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Abstract: Neuroinflammation is characterized by the elevated expression of various inflammatory
proteins, including matrix metalloproteinases (MMPs), induced by various pro-inflammatory
mediators, which play a critical role in neurodegenerative disorders. Interleukin-1β (IL-1β) has
been shown to induce the upregulation of MMP-9 through nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX)-reactive oxygen species (ROS)-dependent signaling pathways.
N-(2-cyano-3,12-dioxo-28-noroleana-1,9(11)-dien-17-yl)-2-2-difluoropropanamide (RTA 408), a novel
synthetic triterpenoid, has been shown to possess anti-oxidant and anti-inflammatory properties in
various types of cells. Here, we evaluated the effects of RTA 408 on IL-1β-induced inflammatory
responses by suppressing MMP-9 expression in a rat brain astrocyte (RBA-1) line. IL-1β-induced
MMP-9 protein and mRNA expression, and promoter activity were attenuated by RTA 408.
The increased level of ROS generation in RBA-1 cells exposed to IL-1β was attenuated by RTA
408, as determined by using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) and CellROX.
In addition, the inhibitory effects of RTA 408 on MMP-9 expression resulted from the suppression of
the IL-1β-stimulated activation of Pyk2 (proline-rich tyrosine kinase), platelet-derived growth factor
receptor β (PDGFRβ), Akt, ROS, and mitogen-activated protein kinases (MAPKs). Pretreatment
with RTA 408 attenuated the IL-1β-induced c-Jun phosphorylation, mRNA expression, and promoter
activity. IL-1β-stimulated nuclear factor-κB (NF-κB) p65 phosphorylation, translocation, and
promoter activity were also attenuated by RTA 408. Furthermore, IL-1β-induced glial fibrillary
acidic protein (GFAP) protein and mRNA expression, and cell migration were attenuated by
pretreatment with RTA 408. These results provide new insights into the mechanisms by which
RTA 408 attenuates IL-1β-mediated inflammatory responses and exerts beneficial effects for the
management of brain diseases.
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1. Introduction

Neuroinflammatory processes are involved in the pathogenesis of neurodegenerative diseases,
such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease, amyotrophic lateral
sclerosis, and progressive supranuclear palsy [1]. In several animal models of neurodegenerative
diseases and in human studies, cytokines and chemokines have been verified as risk factors [2,3]. Among
these cytokine responses, the pro-inflammatory cytokine interleukin-1 (IL-1) plays a key role in the
pathology of neurodegeneration [4]. In particular, IL-1β has important homeostatic functions in healthy
organisms, such as in the regulation of feeding, sleep, and temperature [5]. However, the overproduction
of IL-1β has been implicated in the pathophysiological changes that occur during different disease
states, such as rheumatoid arthritis, vascular disease, multiple sclerosis, AD, and PD [3]. In the
central nervous system (CNS), IL-1β can be released from various types of cells, including Schwann
cells, microglia, and astrocytes [6,7]. Upon binding to IL-1 receptors, IL-1β activates the sequential
phosphorylation of protein kinases, such as platelet-derived growth factor receptor (PDGFR), Pyk2, c-Src,
phosphoinositide 3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs), and nuclear
factor κB (NF-κB) signaling, which leads to the expression of various target genes by transcriptional and
posttranscriptional mechanisms [8,9]. Astrocytes are specialized glial cells that play many important
roles in the CNS, such as nourishing neurons, regulating the homeostasis of the extracellular space,
regulating the metabolism of neurons, modulating synaptic signaling, and integrating the blood-brain
barrier (BBB). Astrocytes can also promote the survival of neurons and other glia by releasing
neurotrophic and gliotrophic factors. However, in contrast, they can release inflammatory mediators,
such as tumor necrosis factor (TNF)-α, IL-1β, and matrix metalloproteinases (MMPs), involved in the
pathological processes of brain insults [6,10]. The upregulation of MMP-9, in particular, participates
in the pathogenesis of BBB breakdown, demyelination, inflammation, and neurotoxicity [11–13].
Furthermore, IL-1β-mediated inflammatory responses have been shown to induce the expression and
activation of MMP-9 via c-Src, PDGFR, PI3K/Akt, Nox2/ROS, and the MAPKs-dependent activation
of NF-κB and activator protein 1 (AP-1) [9,14], thus contributing to neuronal degeneration [15].
Reactive oxygen species (ROS) generation is also involved in MMP-9 induction in various types of
cells [9,16]. Therefore, the development of anti-oxidant and anti-inflammatory drugs targeting these
intracellular signaling pathways to attenuate MMP-9 expression may be beneficial for the management
of neurodegenerative disorders.

Reactive gliosis is characterized by the formation of glial cell soma and the accumulation and
activation of enlarged glial cells, notably astrocytes and microglia [17,18]. In the pathological processes
of brain inflammation, activated glia harm neuron through creating neurotoxic factors such as glutamate,
S100B, TNFα, prostaglandins, ROS, and reactive nitrogen species [19]. These inflammatory mediators
provoke adjacent cells, including astrocytes and endothelial cells, amplifying inflammation through a
vicious cycle of the autocrine and paracrine and leading to neuronal damage and diseases. Although the
exact mechanisms of these inflammatory responses induced by reactive gliosis in disease progression
are still poorly understood, reactive gliosis may also be a potential target to prevent the progression of
neurodegenerative disorders.

Herbal medicines are well known as complementary and alternative agents that provide new
therapeutic strategies for the management of neurodegenerative diseases. Among herbal medicines,
oleanolic acid is a naturally occurring pentacyclic triterpenoid related to betulinic acid [20]. During
the last decade, different triterpenoid compounds that display beneficial therapeutic effects on
various disease conditions have been isolated from various plants and herbs [21]. In particular,
RTA 408, a synthetic triterpenoid compound, binds to Keap1, which attenuates the degradation
of Nrf2 and suppresses the generation of NO and pro-inflammatory cytokines in macrophages
stimulated by IFN-γ [22]. In addition, RTA 408 exerts anti-inflammatory effects by inhibiting
the pro-inflammatory transcription factor NF-κB and increasing the expression of Nrf2-targeted
genes, including NQO1, TXNRD1, and GCLC [22–25]. The anti-inflammatory activity of RTA 408
has also been demonstrated in models of radiation-induced dermatitis [24–26], chronic diabetic
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wounds [27], renal ischemia-reperfusion injury [28], epilepsy [29], and in tumor cell lines [22].
However, whether RTA 408 exerts anti-inflammatory effects via suppressing IL-1β-induced MMP-9
expression in neuroinflammatory disorders is still unknown. Therefore, experiments were conducted
to investigate the effects of RTA 408 on cell migration, astrogliosis, and the signaling pathways
involved in MMP-9 expression induced by IL-1β in RBA-1 cells. Our results demonstrate that RTA 408
attenuates IL-1β-induced MMP-9 expression and cell migration via the suppression of Pyk2, PDGFRβ,
PI3K/Akt, ROS, MAPKs, c-Jun, and NF-κB signaling components in RBA-1 cells. The anti-inflammatory
effects of RTA 408 may provide an effective intervention to protect against neurodegeneration and
neuroinflammation in brain diseases.

