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Abstract: This paper presents a Deep Learning (DL) Cluster Structure for Management Decisions
that emulates the way the brain learns and makes choices by combining different learning algorithms.
The proposed model is based on the Random Neural Network (RNN) Reinforcement Learning for
fast local decisions and Deep Learning for long-term memory. The Deep Learning Cluster Structure
has been applied in the Cognitive Packet Network (CPN) for routing decisions based on Quality of
Service (QoS) metrics (Delay, Loss and Bandwidth) and Cyber Security keys (User, Packet and Node)
which includes a layer of DL management clusters (QoS, Cyber and CEO) that take the final routing
decision based on the inputs from the DL QoS clusters and RNN Reinforcement Learning algorithm.
The model has been validated under different network sizes and scenarios. The simulation results are
promising; the presented DL Cluster management structure as a mechanism to transmit, learn and
make packet routing decisions is a step closer to emulate the way the brain transmits information,
learns the environment and takes decisions.

Keywords: random neural network; deep learning clusters; cognitive packet network; quality of
service; cybersecurity; routing

1. Introduction

Our brain takes decisions in a structured way while performing several functions at the same
time. Our brain learns about the environment from our five senses; it stores memories to preserve
our identity; it makes judgements on different situations; it protects itself against external threats
or attacks. Our brain is formed by clusters of neurons [1] specialized in learning from different
senses where information is transmitted as positive and negative spikes or impulses. It functions
with two types of memories [2]; short-term memory is used for quick decisions and task-related
actions whereas long-term memory preserves our identity and security. Another brain duality consists
of its two operation modes [3]; consciousness under normal activities and unconsciousness under
emergency situations such as being under external attack or routine operations like storing information
while sleeping.

This paper presents the association of the most complex biological system; our brain with the
most complex artificial system represented in large data networks: The Internet; the information
infrastructure of the Big Data and the Web. The link between both of them is the Random Neural
Network (RNN). Data networks collect information from users and transmit it to different locations; to
perform this activity, they are required to make routing decisions based on different Quality of Service
metrics while storing routing tables in memory under the threat of Cyber-attacks.

This paper proposes a Deep Learning (DL) Cluster Structure for Management Decisions that
emulates the way the brain learns and makes choices and combines different Learning Algorithms.
The proposed model combines the Random Neural Network Reinforcement Learning for fast local
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decisions and DL for long-term memory to remember network identity: QoS metrics (Delay, Loss and
Bandwidth) and Cyber keys (User, Packet and Node). In addition, this paper includes a layer of DL
management clusters (QoS, Cyber and CEO) that take the final routing decision based on the inputs
from the DL QoS clusters and RNN Reinforcement Learning algorithm.

The Deep Learning Cluster Structures has been applied in the Cognitive Packet Network (CPN)
for Quality of Service metrics and Cyber Security keys in Management Decisions based on packet
routing and flow control. The RNN Reinforcement Learning Algorithm is chosen under normal or
conscious operations due to its fast and adaptable routing learning as short memory whereas DL
clusters are selected under external cyber-attacks. Deep Learning clusters take routing decisions based
on the long-term memory in unconsciousness operation as safe and resilient, although inefficient and
inflexible, routing.

A concepts review of Cybersecurity, Deep Learning and Deep Reinforcement Learning with
their associated literature research is described in Section 2. The mathematical model of the Deep
Learning clusters Structures for management decisions is defined in Section 3. The implementation of
the QoS, Cyber and Management Clusters is presented on Section 4. The validation of the proposed
model under different QoS and Cyber scenarios in small (nine nodes, one decision layer), medium
(16 nodes, two decision layers) and large (25 nodes, three decision layers) is described in Section 5.
Final discussion and bibliography are shared in Section 6 and References respectively.

