PD-1 and PD-L1 blockade therapy in 
cancer treatment through modulating gut microbiota. We also discuss the possibility that 
chronic infections or inflammation may impact on PD-1 and PD-L1 blockade therapy.

Keywords: gut microbiota, programmed death 1, programmed death ligand 1, cancer immunotherapy, efficacy

iNTRODUCTiON

The immune system uses various effector cells and molecules to control and eradicate infectious 
agents and cancer cells. Cytotoxic T cells (CTL) are the major effector cells in anti-tumor immune 
responses (1, 2). However, the functions of these effector cells are inhibited in the tumor microen-
vironment, which contributes to cancer cell immune evasion (3). In recent years, the blockade of 
immune checkpoint proteins and molecules that deliver inhibitory signals to activated T cells, have 
shown great promise in cancer treatment. However, the beneficial effects of these treatment strate-
gies were seen only in a subgroup of patients (4). In this review, we summarize the emerging evidence 
of improving immune checkpoint protein blockade therapy efficacy by modulating gut microbiota 
and discuss the possibility that chronic infections or inflammation may impact on programmed 
death 1 (PD-1) and programmed death ligand 1 (PD-L1) blockade therapy.

PD-1 AND iTS LiGANDS

Programmed death 1, also known as cluster of differentiation 279 (CD279), is a cell surface receptor 
that was discovered in 1992 (5). PD-L1 and PD-L2, the two molecules that interact with PD-1, were 
identified in the following years (6, 7). PD-L1 is also known as CD274 or B7 homolog 1 (B7-H1) and 
PD-L2 known as CD273 or B7-DC.

Programmed death 1 is expressed on T, B cells, and myeloid cells (8). PD-L1 is expressed by a variety 
of cells in the immune system and non-immune cells. However, the expression level of PD-L1 in nor-
mal human tissues is low; despite the presence of PD-L1 mRNA, PD-L1 protein is rarely detected on  
the cell surfaces in most of normal human tissues except for a subset of human tissue macrophages 
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FiGURe 1 | The role of programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) in tumor evasion and cancer immunotherapy. In the tumor 
microenvironment, T cells were activated after antigen-presenting cells recognized tumor neoantigens. The IFN-γ produced by activated T cells induced the 
expression of PD-1 ligands on cancer cells and immune cells. Afterward, the engagement of PD-1 by PD-L1 between T cells and antigen-presenting cells will  
lead to T cell dysfunction. PD-1/PD-L1 blockade using relevant antibodies can inhibit this process, therefore, offering a chance for T cells to continue being 
effectors. Abbreviations: TCR, T-cell receptor; MHC, major histocompatibility complex; IFN-γ, interferon gamma; IL-10, interleukin 10.
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(6, 9). PD-L2 is predominately expressed by antigen-presenting 
cells, such as dendritic cells (DCs) and macrophages (10–13). The 
expression of both PD-L1 and PD-L2 is regulated by cytokines, 
for example interferon (IFN)-γ greatly increases the expression of 
PD-L1 and several cytokines are able to induce the expression of 
PD-L2 in other immune cells and non-immune cells in addition 
to the DCs and macrophages (9–11, 14–16).

Programmed death 1 and its ligands are members of the 
immune checkpoint proteins delivering inhibitory signals to 
activated T cells. The interaction of PD-1 with PD-L1 or PD-L2 
leads to suppression of T cells, a regulatory mechanism to prevent 
overstimulation of immune responses and autoimmunity (6, 7, 
9, 16–21). However, such a mechanism is hijacked in the tumor 
microenvironment, providing opportunities for tumor cells to 
evade the attack from the immune system.

PD-1 AND PD-L1 BLOCKADe iN  
CANCeR iMMUNOTHeRAPY

In anti-tumor immune responses, the tumor antigens generated 
by gene mutations, are recognized by the immune system and 
specific CD8+ CTLs targeting tumor antigens are generated (22). 
These specific effector CTLs recognize the target tumor cells and 
induce tumor cell apoptosis.