2. Results

2.1. RTA 408 Attenuates IL-1β-Induced MMP-9 Expression

We explored whether RTA 408 inhibits IL-1β-induced MMP-9 expression. As shown in Figure 1A,
IL-1β-induced MMP-9 activity was attenuated by pretreatment with RTA 408 within 16–24 h, as
determined by gelatin zymography. To determine whether the level of transcriptional activity was
involved in the inhibitory effects of RTA 408 on IL-1β-induced MMP-9 expression, the levels of MMP-9
mRNA expression and promoter activity were measured by real-time PCR and a promoter activity
assay, respectively. We found that pretreatment with RTA 408 attenuated IL-1β-induced MMP-9 mRNA
expression (Figure 1B) and promoter activity (Figure 1C). These results suggest that RTA 408 indeed
blocks IL-1β-induced MMP-9 expression at the transcriptional level in RBA-1 cells.
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incubated with IL-1β (0.5 ng/mL) for the indicated time intervals (4 and 6 h). The promoter activity of 
MMP-9 was determined by promoter reporter assay kit. Data are expressed as the mean ±  standard 
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Figure 1. RTA 408 attenuates proMMP-9 expression induced by IL-1β. (A) Cells were pretreated with
RTA 408 (0.3, and 0.5 µM) for 1 h, and then exposed to IL-1β (0.5 ng/mL) for the indicated time intervals
(8, 16, and 24 h). The MMP-9 level was determined by gelatin zymography. The β-actin level of cell
lysates was assayed by western blot. (B) Cells were incubated with RTA 408 (0.3, and 0.5 µM) for 1 h,
and then incubated with IL-1β (0.5 ng/mL) for 6 h. The mRNA levels of MMP-9 were determined by
real-time RT-PCR. (C) Cells were incubated with RTA 408 (0.3 µM) for 1 h, and then incubated with
IL-1β (0.5 ng/mL) for the indicated time intervals (4 and 6 h). The promoter activity of MMP-9 was
determined by promoter reporter assay kit. Data are expressed as the mean ± standard error of the
mean (SEM; n = 3). * p < 0.05; # p < 0.01, as compared with the cells stimulated with IL-1β only or
compared between the indicated groups. The figure represents one of three individual experiments.

2.2. RTA 408 Inhibits IL-1β-Stimulated Phosphorylation of Pyk2/PDGFR/Akt in RBA-1 Cells

Nonreceptor tyrosine kinases such as Pyk2 are involved in several cellular functions evoked by
various stimuli [30,31]. They are involved in regulatory mechanisms critical to various physiological
processes, including cell growth, differentiation, metabolism, cell cycle regulation, and cytoskeleton
function. Here, we investigated whether RTA 408 blocks Pyk2 phosphorylation leading to reduction in
MMP-9 expression induced by IL-1β. RBA-1 cells were pre-incubated with RTA 408 for 1 h and then
exposed to IL-1β for the indicated time intervals. As shown in Figure 2A, IL-1β time-dependently
stimulated the phosphorylation of Pyk2, with a maximal response within 10–30 min, and this effect
was attenuated by pretreatment with RTA 408.
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In addition, receptor tyrosine kinases such as epidermal growth factor receptor (EGFR) and
platelet-derived growth factor receptor (PDGFR) are activated either by interactions with their ligands
or through a ligand-independent transactivation process [32]. PDGFs and their receptors have been
intensely investigated and play pivotal roles in normal development and pathologies of human
diseases [33]. Our previous study revealed that PDGFR is involved in IL-1β-mediated responses [9].
Thus, we clarified whether RTA 408 attenuates IL-1β-induced MMP-9 expression via blocking PDGFR
phosphorylation. We found that IL-1β stimulated the phosphorylation of PDGFRβ in a time-dependent
manner and reached a maximal response within 10–30 min. This effect was attenuated by pretreatment
with RTA 408 (Figure 2B).

Akt is a common downstream target of PDGFR and plays an important role in various cellular
functions, including metabolism, proliferation, survival, growth, angiogenesis, migration, and
invasion [34]. Akt has been shown to be involved in IL-1β-mediated responses [35]. Thus, we
investigated whether RTA 408 interferes with Akt and blocks IL-1β-mediated responses. As shown
in Figure 2C, IL-1β stimulated the phosphorylation of Akt in a time-dependent manner and reached
a maximal response within 10–30 min. This effect was attenuated by pretreatment with RTA 408.
These results suggest that RTA 408 attenuates IL-1β-induced MMP-9 expression via suppressing the
phosphorylation of Pyk2/PDGFR/Akt signaling in RBA-1 cells.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 19 

 

In addition, receptor tyrosine kinases such as epidermal growth factor receptor (EGFR) and 
platelet-derived growth factor receptor (PDGFR) are activated either by interactions with their 
ligands or through a ligand-independent transactivation process [32]. PDGFs and their receptors 
have been intensely investigated and play pivotal roles in normal development and pathologies of 
human diseases [33]. Our previous study revealed that PDGFR is involved in IL-1β-mediated 
responses [9]. Thus, we clarified whether RTA 408 attenuates IL-1β-induced MMP-9 expression via 
blocking PDGFR phosphorylation. We found that IL-1β stimulated the phosphorylation of PDGFRβ 
in a time-dependent manner and reached a maximal response within 10–30 min. This effect was 
attenuated by pretreatment with RTA 408 (Figure 2B). 