2. Research Background

2.1. Cybersecurity

The expansion of the connectivity provided by the Ethernet and Internet protocols has enabled
new industrial, technological and social applications and services, however, users are increasingly
under new cybersecurity threats and risks. Ericsson [4] introduces cybersecurity issues and threats
within Power Communications Systems in a smart grid infrastructure where network vulnerabilities
and information security domains are analyzed. Ten [5] presented a survey on cybersecurity of
critical infrastructure; in addition, they propose a Supervisory Control And Data Acquisition (SCADA)
framework based on four procedures: Real-time monitoring, anomaly detection, impact analysis
and mitigation strategy. They model an attack tree analysis with an algorithm for cybersecurity
evaluation that incorporates password policies and port auditing. Cruz et al. [6] presented a distributed
intrusion detection system for SCADA systems that includes different types of security agents
tuned for each specific domain: Development of a network, device and process level capabilities,
integration of signature and anomaly-based techniques against threats and finally the adoption of a
distributed multi-layered design with message queues to transmit predefined events between elements.
Wang et al. [7] proposed a framework to facilitate the development of adversary resistant Deep Neural
Networks (DNN) by inserting a data transformation module between the sample and the DNN that
avoids threat samples with a minimum impact on the classification accuracy. Tuor et al. [8] presented
an unsupervised Deep Learning approach to detect anomalous network activity from system logs in
real-time where events are extracted as features and the DNN learns users’ normal behavior or anomaly
as potential malicious behavior. Wu et al. [9] presented a classification of cyber-physical attacks and
risks in cyber manufacturing systems with possible mitigation measures such as supervised machine
learning for classification and unsupervised machine learning for anomaly detection on physical data.
Kim et al. [10] proposed a new cyber defensive computer control system architecture based on the
diversification of hardware systems and unidirectional communications assuming that the detection
and prevention of cyber-attacks will never be complete.

2.2. Deep Learning

Deep Learning is characterized by using a cascade of l-layers of non-linear processing units
for feature extraction and transformation; each successive layer uses the output from the previous



Sensors 2018, 18, 3327 3 of 22

layer as input. Deep Learning learns multiple layers of representations that correspond to different
levels of abstractions; those levels form a hierarchy of concepts where the higher the level, the more
abstract concepts are learned. Schmidhuber et al. [11] examined DL in neural networks; the work
includes deep supervised learning, unsupervised learning, reinforcement learning and evolutionary
computation. It also includes an indirect search for short programs encoding deep and large networks.
The success of machine learning algorithms generally depends on data representation. In order
to obtain the appropriate objectives for learning good representations, computing representations
and the geometrical connections between representation learning, density estimation and manifold
learning; Bengio et al. [12] reviewed recent work in the area of unsupervised feature learning and
DL, which includes advances in probabilistic models. They proposed a new probabilistic framework
to include likelihood based probabilistic models, reconstruction based models such as autoencoder
variants and geometrically based manifold learning approaches. Jie et al. [13] proposed a progressive
framework to deep optimize neural networks. They combine the stability of linear methods with the
ability of learning complex and abstract internal representations of DL methods. They introduce a
linear loss layer between the input layer and the first hidden non-linear layer of a traditional deep
learning model where the loss objective for optimization is a weighted sum of linear loss of the added
new layer and non-linear loss of the last output layer.

The predominant algorithm to train DL uses stochastic gradient descent methods, although they
are easy to implement, gradient descent is difficult to tune and parallelize. In order to overcome this
issue, Le et al. [14] studied the advantages and disadvantages of off-the-shelf optimization algorithms
in the context of simplification and to speed up the process of pre-training the unsupervised feature
learning. Deep networks have been successfully applied to unsupervised feature learning for single
modalities such as text, images or audio. However, Ngiam, J. et al. [15] proposed an application of deep
networks to learn features over multiple modalities to demonstrate that cross-modality feature learning
performs better than single modality learning. The deep network is trained with audio only data but
tested with video only data and vice versa. Deep Neural Networks (DDNs) provide good results
when large labeled training sets are available, however, they perform worse when mapping sequences
to sequences. In order to address this issue, Sutskever et al. [16] presented an approach to sequence
learning that makes minimal assumptions on the sequence structure. They use a multilayered Long
Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then
another deep LSTM to decode the target sequence from the vector. Bekker et al. [17] proposed an
intracluster training strategy for DL with applications to language identification where the language
clusters are used to define a cost function to train a neural network. Their method trains a classifier
and analyzes the obtained confusion matrix where languages are simultaneously clustered in the
columns and the rows of the confusion matrix. The language clusters are then used to define a modified
cost function for training a neural network that learns to distinguish between the true language and
languages within the same cluster.