However, tumor cells employ various strategies to escape the 
attack from the immune system, one of which is to resist the 
killing effects from the anti-tumor CTLs by increasing PD-L1 
expression in tumor tissues (9, 23, 24). Most normal human 
tissues do not express detectable PD-L1 on their cell surface, 
in contrast PD-L1 is abundantly expressed by tumor cells, the 
immune and non-immune cells in various tumor tissues (6, 9, 
25–30). IFN-γ released by the anti-tumor CTLs infiltrating into 
tumor tissues plays a major role in inducing the expression of 
PD-L1 (9–11, 14–16). Other cytokines, such as tumor necrosis 
factor (TNF) -α, interleukin (IL)-4, and IL-10 can also increase 
PD-L1 expression (31, 32).

The interaction of PD-L1 with PD-1 in the tumor microenvir-
o nment enables the tumor cells to resist the endogenous anti-tumor 
activities from the immune system. PD-L1 expressed in tumor 
tissues interacting with PD-1 expressed on the activated T cells 
leads to the dysfunction of the effector T cells, via multiple mecha-
nisms, such as promoting T cell apoptosis, anergy, and exhaustion  
(6, 7, 9, 16–21). More recently, it was found that interaction of 
PD-L1 with PD-1 expressed on tumor-associated macrophages 
inhibits the phagocytic potency of macrophages against tumor 
cells (33). The importance of PD-L1 and PD-1 interaction in 
tumor cell evasion has led scientists to explore the use of these 
molecules as therapeutic targets in cancer immunotherapy 
(Figure 1).
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Dong et  al. showed that PD-L1 positive human tumor cells 
induced apoptosis of co-cultured activated effector T cells and this 
effect was blocked by an anti-human PD-L1 monoclonal antibody 
(mAb). They also showed that the growth of PD-L1 positive murine 
tumors in syngeneic mice was suppressed by an anti-murine 
PD-L1 mAb (9). Other researchers later reported similar findings 
in examination of different types of cancer cells using mice mod-
els (24, 34–36). These important laboratory observations led to 
numerous clinical trials of using monoclonal antibodies targeting 
PD-1 or PD-L1 in cancer immunotherapy for a variety of cancers. 
In addition to affecting the immunological pathways, PD-L1 and 
PD-1 blockade may also work in part by disrupting autologous 
PD-1 and PD-L1 signaling within tumors (37, 38).

To date, the U.S. Food and Drug Administration (FDA) has 
approved the use of five monoclonal antibodies targeting PD-L1 
or PD-1 in cancer treatment. The details of the clinical trials of 
these five monoclonal antibodies are summarized in Table  1. 
Despite the clear benefits of PD-L1 and PD-1 blockade in treat-
ing some cancer patients, not all cases responded to treatment 
(Table 1). Given this, strategies to improve the efficacy of cancer 
immunotherapy are needed. Emerging evidence suggests that 
modulation of the gut microbiota is a promising approach.

MODULATiON OF GUT MiCROBiOTA 
eNHANCeS THe ANTi-TUMOR  
eFFiCACY OF PD-1 AND PD-L1 
BLOCKADe THeRAPY

A very interesting study by Sivan et al. provided strong evidence 
that the efficacy of PD-L1 blockage therapy can be improved 
by the modulation of gut microbiota (70). In this study, Sivan 
et al. examined the subcutaneous growth of B16.SIY melanoma 
in genetically similar C57BL/6 mice raised in the Jackson 
Laboratory (JAX) and Taconic Farms (TAC), and found that the 
tumor growth was more aggressive in TAC mice as compared 
to that in JAX mice and that TAC mice had a significantly lower 
intratumoral CD8+ T cell accumulation. They then conducted 
various experiments, which demonstrated that gut microbiota 
contributed to this difference.

They first showed that prophylactic transfer of fecal mate-
rial from JAX mice to TAC mice was sufficient to delay tumor 
growth. To examine whether microbial community alone was 
effective as a therapy, they administered fecal material from JAX 
mice alone or in combination with anti-PD-L1 mAbs to TAC 
mice. These experiments showed that fecal material alone was 
sufficient to significantly inhibit tumor growth and that the com-
bination treatment further improved tumor control. To identify 
the responsible bacterial species, they used 16S ribosomal RNA 
(16S rRNA) sequencing and identified Bifidobacterium species, 
particularly Bifidobacterium breve, Bifidobacterium longum, 
and Bifidobacterium adolescentis as the candidate species. The 
role of these Bifidobacterium species in enhancing protective 
immunity against tumors were further investigated by admin-
istering TAC mice bearing established tumors with a cocktail of 
Bifidobacterium species containing B. breve and B. longum by 
oral gavage. This experiment resulted in Bifidobacterium-treated 