Akt is a common downstream target of PDGFR and plays an important role in various cellular 
functions, including metabolism, proliferation, survival, growth, angiogenesis, migration, and 
invasion [34]. Akt has been shown to be involved in IL-1β-mediated responses [35]. Thus, we 
investigated whether RTA 408 interferes with Akt and blocks IL-1β-mediated responses. As shown 
in Figure 2C, IL-1β stimulated the phosphorylation of Akt in a time-dependent manner and reached 
a maximal response within 10–30 min. This effect was attenuated by pretreatment with RTA 408. 
These results suggest that RTA 408 attenuates IL-1β-induced MMP-9 expression via suppressing the 
phosphorylation of Pyk2/PDGFR/Akt signaling in RBA-1 cells. 

 

Figure 2. RTA 408 attenuates the IL-1β-induced proMMP-9 expression via suppressing the 
phosphorylation of Pyk2, platelet-derived growth factor receptor β (PDGFRβ), and Akt. Cells were 
pretreated with RTA 408 (0.3 µM) for 4 h, and then incubated with IL-1β (0.5 ng/mL) for the indicated 
time intervals (3, 5, 10, 15, and 30 min). The cell lysates were assayed by western blot to detect the 
phosphorylation of Pyk2 (A), PDGFRβ (B), and Akt (C) using their respective phosphorylated 
antibody. Data analysis and processing are described in the section “Statistical Analysis of Data.” * 
indicates p  <  0.05; # indicates p  <  0.01, as compared between the indicated groups. The figure 
represents one of three individual experiments.  

2.3. RTA 408 Inhibits IL-1β-Stimulated ROS Generation in RBA-1 Cells 

MMPs expression could be regulated by ROS in various cell types [16,36]. The findings of our 
previous studies also confirmed that IL-1β-induced MMP-9 expression and cell migration are 
mediated via NADPH oxidase 2-derived ROS signals [9]. Here, we investigated whether RTA 408 
attenuates ROS generation and thus blocks IL-1β-mediated MMP-9 expression. RBA-1 cells were 
pretreated with RTA 408 (0.3 µM) for 4 h and then exposed to IL-1β (0.5 ng/mL) for the indicated 
time intervals (5 and 10 min). We found that IL-1β-stimulated ROS generation was attenuated by 
pretreatment with RTA 408 (Figure 3A,B). These results confirmed that RTA 408 inhibits IL-1β-
induced MMP-9 expression via the attenuation of ROS generation in RBA-1 cells. 

Figure 2. RTA 408 attenuates the IL-1β-induced proMMP-9 expression via suppressing the
phosphorylation of Pyk2, platelet-derived growth factor receptor β (PDGFRβ), and Akt. Cells
were pretreated with RTA 408 (0.3 µM) for 4 h, and then incubated with IL-1β (0.5 ng/mL) for the
indicated time intervals (3, 5, 10, 15, and 30 min). The cell lysates were assayed by western blot to detect
the phosphorylation of Pyk2 (A), PDGFRβ (B), and Akt (C) using their respective phosphorylated
antibody. Data analysis and processing are described in the section “Statistical Analysis of Data.”
* indicates p < 0.05; # indicates p < 0.01, as compared between the indicated groups. The figure
represents one of three individual experiments.

2.3. RTA 408 Inhibits IL-1β-Stimulated ROS Generation in RBA-1 Cells

MMPs expression could be regulated by ROS in various cell types [16,36]. The findings of our
previous studies also confirmed that IL-1β-induced MMP-9 expression and cell migration are mediated
via NADPH oxidase 2-derived ROS signals [9]. Here, we investigated whether RTA 408 attenuates
ROS generation and thus blocks IL-1β-mediated MMP-9 expression. RBA-1 cells were pretreated with
RTA 408 (0.3 µM) for 4 h and then exposed to IL-1β (0.5 ng/mL) for the indicated time intervals (5 and
10 min). We found that IL-1β-stimulated ROS generation was attenuated by pretreatment with RTA
408 (Figure 3A,B). These results confirmed that RTA 408 inhibits IL-1β-induced MMP-9 expression via
the attenuation of ROS generation in RBA-1 cells.
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Figure 3. Reactive oxygen species (ROS) involved in the inhibited mechanisms of RTA 408 on the IL-1β
response in RBA-1 cells. Cells on the coverslips were pretreated with/without RTA 408 (0.3 µM) for 4
h, and then incubated with IL-1β (0.5 ng/mL) for the indicated time intervals (5 and 10 min). Then,
cells were incubated with 10 µM DCFH-DA (A) and 5 µM CellROX Deep Red Reagent (B) for 30 min,
respectively, the fluorescence intensity was detected under a fluorescence microscope. The figure
represents one of three individual experiments.

2.4. RTA 408 Inhibits IL-1β -Stimulated Phosphorylation of MAPKs in RBA-1 Cells

MAPKs, including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun amino-terminal kinase
1/2 (JNK1/2), and p38 MAPK, have been shown to regulate various pathological processes of human
diseases and cellular functions [37]. Our previous studies have indicated that MAPKs regulate the
IL-1β-induced MMP-9 expression [38]. Thus, we explored whether RTA 408 interferes with MAPKs and
blocks IL-1β-mediated MMP-9 expression. As shown in Figure 4A–C, one hour after RTA 408 (0.3 µM)
treatment, RBA-1 cells were exposed to IL-1β (0.5 ng/mL) for the indicated time intervals. The levels
of p38 MAPK (Figure 4A), p42/p44 MAPK (Figure 4B), and JNK1/2 phosphorylation (Figure 4C)
were decreased compared with those after IL-1β stimulation alone. These results suggest that RTA
408 attenuates IL-1β-induced MMP-9 expression via the suppression of MAPK phosphorylation in
RBA-1 cells.
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Figure 4. RTA 408 attenuates the IL-1β-induced proMMP-9 expression via suppressing MAPKs
phosphorylation. Cells were pretreated with RTA 408 (0.3 µM) for 4 h, and then incubated with IL-1β
(0.5 ng/mL) for the indicated time intervals (3, 5, 10, 15, and 30 min). The cell lysates were assayed
by western blot to detect phosphorylation of p38 MAPK (A), p42/p44 MAPK (B), and JNK1/2 (C)
using their respective phosphorylated antibody. Data analysis and processing are described in the
section “Statistical Analysis of Data.” # indicates p < 0.01, as compared between the indicated groups.
The figure represents one of three individual experiments.