2.3. Deep Reinforcement Learning

Deep Learning enables Reinforcement Learning to scale decision-making solutions that were
previously unmanageable. A new algorithm called Double Deep Q Network (DQN) that generalizes
an arbitrary function approximation was proposed by Hasselt et al. [18]. The algorithm includes DNN
and reduces overestimations by decomposing the max operation in the target into action selection and
action evaluation. Although DQN solves problems with high dimensional observation spaces; it can
only manage discrete and low-dimensional action spaces. As presented by Lillicrap et al. [19], DQN
depends on finding the action that maximizes the action-value function which in the continuous-valued
case requires an iterative optimization process at each step. In order to overcome this issue, they
propose an algorithm based on the deterministic policy gradient that can operate over continuous
spaces. A framework for Deep Reinforcement Learning (DRL) that asynchronously executes
multiple agents in parallel on multiple instances of the environment is proposed by Mnih et al. [20].
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This parallelism decorrelates the agent’s data into a more stationary process using gradient descent
for optimization of deep neural network controllers. A neural network architecture for model-free
reinforcement learning where a dual network represents two separate estimators: one for the state
value function and the other for the state-dependent action advantage function is presented by
Wang et al. [21]. The two streams are combined via a special aggregating layer to produce an
estimate of the state action-value function. A benchmark for continuous simple actions, high state and
action dimensionality control, tasks with partial observations and tasks with a hierarchical structure
is presented by Duan et al. [22]. They divide 31 tasks into basic control, locomotion and partially
observable in order to achieve higher hierarchical structure tasks where higher level decisions can
reuse lower level skills. Challenges posed by reproducibility, experimental techniques, and reporting
procedures of DRL methods is investigated by Henderson et al. [23]. They present the variability
in reported metrics and results when comparing against common baselines and suggest guidelines
to make future results in Deep RL more reproducible. DRL for resource management problems in
systems and networking is applied by Mao et al. [24]. The decision-making tasks where appropriate
taken solutions depend on understanding the workload and environment experience.

3. Deep Learning Cluster Structures for Management Decisions

3.1. The Random Neural Network—Reinforcement Learning

The Random Neural Network (RNN) [25–27] represents more closely how signals are transmitted
in many biological neural networks where they travel as spikes or impulses, rather than as analogue
signal levels (Figure 1). The RNN is a spiking recurrent stochastic model for neural networks. Its main
analytical properties are the “product form” and the existence of the unique network steady-state
solution. It has been applied in different applications including search for exit routes for evacuees in
emergency situations [28,29], pattern-based search for specific objects [30], video compression [31],
and image texture learning and generation [32].
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Figure 1. The Random Neural Network (RNN).

The RNN is composed of M neurons each of which receives excitatory (positive) and inhibitory
(negative) spike signals from external sources which may be sensory sources or neurons (Figure 1).
These spike signals occur following independent Poisson processes of rates λ+(m) for the excitatory
spike signal and λ−(m) for the inhibitory spike signal respectively, to cell m ∈ {1, . . . , M}.