mice having significantly improved tumor control as compared 
to mice that did not receive Bifidobacterium. Sivan et  al. also 
showed that the possible mechanisms by which Bifidobacterium 
species inhibited tumor growth were through activating DCs, 
which in turn, improves the effector function of tumor-specific 
CD8+ T  cells. Given that the enhanced anti-melanoma effect 
from Bifidobacterium species had occurred at the innate 
immunity level, the authors anticipated that Bifidobacterium 
species also provide anti-tumor beneficial effects to other types 
of tumors. However, the mechanisms by which Bifidobacterium 
species activated DCs improved the effects of anti-tumor CD8+ 
cells still need to be clarified.

The findings by Sivan et  al. using mice models suggest that 
it is possible to enhance the anti-tumor efficacy of PD-L1 
blockade therapy in treating cancer patients by modulating their 
gut microbiota and their findings are summarized in Figure 2. 
Interestingly, a very recent study by Matson et  al. examining 
the stool samples collected from patients with metastatic mela-
noma before anti-PD-1 immunotherapy found that B. longum, 
Collinsella aerofaciens, and Enterococcus faecium were more 
abundant in the anti-PD-1 immunotherapy responders, support-
ing the anti-tumor effects of Bifidobacterium species (71).

Several additional studies also compared the gut micro-
biota in patients with metastatic melanoma receiving anti-PD-1 
therapy. A recent study by Frankel et  al. using metagenomic 
shotgun sequencing method showed that melanoma patients 
who responded to immune checkpoint inhibitors were enriched 
with Bacteroides caccae (72). Furthermore, they showed that the 
bacteria that are enriched within responders are most likely to 
be antibody dependent. Patients who responded to nivolumab 
(PD-1 antibody) were enriched with Fecalibacterium prausnitzii, 
Bacteroides thetaiotamicron, and Holdemania filiformis, whereas 
patients who responded to pembrolizumab (another PD-1 
antibody), their gut microbiota enriched with Dorea formicogen-
erans. However, the mechanisms responsible for these changes 
are not clear. Studies comparing the gut microbiota changes 
prior to and following anti-PD-1 therapy of individual patients 
are required, which will provide information regarding whether 
anti-PD-1 antibodies directly affect gut bacterial species.

A study by Wargo et al. examined the human gut microbiota 
and metabolites of metastatic melanoma patients who received 
anti-PD-1 therapy using 16S rRNA and whole genome shotgun 
sequencing (73). They found that bacterial diversity and compo-
sition in patients that responded to the therapy were significantly 
different from that in patients who did not respond to the therapy. 
The responding patients had a higher diversity of bacteria and 
a higher abundance of Clostridiales, and the non-responders 
had a higher abundance of Bacteroidales. In a very recent study 
with multiple first authors and J. A. Wargo being the responding 
author, they further compared the gut microbiota of patients 
with metastatic melanoma receiving anti-PD-1 therapy (74). 
They found that patients who responded to anti-PD-1 therapy 
were associated with a significantly higher bacterial diversity and 
abundance of bacteria from the Ruminococcaceae family, which 
belongs to the Clostridiales order, as compared to patients who 
did not respond to the therapy. Furthermore, they performed 
fecal microbiota transplantation experiments in germ-free mice, 
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(Continued)

TABLe 1 | Five monoclonal antibodies targeting programmed death ligand-1 (PD-L1) or programmed death 1 (PD-1) were approved by the U.S. Food and Drug Association to treat cancer.