2.5. RTA 408 Inhibits IL-1β-Stimulated Activation of NF-κB and AP-1 in RBA-1 cells

Several lines of evidence have shown that the transcription factors NK-κB and AP-1 have
DNA-binding domains that bind with specific sequences in MMP-9 promoters, leading to MMP-9
gene transcription [39]. Several previous reports have shown that NK-κB and AP-1 are involved in
IL-1β-induced MMP-9 expression in different cells, including RBA-1 cells [9,40,41]. Therefore, we
explored whether RTA 408 attenuates IL-1β-induced MMP-9 expression via suppressing NK-κB and
AP-1 activation. As shown in Figure 5A, the IL-1β-stimulated phosphorylation of c-Jun was inhibited
by pretreatment with RTA 408. We further determined whether RTA 408 attenuates IL-1β-induced
MMP-9 expression through the downregulation of AP-1. As shown in Figure 5B, we found that RTA
408 attenuated c-Jun mRNA expression induced by IL-1β in RBA-1 cells. To confirm that the interaction
between c-Jun and the MMP-9 promoter is blocked by RTA 408, a ChIP assay was performed. As shown
in Figure 5C, the cells were pretreated with RTA 408 for 1 h and then stimulated by IL-1β for the
indicated time intervals (15 and 30 min). The results indicated that the interaction between c-Jun and
the MMP-9 promoter was blocked by pretreatment with RTA 408.
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Figure 5. RTA 408 attenuates the IL-1β-induced proMMP-9 expression via down-regulating AP-1
activities. (A) Cells were pretreated with RTA 408 (0.3 µM) for 4 h, and then incubated with IL-1β
(0.5 ng/mL) for the indicated time intervals (3, 5, 10, 15, and 30 min), the phosphorylation of c-Jun was
detected by western blot. (B) Cells were pretreated with RTA 408 (0.3 µM) for 4 h, and then incubated
with IL-1β (0.5 ng/mL) for the indicated time intervals (15 and 30 min). The mRNA levels of c-Jun were
determined by real-time RT-PCR. (C) Cells were pretreated with/without RTA 408 (0.3 µM) for 4 h, and
then incubated with IL-1β (0.5 ng/mL) for the indicated time intervals (15 and 30 min), ChIP assay was
performed by using a specific antibody of c-Jun. Data analysis and processing are described in the
section “Statistical Analysis of Data.” # indicates p < 0.01, as compared between the indicated groups.
The figure represents one of three individual experiments.
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To determine whether RTA 408 inhibits IL-1β-induced MMP-9 gene expression through
suppressing the activation of the transcription factor NF-κB, the activation of NF-κB was determined
in RBA-1 cells. As shown in Figure 6A, the IL-1β-stimulated phosphorylation of p65 was attenuated
by pretreatment with RTA 408. Moreover, the nuclear translocation of p65 was detected in RBA-1 cells
challenged with IL-1β. We found that IL-1β stimulated p65 translocation from cytosolic to nuclear
fractions within 15–30 min, and this effect was blocked by RTA 408 pretreatment (Figure 6B). These
results were further supported by the immunofluorescence images of p65 obtained using a fluorescence
microscope (Figure 6D). Further, to confirm that the interaction between p65 and the MMP-9 promoter
is blocked by RTA 408, a ChIP assay was performed. As shown in Figure 6C, the IL-1β-stimulated
interaction between p65 and the MMP-9 promoter was indeed blocked by RTA 408. According to
the above data, the inhibition of IL-1β-induced MMP-9 expression by RTA 408 was mediated by an
interruption of the interaction between the MMP-9 promoter and AP-1 or NK-κB in RBA-1 cells.
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Figure 6. RTA 408 attenuates the IL-1β-induced proMMP-9 expression via down-regulating NF-κB
activities. (A) Cells were pretreated with RTA 408 (0.3 µM) for 4 h, and then incubated with IL-1β (0.5
ng/mL) for the indicated time intervals (3, 5, 10, 15, and 30 min), the phosphorylation of p65 was detected
by western blot. (B) Cells were pretreated with or without RTA 408 (0.3 µM) for 4 h and incubated with
0.5 ng/mL IL-1β for the indicated time intervals. The cytosol and nucleus fraction were prepared, and
the levels of p65 translocation were analyzed by western blot. (C) Cells were pretreated with/without
RTA 408 (0.3 µM) for 4 h, and then incubated with IL-1β (0.5 ng/mL) for the indicated time intervals (15
and 30 min), ChIP assay was performed by using a specific antibody of p65. (D) The p65 translocation
was confirmed by immunofluorescence staining. Data analysis and processing are described in the
section “Statistical Analysis of Data.” * indicates p < 0.05; # indicates p < 0.01, as compared between the
indicated groups. The figure represents one of three individual experiments.
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2.6. RTA 408 Inhibits IL-1β-Induced Astroglial Cell Migration and Astrogliosis