Commercial name 
(active ingredient)

Target Treatment  
of disease

Targeting patients Clinical cases Clinical phase Overall response  
rate (95% Ci)

Objective response 
rate (95% Ci)

Clinical study (clinical trial iD) Reference

Bavencio (Avelumab) PD-L1 Metastatic 
MCC

Metastatic MCC patients whose 
disease had progressed on or after 
chemotherapy administered

88 Phase 2 33% (23.3%, 43.8%) Not applicable JAVELIN Merkel 200 Trial (NCT02155647) (39, 40)

Tecentriq 
(Atezolizumab)

PD-L1 Advanced or 
metastatic 
urothelial 
carcinoma

Cisplatin-ineligible patients with 
locally advanced or metastatic 
urothelial carcinoma

119 Phase 2 23.5% (16.2%, 
32.2%)

Not applicable IMvigor210 (NCT02951767) (41)

Previously treated patients with 
locally advanced or metastatic 
urothelial carcinoma

310 Phase 2 14.8% (11.1%, 
19.3%)

Not applicable IMvigor210 (NCT02951767) (41)

Metastatic 
NSCLC

Previously treated patients  
with metastatic non-small  
cell lung cancer

22 Phase 2 Not applicable 15% (10%, 22%) POPLAR (NCT01903993) (42)

Imfinzi (Durvalumab) PD-L1 Locally 
advanced or 
metastatic 
urothelial 
carcinoma

Patients with locally advanced or 
metastatic urothelial carcinoma 
in total

182 Phase 1 and 2 Not applicable 17.0% (11.9%, 23.3%) Study 1108 (NCT01693562) (43–45)

Patients with locally advanced or 
metastatic urothelial carcinoma  
who showed high PD-L1  
expression on tumor cells

95 Phase 1 and 2 Not applicable 26.3% (17.8%, 36.4%) Study 1108 (NCT01693562) (43–45)

Patients with locally advanced or 
metastatic urothelial carcinoma 
who showed low or non-PD-L1 
expression on tumor cells

73 Phase 1 and 2 Not applicable 4.1% (0.9%, 11.5%) Study 1108 (NCT01693562) (43–45)

Keytruda 
(Pembrolizumab)

PD-1 Melanoma Patients with Ipilimumab-Naïve 
melanoma (receive KEYTRUDA 
at a dose of 10 mg/Kg every 
3 weeks)

277 Phase 3 33% (27%, 39%) Not applicable KEYNOTE-006 (NCT01866319) (46, 47)

Patients with Ipilimumab-Naïve 
melanoma (receive KEYTRUDA 
at a dose of 10 mg/Kg every 
2 weeks)

279 Phase 3 34% (28%, 40%) Not applicable KEYNOTE-006 (NCT01866319) (46, 47)

Patients with Ipilimumab-refractory 
melanoma (receive KEYTRUDA at 
a dose of 2 mg/Kg every 3 weeks)

180 Phase 2 Not applicable 21% (15%, 28%) KEYNOTE-002 (NCT01704287) (48)

Patients with Ipilimumab-refractory 
melanoma (receive KEYTRUDA 
at a dose of 10 mg/Kg every 
3 weeks)

181 Phase 2 Not applicable 25% (19%, 32%) KEYNOTE-002 (NCT01704287) (48)
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TABLe 1 | Continued

Commercial name 
(active ingredient)

Target Treatment  
of disease

Targeting patients Clinical cases Clinical phase Overall response  
rate (95% Ci)

Objective response 
rate (95% Ci)

Clinical study (clinical trial iD) Reference

NSCLC Metastatic NSCLC patients with 
first-line treatment with a single 
agent

154 Phase 3 Not applicable 45% (37%, 53%) KEYNOTE-024 (NCT02142738) (49)

Metastatic NSCLC patients with 
first-line treatment in combination 
with pemetrexed and carboplatin

60 Phase 1 and 2 55% (42%, 68%) Not applicable KEYNOTE-021 (NCT02039674) (50)

Previously treated NSCLC patients 
(all randomized patients who 
receive KEYTRUDA at a dose of 
2 mg/Kg every 3 weeks)

344 Phase 2 and 3 Not applicable 18% (14%, 23%) KEYNOTE-010 (NCT01905657) (51)

Previously treated NSCLC patients 
(all randomized patients who 
receive KEYTRUDA at a dose of 
10 mg/Kg every 3 weeks)

346 Phase 2 and 3 Not applicable 19% (15%, 23%) KEYNOTE-010 (NCT01905657) (51)

HNSCC HNSCC patients whose disease 
had progressed on or after 
chemotherapy administered

174 Phase 1 16% (11%, 22%) Not applicable KEYNOTE-012 (NCT01848834) (52)

Urothelial 
Carcinoma

Cisplatin-ineligible patients with 
urothelial carcinoma

370 Phase 2 Not applicable 29% (24%, 34%) KEYNOTE-052 (NCT02335424) (53)

Previously treated urothelial 
carcinoma patients

270 Phase 3 Not applicable 21% (16%, 27%) KEYNOTE-045 (NCT02256436) (54)

cHL Patients with cHL 210 Phase 2 69% (62%, 75%) Not applicable KEYNOTE-087 (NCT02453594) (55, 56)

MSI-H Patients with MSI-H or mismatch 
repair deficient (dMMR)

149 Phase 1
Phase 2
Phase 1
Phase 2
Phase 2

Not applicable 39.6% (31.7%, 47.9%) KEYNOTE-012 (NCT01848834)
KEYNOTE-016 (NCT01876511)
KEYNOTE-028 (NCT02054806)
KEYNOTE-158 (NCT02628067)
KEYNOTE-164 (NCT02460198)

(52, 57–59)

(Continued)
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Commercial name 
(active ingredient)

Target Treatment  
of disease

Targeting patients Clinical cases Clinical phase Overall response  
rate (95% Ci)

Objective response 
rate (95% Ci)

Clinical study (clinical trial iD) Reference

Opdivo (Nivolumab) PD-1 Unresectable 
or metastatic 
melanoma

Previously treated patients with 
unresectable or metastatic 
melanoma in the treatment of 
OPDIVO

316 Phase 3 Not applicable 40% (34%, 46%) CheckMate-067 (NCT01844505) (60, 61)

Previously treated patients with 
unresectable or metastatic 
melanoma in the treatment of 
OPDIVO plus Ipilimumab (anti-
CTLA4 antibody)

314 Phase 3 Not applicable 50% (44%, 55%) CheckMate-067 (NCT01844505) (60, 61)

Metastatic 
NSCLC

NSCLC patients who had 
experienced disease progressed 
during or after one prior platinum 
doublet-based chemotherapy 
regimen

272 Phase 3 Not applicable 20% (14%, 28%) CheckMate-017 (NCT01642004) (62)

 Patients with metastatic non-
squamous NSCLC who had 
experienced disease progressed 
during or after one prior platinum 
doublet-based chemotherapy 
regimen

292 Phase 3 Not applicable 19% (15%, 24%) CheckMate-057 (NCT01673867) (63)

Renal cell 
carcinoma

Patients with advanced RCC 
who had experienced disease 
progressed during or after one or 
two prior anti-angiogenic therapy 
regimes

410 Phase 3 Not applicable 21.5% (17.6%, 25.8%) CheckMate-025 (NCT01668784) (64, 65)

cHL Adult patients with cHL 258 Phase 2 Not applicable 69% (63%, 75%) CheckMate-205 (NCT02181738) (66, 67)

Phase 1 CA209-039 (NCT01592370)

Recurrent or 
metastatic 
SCCHN

Patients with metastatic or 
recurrent SCCHN

240 Phase 3 Not applicable 13.3% (9.3%, 18.3%) CheckMate-141 (NCT02105636) (68, 69)

Five monoclonal PD-L1 or PD-1 antibodies granted after May 2017 by FDA for cancer treatments were not included in the table.
MCC, metastatic Merkel cell carcinoma; NSCLC, non-small cell lung cancer; HNSCC, head and neck squamous cell cancer; cHL, classical Hodgkin lymphoma; MSI-H, microsatellite instability-high cancer; dMMR, mismatch repair 
deficient; SCCHN, recurrent or metastatic squamous cell carcinoma of the head and neck.