Reactive gliosis and astroglial cell migration are characteristics of neuroinflammation triggered
by various inflammatory mediators [42,43]. They play a key role in the pathogenesis of brain
inflammation [44]. Cytokines, including TNF-α and IL-1β, have been shown to mediate reactive
astrogliosis, which is reflected by the expression of glial fibrillary acidic protein (GFAP) and cell
migration, in neurodegenerative diseases [45]. Thus, we investigated whether RTA 408 exerts a
neuroprotective effect by suppressing the levels of GFAP expression and cell migration induced by
IL-1β. As shown in Figure 7A,B, IL-1β induced GFAP protein and mRNA expression, which was
significantly attenuated by pretreatment with RTA 408. These results were further confirmed by
immunofluorescence images of GFAP, and the effect was attenuated by pretreatment with RTA 408
(Figure 7C). Moreover, we investigated whether RTA 408 can block the migration of RBA-1 cells
stimulated by IL-1β. As shown in Figure 7D, IL-1β increased the number of migrating cells, which was
reduced by pretreatment with RTA 408. These results suggest that, in RBA-1 cells, RTA 408 attenuates
IL-1β-induced cell migration and astrogliosis by suppressing MMP-9 and GFAP expression.
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Figure 7. RTA 408 rescues IL-1β-triggered cell migration and astrogliosis in RBA-1 cells. (A, B) Cells
were pretreated with or without RTA 408 (0.3 µM) for 4 h, and then incubated with IL-1β (0.5 ng/mL)
for the indicated time intervals (24 and 48 h for protein level; 4 and 6 h for mRNA). The levels of
glial fibrillary acidic protein (GFAP) protein and mRNA were assayed by (A) western blot using an
anti-GFAP or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody and by (B) real-time
PCR, respectively. (C) Cells were pretreated with or without RTA 408 (0.3 µM) for 4 h, and then
incubated with or without IL-1β (0.5 ng/mL) for 24 h. Then, the cells were paraffin-embedded. GFAP
was detected with an anti-GFAP antibody and followed with an AlexaFluor®488-conjugated secondary
antibody (green); nuclei were stained with DAPI (blue). (D) Cell migration was investigated by wound
healing assay. Cells were pretreated with or without RTA 408 (0.3 µM) for 4 h, and hydroxyurea
(10 µM) for 1 h, and then incubated with or without IL-1β for 48 h. The images of migratory cells
from the wound boundary were photographed with a digital camera under a light microscope. Data
analysis and processing are described in the section “Statistical Analysis of Data.” # indicates p < 0.01,
as compared between the indicated groups. The figure represents one of three individual experiments.



Int. J. Mol. Sci. 2019, 20, 2826 9 of 19

3. Discussion

IL-1βhas been shown to induce MMP-9 expression through ROS, protein kinases, and transcription
factors in various types of cells [9,38,40]. The upregulation of MMPs triggered by cytokines plays a key
role in neurodegenerative diseases. Therefore, the development of drugs targeting the expression of
MMP-9 and its upstream signaling components may be beneficial for the management of inflammatory
brain diseases. RTA 408 has been shown to exhibit anti-inflammatory effects partially through inhibiting
NF-κB activity, increasing the levels of Nrf2-targeted gene expression, and stimulating ROS generation,
although the mechanisms of the anti-inflammatory effects of RTA 408 are not fully understood.
Thus, we investigated the anti-inflammatory effects of RTA 408 on IL-1β-mediated inflammatory
responses in RBA-1 cells. We revealed that RTA 408 attenuates IL-1β-induced MMP-9 expression,
at least in part via suppressing the phosphorylation of protein kinases, including Pyk2, PDGFR β,
Akt, ROS, and MAPKs (p42/p44 MAPK, p38 MAPK, and JNK1/2), and the transcriptional activation
of NF-κB and AP-1 in RBA-1 cells (Figure 8). Moreover, RTA 408 protects against IL-1β-induced
neuroinflammatory responses, including cell migration and GFAP expression in astrogliosis. Although
the detailed mechanisms of the in vivo and in vitro anti-inflammatory effects mediated by RTA 408
need to be explored, its anti-inflammatory and anti-oxidant effects may be useful for protecting
against neurodegeneration.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 19 
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Figure 8. The schematic signaling pathways involved in RTA 408 inhibiting the IL-1β-induced responses
in RBA-1 cells. RTA 408 attenuates Pyk2, PDGFRβ, Akt, MAPKs (p42/p44 MAPK, p38 MAPK, and
JNK1/2) phosphorylation and subsequently decreases NF-κB and AP-1 activation, ultimately leading to
inhibit MMP-9 expression and RBA-1 cell migration. RTA 408 also inhibits IL-1β-induced astrogliosis.
“→” means “activated”; “⊥” means “inhibited”.

MMP-9 expression has been demonstrated to be mediated by the transactivation of PDGFR and
nonreceptor tyrosine kinases (Pyk2 and c-Src) induced by IL-1β, TNF-α, and lipoteichoic acid in
various types of cells [46–48]. A previous study revealed that baicalin inhibits the PDGF-stimulated
proliferation of vascular smooth muscle cells by suppressing the activation of PDGFRβ-p42/p44
MAPK signaling [49]. Our previous study also showed that Helminthostachys zeylanica extracts
could inhibit bradykinin (BK)-induced MMP-9 expression via blocking Pyk2 phosphorylation in brain
astrocytes [50]. Therefore, we investigated whether the inhibitory effects of RTA 408 on IL-1β-induced
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MMP-9 expression are mediated by suppressing the phosphorylation of Pyk2 and PDGFR in RBA-1
cells. In agreement with these reports, our results confirmed that RTA 408 inhibits IL-1β-induced
MMP-9 expression by blocking Pyk2 and PDGFR phosphorylation in RBA-1 cells. Moreover, Pyk2, a
nonreceptor tyrosine kinase, plays a critical role in cell migration during wound healing, suggesting that
RTA 408 blocks IL-1β-induced MMP-9 expression and cell migration by attenuating the Pyk2/PDGFR
cascade in RBA-1 cells.

PI3K is a heterodimeric protein consisting of a p85 regulatory subunit and a p110 catalytic subunit.
Akt, a downstream component of the PI3K pathway, is important for the regulation of fundamental
cellular functions, including transcription, translation, proliferation, growth, and survival. PI3K/Akt
also plays a critical role in the regulation of IκB-kinase (IKK)/NF-κB activation. Thus, PI3K/Akt
play key roles in the pathogenesis of various inflammatory responses. It has been noted that the
expression of MMP-9 is modulated by the activation of PI3K/Akt, MAPKs, and NF-κB in brain
astrocytes [9]. Curcumin can downregulate the Akt signal and cause tumor growth arrest and cell
death [51]. CDDO-Me (C-28 methyl ester of 2-cyano-3,12- dioxooleana-1,9 (11)-dien-28-oic acid), a
synthetic triterpenoid derived from oleanolic acid, can inhibit Akt signaling [52]. Our previous report
revealed that galangin blocks thrombin-induced MMP-9 expression and cell migration via inhibiting
Akt phosphorylation in SK-N-SH cells [53]. In this study, we confirmed that the inhibition of MMP-9
expression by RTA 408 is mediated by suppressing Akt activation and protects against IL-1β-mediated
inflammatory responses in RBA-1 cells.