TABLe 1 | Continued
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FiGURe 2 | Discovery and validation of the therapeutic significance of commensal microbiota by facilitating anti-programmed death ligand-1 (PD-L1) efficacy.  
(A) Two genetically similar mice, JAX and TAC, differing in commensal microbes carried were cohoused, while another pair was housed separately. Cohousing 
resulted in the TAC mice obtaining the JAX microbial phenotype, with reduced tumor growth as compared to the TAC mice housed separately. JAX mice had no 
differences in tumor size when cohoused with TAC mice compared to separate housing. This suggests that JAX mice are colonized by commensal microbes that 
facilitate anti-tumor immunity. (B) TAC mice were treated with PD-L1 mAb, JAX mice fecal material, both the PD-L1 mAb and JAX mice fecal material or not treated. 
Administration of JAX fecal material alone resulted in slower tumor growth to the same degree as treatment with PD-L1 mAb. Combination treatment with both  
the PD-L1 mAb and JAX fecal material showed the slowest tumor growth, indicating that commensal microbes play a therapeutic role in anti-tumor immunity. Data 
were adapted from Sivan et al (38). Further findings in this study have demonstrated that Bifidobacterium is the responsible bacterial species that contributes to 
improving the efficacy of PD-L1 blockade therapy.
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in which they showed that germ-free mice transplanted with 
stool samples from patients who responded to anti-PD-1 and 
anti-PD-L1 therapy had a significantly reduced tumor growth 
and improved responses to anti-PD-1 and anti-PD-L1 therapy, 
coupled with a higher density of CD8+ T cells. However, it is not 
clear which bacterial species in the Ruminococcaceae family has 
played the role in enhancing the PD-1 blockade therapy.

Another recent study by Routy et al. investigated the effects of 
gut microbiota in PD-1 blockade therapy (75). In their study, data 
from 140 patients with advanced non-small-cell-lung cancer, 67 
patients with renal cell carcinoma, and 42 patients with urothelial 
carcinoma were collected, and they found that 69 patients who 
took antibiotics before or soon after starting the PD-1 blockade 
therapy had shorter progression-free survival and overall sur-
vival. They then explored the composition of the gut microbiota 
using shotgun sequencing, which showed that Akkermansia 
muciniphila was enriched in patients who responded to anti-
PD-1 therapy. This suggests that A. muciniphila may enhance 
patient response to PD-1 blockade therapy. They verified this 
observation by transplanting the patients stool samples in spe-
cific pathogen-free mice or germ-free mice and observed tumor 
growth in these mice. They also found that A. muciniphila alone 

was able to restore the anti-tumor effects of PD-1 blockade that 
was inhibited by antibiotics. However, the mechanism by which 
A. muciniphila enhancing PD-1 blockade therapy is not known.

Bacterial species that are positively associated with PD-1 
and PD-L1 blockade therapy are summarized in Table 2. Some 
bacterial species have also been demonstrated to affect CTLA-4 
blockade immunotherapy, which were not reviewed here (76, 77).

POTeNTiAL MeCHANiSMS OF GUT 
MiCROBeS ON iMPROviNG THe 
eFFiCACY OF PD-1 AND PD-L1 
BLOCKADe THeRAPY

Despite the exciting findings in this research field, the underly-
ing molecular mechanisms by which the identified gut bacterial 
species in the above studies enhance PD-1 and PD-L1 blockade 
therapy remain largely unknown.

Recently, unmethylated CpG oligodeoxynucleotides, which 
are abundant in bacterial DNA, were found to enhance CD8+ 
T cell anti-tumor immunity by downregulating PD-1 expression 
via the IL-12 pathway, suggesting that gut bacterial species that 
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TABLe 2 | Bacterial species that are positively associated with programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) blockade therapy.

Bacteria Model Methods Main findings Reference

Bifidobacterium breve, Bifidobacterium longum,  
Bifidobacterium adolescentis

Mouse Fecal transplantation
Microbial DNA analysis
Bacterial administration
Cell sorting
Gene expression profiling

• Some Bifidobacterium species enhanced the efficacy of anti-PD-L1 therapy in vivo (70)

Fecalibacterium prausnitzii, Bacteroides t 
hetaiotamicron, Holdemania filiformis,  
Dorea formicogenerans

Human Metagenomic shotgun sequencing
Gut metabolomic profiling

• Melanoma patients who responded to nivolumab (PD-1 antibody) were enriched  
with F. prausnitzii, B. thetaiotamicron, and H. filiformis

• Melanoma patients who responded to pembrolizumab (another PD-1 antibody),  
their gut microbiota enriched with D. formicogenerans

(72)

Clostridiales Human 16S rRNA gene sequencing
Whole genome shotgun sequencing
Immunohistochemistry
Flow cytometry
Cytokines assay
Gene expression profiling