ROS act as second messengers and trigger protein kinases and transcription factors associated
with various pathological and physiological functions. The generation of ROS and the induction
of oxidative stress by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and
mitochondria play a key role in brain diseases [54–57]. Glycine, cannabinoids, and melatonin have been
shown to block the expression of inflammatory mediators via inhibiting ROS production [54,57,58]. We
also discovered that Helminthostachys zeylanica extracts might possess anti-inflammatory capability
by reducing ROS-dependent MMP-9 expression in brain astrocytes challenged with BK [50]. RTA 408
has been shown to suppress NOX activity and mitochondria-ROS generation and protect against brain
inflammation [29]. Therefore, the attenuation of ROS production is an effective anti-neurodegenerative
strategy of in the CNS. In our study, we found that pretreatment with RTA 408 inhibits the generation
of ROS by NOX that is involved in IL-1β-induced MMP-9 expression and cell migration in RBA-1 cells.
Therefore, RTA 408 may be a potential anti-oxidant agent to protect against brain inflammatory diseases.

MAPKs are downstream components of ROS and relay signaling from the cell surface to the nucleus.
MAPKs have been implicated in the regulation of many cellular responses, such as inflammation,
proliferation, differentiation, and apoptosis. The phosphorylation of MAPKs has been shown to
induce NF-κB and AP-1 activation and initiate pro-inflammatory responses [38,40]. Previous studies
have also shown that IL-1β stimulates MAPKs activation, leading to the expression of MMP-9 in
various types of cells [8,38]. Some herbs have been shown to exert anti-inflammatory effects on
various inflammatory responses via suppressing the activation of MAPKs [59–61]. We have also
demonstrated that galangin and Helminthostachys zeylanica extracts attenuate MAPKs-dependent
MMP-9 expression in neurons and glia [50,53]. Therefore, we determined whether RTA 408 attenuates
the IL-1β-stimulated phosphorylation of MAPKs in RBA-1 cells. Our results confirmed that RTA 408
reduces the IL-1β-stimulated phosphorylation of MAPKs (p42/p44 MAPK, p38 MAPK, and JNK1/2) in
these cells, suggesting that the inhibitory effect of RTA 408 on IL-1β-induced MMP-9 expression and
cell migration is mediated by suppressing the phosphorylation of MAPKs in RBA-1 cells.

NF-κB and AP-1 play pivotal roles in inflammatory responses, immunological reactions, and
tumorigenesis. Many reports have indicated that the activation of NF-κB is involved in brain injury
and inflammatory reactions. NF-κB transcription factors play a critical role in MMP-9 induction and
are regarded as therapeutic targets for the treatment of various inflammatory diseases. IL-1β has been
reported to evoke the expression of MMP-9 via the activation of NF-κB [9,40]. RTA 408 can inhibit
NF-κB signaling and attenuate inflammatory responses in RAW 264.7 macrophage cells [22]. Moreover,
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the herb extracts exert their anti-inflammatory effect by blocking the activation of NF-κB [59,62]. Our
data also demonstrated that RTA 408 inhibits IL-1β-stimulated p65 phosphorylation and translocation
from cytoplasmic to nuclear fractions. Moreover, RTA 408 also attenuated the association of NF-κB with
binding sites on the MMP-9 promoter. These results confirmed that RTA 408 inhibits IL-1β-induced
MMP-9 expression and cell migration by blocking NF-κB activation in RBA-1 cells.

AP-1 regulates the expression of inflammatory genes in response to different stimuli, including
cytokines, growth factors, stress signals, and bacterial and viral infections. AP-1 is a crucial component
for MMP-9 induction and a candidate for the treatment of inflammatory brain diseases. Our previous
study revealed that IL-1β-induced MMP-9 expression is mediated by AP-1 activation in RBA-1
cells [9,40]. Moreover, several herb extracts have anti-inflammatory effects by blocking the activity of
AP-1 [63,64]. Our recent studies have also demonstrated that galangin and Helminthostachys zeylanica
extracts attenuate proinflammatory mediator-induced MMP-9 expression via inhibiting the activity of
AP-1 [50,53]. Therefore, we determined whether RTA 408 attenuates the IL-1β-stimulated activity of
AP-1 in RBA-1 cells. In the present study, RTA 408 suppressed IL-1β-stimulated AP-1 activation and
c-Jun mRNA expression and thereby attenuated MMP-9 expression and cell migration in RBA-1 cells.

4. Materials and Methods

4.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM)/Ham’s nutrient mixture F-12 (F-12) and fetal
bovine serum (FBS) were purchased from Invitrogen (Carlsbad, CA, USA). Hybond C membranes
and an enhanced chemiluminescence (ECL) detection system were obtained from GE Healthcare
Biosciences (Buckinghamshire, UK). Anti-phospho-Akt (Ser473, #9271), anti-phospho-Pyk2 (Tyr402,
#3291), anti-phospho-PDGFRβ (Tyr751, #3161), anti-phospho-p38 MAPK (Thr180/Tyr182, #9211),
anti-phospho-c-Jun amino-terminal kinase (JNK)1/2 (Thr183/Tyr185, #4668), anti-phospho-extracellular
signal-regulated kinase 1/2 (Erk1/2; Thr202/Tyr204, #9101), anti-phospho-p65 (Ser536, #3031),
anti-phospho-c-Jun (Ser63, #2361), and anti-p47phox (#4301) antibodies were obtained from
Cell Signaling (Danvers, MA, USA). Anti-Pyk2 (ab32448) and anti-Nox2 (ab129068) antibodies
were purchased from Abcam (Cambridge, UK). Anti-glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (#MCA-ID4) was purchased from Encor (Gainesville, FL, USA). Anti-lamin A (sc-20680),
anti-p47phox (sc-14015), anti-Gαs (sc-823), anti-PDGFRβ (sc-374573), anti-p38 (sc-535), anti-Akt
(sc-8312), anti-ERK1 (sc-271270), anti-ERK2 (sc-1647), anti-JNK (sc-7345), anti-p65 (sc-398442),
anti-c-Jun (sc-44), and anti-GFAP (sc-33673) antibodies were purchased from Santa Cruz (Santa
Cruz, CA, USA). All primary antibodies were diluted at 1:1000 in PBS with 1% bovine serum
albumin (BSA). N-(2-cyano-3,12-dioxo-28-noroleana-1,9(11)-dien-17-yl)-2-2-difluoropropanamide
(RTA 408) was purchased from Cayman Chemical (Ann Arbor, MI, USA). Bicinchoninic
acid (BCA) protein assay reagent was purchased from Pierce (Rockford, IL, USA). Sodium
dodecyl sulfate (SDS)-PAGE reagents were purchased from MDBio, Inc. (Taipei, Taiwan).
Dimethyl sulfoxide (DMSO), IL-1β, enzymes, TRIzol, a sodium 3′-[1-[(phenylamino)-carbony]-
3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate (XTT) assay kit, and other
chemicals were obtained from Sigma (St. Louis, MO, USA). CellROX Deep Red Reagent and
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) were obtained from ThermoFisher Scientific
(Waltham, MA, USA).

4.2. Cell Culture and Treatment

RBA-1 cell line originating from the neonatal rat cerebrum was kindly provided by Professor
T.C. Jou at the Institute of Neroscience, National Yang Ming University (Taipei, Taiwan) [65] and used
throughout this study. The purity of the cultured astrocytes was assessed using an astrocyte-specific
marker, anti-glial fibrillary acidic protein (GFAP) antibody, which showed that over 95% of the astrocytes
were GFAP-positive. Experiments were performed with cells from passages 4 to 35. The cytotoxicity
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of RTA 408 or IL-1β alone at the time of incubation was checked using an XTT assay kit, and these
treatments were found to have no significant effect on cell viability. The cells were plated in 12-well
culture plates, made quiescent at confluence by incubation in serum-free DMEM/F-12 for 24 h, and
then incubated with IL-1β at 37 ◦C for the indicated time intervals. When RTA 408 or other inhibitors
were used, the cells were pretreated with RTA 408 or other inhibitors for the indicated time intervals
before exposure to IL-1β.

4.3. Protein Preparation and Western Blotting

The procedure was conducted as previously described [66]. Briefly, after cells were washed
with ice-cold PBS, whole-cell extracts were collected, and buffer containing 0.1 M Tris-HCl (pH 6.8),
1% SDS, 5% glycerol, 2.5% β-mercaptoethanol, and 0.02% bromophenol blue was used to collect
whole-cells extracts. Western blotting was performed by using SDS-PAGE. Proteins were transferred
by electrophoresis onto Hybond-C membranes which were incubated with a specific antibody
diluted at 1:1000 with Tween-Tris buffered saline and incubated with an anti-GAPDH antibody as an
internal control. The membranes were washed four times with Tween-Tris buffered saline in 30 min.
The membranes were immersed in a horseradish peroxidase-conjugated secondary antibody (1:1500
dilution) for 1 h. The membranes were washed four times with Tween-Tris buffered saline in 30 min.
The immunoreactive bands were detected by ECL and captured using a UVP BioSpectrum 500 Imaging
System (Upland, CA, USA). UN-SCAN-IT gel software version 6.1 (Silk Scientific Inc., Orem, UT, USA)
was used to quantify the image densitometry analyses.

4.4. MMP Gelatin Zymography

The procedure was conducted as previously described [42]. Briefly, growth-arrested cells
were incubated with IL-1β for the indicated time intervals. The culture media were collected and
analyzed by gelatin zymography. The horizontal white bands on a blue background represented the
gelatinolytic activity of MMP-9. Because cleaved MMPs were not reliably visible, we only measured
pro-form zymogens.

4.5. Total RNA Extraction and Real-Time PCR Analysis

The procedure was conducted as previously described [38]. Briefly, total RNA was extracted
from RBA-1 cells. The template for PCR amplification used the cDNA obtained from 0.5 µg of
total RNA. Based on GenBank entries for rat MMP-9 and GAPDH, oligonucleotide primers were
designed. The designed primers were as follows: MMP-9, 5′-AGTTTGGTGTCGCGGAGCAC-3′ (sense),
5′-TACATGAGCGCTTCCGGCAC-3′ (antisense); GAPDH, 5′-AACTTTGGCATCGTGGAAGG-3′

(sense), 5′-GTGGATGCAGGGATGATGTTC-3′ (antisense). The TaqMan gene expression assay system
with primers and probe mixes for MMP-9 and endogenous GAPDH control genes was used for
real-time PCR. PCR was performed using the 7500 Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA). The ∆∆Ct method was used to determine the relative gene expression, where Ct
represented the threshold cycle. All experiments were performed in triplicate.

4.6. Rat MMP-9 Promoter Construction, Transfection, and Luciferase Reporter Gene Assays

The method was conducted as previously described [67,68]. Briefly, the upstream region (−1280 to
+19) of the rat MMP-9 promoter was cloned. The QIAGEN (Hilden, Germany) plasmid DNA preparation
kits were used to prepare the plasmid. The construct was transfected by using Lipofectamine reagent.
Transfection with an enhanced green fluorescent protein (GFP) was used to determine the transfection
efficiency (~60%). After incubation with IL-1β, the cells were collected, sonicated, and centrifugated.
The aliquots of the supernatants were assayed for promoter activity using a luciferase assay system
(Promega, Madison, WI, USA). Firefly luciferase activity was standardized to β-galactosidase activity.
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4.7. Isolation of Cell Fractions

After incubation, the cells were harvested, sonicated for 5 s at output 1.5 with a sonicator (Misonix,
Inc., Farmingdale, NY, USA), and centrifuged at 8000 rpm for 15 min at 4 ◦C to yield the pellet (nuclear
fraction) and the supernatant (cytosolic fraction).

4.8. Measurement of Intracellular ROS Accumulation

Intracellular H2O2 levels were determined by measuring the fluorescence of DCFH-DA. For the
purpose of these experiments, the cells were plated in six-well culture plates with coverslips. The cells
were treated with IL-1β with/without pretreatment with RTA 408 for the indicated time intervals (5 and
10 min). The cells were washed with warm PBS and incubated in PBS containing 10 µM DCFH-DA
at 37 ◦C for 30 min. Subsequently, the PBS containing DCFH-DA was removed and replaced with
fresh medium. The cells were washed twice with PBS and then observed by using a fluorescence
microscope (Zeiss, Axiovert 200M). In addition, CellROX Deep Red Reagent was added to the cells at a
final concentration of 5 µM and then incubated for 30 min at 37 ◦C. Subsequently, the medium was
removed, and the cells were washed three times with PBS. The resulting fluorescence was measured
using a fluorescence microscope.