• Melanoma patients who responded to anti-PD-1 therapy had a higher  
diversity of bacteria and a higher abundance of Clostridiales

(73)

Ruminococcaceaea Mouse
Human

16S rRNA gene sequencing
Whole genome shotgun sequencing
Immunohistochemistry
Flow cytometry
Cytokines assay
Gene expression profiling
Fecal microbiota transplantation

• Melanoma patients who responded to anti-PD-1 therapy had a higher  
diversity of bacteria and a higher abundance of Ruminococcaceae

• Germ-free mice transplanted with stool samples from patients responded to  
anti-PD-1 and anti-PD-L1 therapy had a significantly reduced tumor growth  
and improved responses to anti-PD-1 and anti-PD-L1 therapy coupled  
with higher density of CD8+ T cells in tumor

(74)

Akkermansia muciniphila Mouse
Human

Metagenomic shotgun sequencing
Fecal microbiota transplantation
Immunohistochemistry
Flow cytometry
Cytokines assay

• 27% cancer patientsb who took antibiotics before or soon after starting  
the PD-1 blockade therapy had shorter progression-free survival and overall survival

• A. muciniphila was found enriched in those patients who respond to anti-PD-1 therapy
• A. muciniphila alone was able to restore the anti-tumor effects of PD-1 blockade  

that was inhibited by antibiotics.

(75)

B. longum, Collinsella aerofaciens, Enterococcus  
faecium

Mouse
Human

16S rRNA gene sequencing
Metagenomic shotgun sequencing
Species-specific quantitative PCR
Immunohistochemistry
Fecal transplantation

• Melanoma patients who responded to anti-PD-1 therapy had a higher abundance  
of B. longum, C. aerofaciens, and E. faecium

• Germ-free mice transplanted with fecal material from responding patients could  
lead to improved tumor control, augmented T cell responses, and greater efficacy  
of anti-PD-L1 therapy

(71)

aBacteria of Ruminococcaceae family belongs to the Clostridiales order.
bPatients here include patients with advanced non-small-cell-lung cancer, renal cell carcinoma, and urothelial carcinoma.
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TABLe 3 | Suggested future directions.

Modulation of gut microbiota

Explore the mechanisms 
of the anti-tumor effects 

of Bifidobacterium
species 

Identify the gut bacteria 
that are positively 

associated with PD-1 
and PD-L1 blockade 
therapy in humans at 

species and strain level 
and understand their 

anti-tumor mechanisms

Examine the impact of 
chronic inflammation 
on PD-1 and PD-L1 

blockade therapy and 
develop treatment 

strategies accordingly

Enhance the efficacy of PD-1 and PD-L1 blockade therapy
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are positively associated with PD-1 and PD-L1 blockade therapy 
may release components that directly downregulate PD-1 or 
PD-L1 expression (78, 79).

It is also possible that the gut bacterial species indirectly affect 
PD-1 and PD-L1 expression through locally or systematically 
regulating immune responses, thereby affecting the efficacy of 
PD-1 and PD-L1 blockade therapy. Gut microbiota has been 
shown to impact on both innate and adaptive immune cells. 
Germ-free animals had a reduced number of intestinal DCs and 
administration of Escherichia coli in these animals was able to 
recruit sufficient DCs to the intestines (80, 81). In Germ-free 
pigs, systemic circulating macrophages were also reduced and 
their functions were compromised (82). Germ-free mice had 
markedly decreased presence of lamina propria CD4+ T cells and 
absence of lymphocyte zones in spleens and mesenteric lymph 
nodes (83, 84). Polysaccharide A from Bacteroides fragilis was 
found to induce the Th1 response (83). Reduction of commensal 
microbiota in mice by using broad-spectrum antibiotics resulted 
in defective T and B  cell responses against influenza infection 
(85). The findings that gut microbes can affect the immune 
functions, both locally and systematically suggest that bacterial 
species positively associated with PD-1 and PD-L1 blockade 
may enhance PD-1 and PD-L1 immunotherapy through regula-
tion of the immune response. The previous study by Sivan et al. 
showed that Bifidobacterium species that inhibited tumor growth 
activated DCs, further supporting this view (70).

THe POSSiBLe iMPACT OF CHRONiC 
iNFeCTiONS AND iNFLAMMATiON ON 
PD-1 AND PD-L1 BLOCKADe THeRAPY

Several microbes cause chronic infections in humans, some of 
which are known to increase host PD-1 and PD-L1 expression 
(86–94). However, studies have not examined whether existing 
chronic infections in patients with cancer affect the efficacy of 
PD-1 and PD-L1 blockade therapy.

An example of a chronic infection is Helicobacter pylori  
infection. H. pylori are a Gram-negative bacterium that colonizes 
the stomach of more than 50% of the world population. While 
most of the individuals colonized with H. pylori are asymptomatic, 
some may develop chronic gastritis and peptic ulcers, and H. pylori  
colonization is also a risk factor for gastric cancer (95). Previous 
studies have shown that patients with H. pylori infection have a 
significantly higher level of pro-inflammatory cytokines, such as 
TNF-α (96–98). Das et  al. showed that H. pylori increased the 
gastric epithelial expression of PD-L1 using a gastric epithelial 
cell line model (86). Furthermore, they showed that gastric 
epithelial cells exposed to H. pylori inhibited the proliferation of 
CD4+ T cells isolated from blood and the inhibitory effect can  
be blocked using antibodies PD-L1. Similarly, Wu et al. observed 
increased PD-L1 expression in gastric biopsies of individuals 
infected with H. pylori, and co-culture of H. pylori infected 
primary gastric epithelial cells with T cells isolated from blood 
induced T cell apoptosis (87). These results suggest that H. pylori 
infection may cause the non-specific inhibition of circulating 
T cells, including tumor-specific T cells. In addition to H. pylori, 
several viruses, such as the hepatitis B virus, hepatitis C virus, 
human papillomavirus, and Epstein–Barr virus are also able 
to establish chronic infections in humans and increase host 
PD-1 or PD-L1 expression (88–94). Future studies are needed 
to examine whether chronic infections or inflammation impact 
on the efficacy of PD-1 and PD-L1 blockade. A recent study by 
Kottke et al. using a mouse model showed that pro-inflammatory 
cytokine TNF-α promoted tumor recurrence, while TNF-α 
blockade prevented tumor recurrence (99–102). Some bacterial 
species that are known to reduce chronic inflammation after 
administration orally may be examined to see whether they can 
improve cancer treatment (103–108). If chronic infections or 
inflammation reduce the efficacy of PD-1 and PD-L1 blockade, 
it would be through mechanisms other than the induction of the 
PD-1 and PD-L1 expression in the tumor tissues, as previous 
studies observed better responses to PD-1 blockade in patients 
with higher expression of PD-L1 in tumor tissues (51).
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FUTURe DiReCTiONS

As discussed, despite the clear benefits of PD-1 and PD-L1 block-
ade in treating some cancer patients, the efficacy and the recur-
rence of tumor are issues that remain to be tackled. Emerging 
evidence suggests that modulation of the gut microbiota is a 
promising approach for improving PD-L1 and PD-1 blockade 
therapy. However, future studies are needed to further develop 
this research area.

The Bifidobacterium species, particularly B. longum, increased 
anti-PD-L1 efficacy in mice models and was positively associated 
with anti-PD-1 efficacy in metastatic melanoma patients. Future 
studies are needed to understand the molecular mechanisms of 
these Bifidobacterium species in enhancing PD-1 and PD-L1 
blockade therapy. In addition to the Bifidobacterium species, vari-
ous studies reported positive associations of gut microbes with 
PD-1 and PD-L1 blockade therapy at genus level. These microbes 
need to be identified at species and strain level and their potential 
anti-tumor mechanisms require further investigation.

Several bacterial and viral pathogens are known to cause 
chronic human infections and the pro-inflammatory cytokines 
are known to induce host PD-1 and PD-L1 expression. In 
addition, some of these pathogens are known to directly attach 

immune cells. Whether chronic infections caused by different  
pathogens impact on PD-1 and PD-L1 blockade therapy should 
be investigated, and appropriate strategies to enhance PD-1 
and PD-L1 blockade therapy in these patients can then be 
developed accordingly. A suggested course of action is outlined 
in Table 3.
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