4.9. Immunofluorescence Staining

Growth-arrested cells were treated with IL-1β (0.5 ng/mL) for the indicated time intervals.
After washing twice with ice-cold PBS, cells were fixed, permeabilized, stained using anti-GFAP
and anti-p65 antibodies (1:200 dilutions), and finally mounting as previously described [35]. Then,
4′,6-diamidino-2-phenylindole (DAPI) was used to stain the DNA. The images were observed with a
fluorescence microscope (Zeiss, Axiovert 200 M).

4.10. Cell Migration Assay

RBA-1 cells were cultured to confluence in six-well culture plates and starved in serum-free
DMEM/F-12 medium for 24 h. The monolayer cells were manually scratched with a blue pipette tip
to create extended and definite scratches with a bright and clear field (~2 mm) in the center of the
dishes. The detached cells were removed by washing the cells once with PBS. Serum-free DMEM/F-12
medium with or without IL-1β (0.5 ng/mL) and containing the DNA synthesis inhibitor hydroxyurea
(10 µM) was added to each dish during the period of observation as indicated after pretreatment
with or without RTA 408 for 1 h. Migrating cells from the scratch boundary were observed under a
light microscope and imaged with a digital camera (Olympus, Japan). Data analysis and processing
were conducted as in our previous study [66]. The data demonstrated were summarized from three
individual experiments.

4.11. Chromatin Immunoprecipitation (ChIP) Assay

Chromatin immunoprecipitation analysis was conducted as previously described [68] to detect
the in vivo association of nuclear proteins with the rat MMP-9 promoter. Briefly, RBA-1 cells were
cross-linked with 1% formaldehyde for 10 min at 37 ◦C and washed three times with ice-cold PBS
containing 1 mM phenylmethylsulfonyl fluoride (PMSF) and 1% aprotinin. The cell lysates were
prepared using SDS-lysis buffer (1% SDS; 5 mM EDTA; 1 mM PMSF; and 50 mM Tris-HCl) and
were sonicated at 4 ◦C until the DNA size was 200–300 base pairs. After the soluble chromatin was
precleared by incubation with sheared salmon sperm DNA-protein agarose A, one portion of the sample
was used as the DNA input control, and the other portion of supernatant was immunoprecipitated
without (control) or with anti-p65 or anti-c-Jun antibodies and protein A beads. Following washes
and elution, the precipitates were heated overnight at 65 ◦C to reverse the cross-linking of the
DNA and protein. The DNA fragments were purified by phenol-chloroform extraction and ethanol
precipitation. The purified DNA was subjected to PCR amplification using the primers specific for
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the region (−606 ~ 327, accession NO: AF148065) containing the distal AP-1 binding site (−503 to
−497) and p65 binding site (−560 to −550) present in the MMP-9 promoter region (sense primer:
5′-AGAGCCTGCTCCCAGAGGGC-3′; antisense primer: 5′-GCCAAGTCAGGCAGGACCCC-3′). The
PCR fragments were analyzed on gels containing 3% agarose in 1× TAE and ethidium bromide, and
the size of the fragments (279 bp) was compared to a molecular weight marker.

4.12. Statistical Analysis of Data

All data are expressed as the mean or mean ± SEM of three individual experiments performed in
duplicate or triplicate. For the western blot data, the significance of the differences between the two
groups was determined by a paired two-tailed Student’s t-test. All other statistical analyses compared
multiple groups. GraphPad Prism version 5.01 (GraphPad, San Diego, CA, USA) was used to analyze
the data by an unpaired t-test or one-way analysis of variance [69], followed by Tukey’s post hoc
test. * p < 0.05; # p < 0.01, compared with the cells stimulated with IL-1β only or compared with the
indicated groups.

5. Conclusions

In summary, reactive astrogliosis may be a potential target for therapeutic interventions for
neurodegenerative disorders. Several studies have shown the relationship between MMP-9 expression
and astrogliosis [70–72]. Here, our results suggest that RTA 408 suppresses IL-1β-induced astrogliosis
and cell migration in vitro. Further, it is worth investigating the mechanisms underlying the effects
of RTA 408 on astrogliosis in animals. These results provide new insights into the mechanisms by
which RTA 408 attenuates MMP-9 expression induced by IL-1β. Moreover, an increased understanding
of the anti-inflammatory effects of RTA 408 creates opportunities for the development of potential
anti-inflammatory therapeutic strategies for neurodegeneration and neuroinflammation.
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Abbreviations

AD Alzheimer’s disease
AP-1 activator protein 1
BBB blood-brain barrier
BCA bicinchoninic acid
BK bradykinin
BSA bovine serum albumin
CDDO-Me C-28 methyl ester of 2-cyano-3,12- dioxooleana-1,9 (11)-dien-28-oic acid
ChIP chromatin immunoprecipitation
CNS central nervous system
DAPI 4′,6-diamidino-2-phenylindole
DCFH-DA 2′,7′-dichlorodihydrofluorescein diacetate
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DMEM Dulbecco’s modified Eagle’s medium
DMSO dimethyl sulfoxide
ECL enhanced chemiluminescence
EDTA ethylenediaminetetraacetic acid
ERK1/2 extracellular signal-regulated kinase 1/2
FBS fetal bovine serum
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GFAP glial fibrillary acidic protein
GFP green fluorescent protein
IKK IκB-kinase
IL-1β interleukin-1β
JNK c-Jun amino-terminal kinase
MAPK mitogen-activated protein kinase
MMP matrix metalloproteinase
NF-κB nuclear factor-κB
NOX NADPH oxidase
PD Parkinson’s disease
PDGFR platelet-derived growth factor receptor
PI3K phosphoinositide 3-kinase
PMSF phenylmethylsulfonyl fluoride
Pyk2 proline-rich tyrosine kinase
RBA-1 rat brain astrocytes
ROS reactive oxygen species
RTA 408 N-(2-cyano-3,12-dioxo-28-noroleana-1,9(11)-dien-17-yl)-2-2-difluoropropanamide
SEM standard error of the mean
SDS Sodium dodecyl sulfate
TNF tumor necrosis factor

XTT
sodium 3′-[1-[(phenylamino)-carbony]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene-
sulfonic acid hydrate
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