The RL algorithm is based on the RNN with at least as many nodes as the number of decisions to
be taken is generated where neurons are numbered 1, . . . , j, . . . , n; therefore for any decision i, there is
some neuron i. Decisions in this RL algorithm with the RNN are taken by selecting the decision j for
which the corresponding neuron is the most excited, the one with has the largest value of qj. The state
qj is the probability that it is excited, these quantities satisfy the system of non-linear equations:

qj =
λ+(j)

r(j)+λ−(j)
. (1)

3.2. The Cognitive Packet Network

The CPN was introduced by Gelenbe et al. [33–37]; it has been tested in large-scale networks up to
100 nodes with worst and best case performance scenarios. The CPN assigns routing and flow control
capabilities to the packets rather than the nodes (Figure 2). QoS goals are assigned to Cognitive Packets
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(CP) within the CPN, which they follow when making routing decisions themselves with minimum
dependence on the nodes. Cognitive Packets learn from experience of other CP packets with whom
they interchange network information using n Mailboxes (MB) and their own inspection about the
network storing network information in their Cognitive Map (CM).Sensors 2018, 18, 3327 5 of 21 
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Figure 2. The Cognitive Packet Network (CPN).

Given some Goal G that the agent has to achieve as a function to be to be optimized and reward R
as a consequence of the interaction with the environment; successive measured values of the R are
denoted by Rl, l = 1, 2, . . . these are used to compute a decision threshold:

Tl= αTl−1+(1− α)Rl , (2)

where α is some constant 0 < α < 1. The agent takes the lth decision which corresponds to neuron j and
then the lth reward Rl is measured and its associated Tl−1 is calculated.

3.3. Deep Learning Clusters

Deep Learning Clusters with RNN is described by Gelenbe, E. and Yin, Y. [38,39]. This model is
based on the generalized queuing networks with triggered customer movement (G-networks) where
customers are either “positive” or “negative” and customers can be moved from queues or leave
the network (Figure 3). G-Networks are introduced by Gelenbe et al. [40,41]; an extension to this
model is developed by Gelenbe et al. [42] where synchronized interactions of two queues could add
a customer in a third queue. The model considers a special network M(n) that contains n identically
connected neurons, each which has a firing rate r and external inhibitory and excitatory signals λ−

and λ+ respectively. The state of each cell is denoted by q, and it receives an inhibitory input from the
state of some cell u which does not belong to M(n), therefore for any cell i ∈M(n) there is an inhibitory
weight w−(u) ≡ w−(u,i) > 0 from u to i.
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Figure 3. Cluster of Neurons.

The DL Architecture is composed of C multiple clusters, each of which is made up of an M(n)
cluster each with n hidden neurons (Figure 4). For the c-th such cluster, c = 1, . . . , C, the state of each
of its identical cells is denoted by qc. In addition, there are U input cells which do not belong to these C
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clusters, and the state of the u-th cell u = 1, . . . , U is denoted by qu. The cluster network has U input
cells and C clusters. The Deep Learning clusters model defines:

• I = (idl1, idl2, . . . , idlu), U-dimensional vector I ∈ [0,1]U for the input state qu for the cell u;
• w−(u,c), U × C matrix of weights from the U input cells to the cells in each of the C clusters;
• Y = (ydl1, ydl2, . . . , ydlc), a C-dimensional vector Y ∈ [0,1]C for the cell state qc for the cluster c.
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parameters for the input I and output Y using Gradient Descent learning algorithm which optimizes
the network weight parameters w−(u,c) from a set of input-output pairs (iu,yc).

3.4. Deep Learning Management Clusters

The Deep Learning management cluster was proposed by Serrano et al. [43]. It takes management
decisions based on the inputs from different Deep Learning clusters (Figure 5); the Deep Learning
Management cluster supervises the Deep Learning Clusters. The Deep Learning Management
Cluster defines:

• Imc = (imc1, imc2, . . . , imcc), C-dimensional vector Imc ∈ [0,1]C for the input state qc for the cluster c;
• w−(c), C-dimensional vector of weights from the C input clusters to the cells in the Management

Cluster mc;
• Ymc, a scalar Ymc ∈ [0,1], the cell state qmc for the Management Cluster mc.
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3.5. Deep Learning Cluster Structures

3.5.1. Deep Learning Cluster Model

The DL Cluster Structure emulates the way the brain learns and makes choices by combing
different learning algorithms. The proposed model is based on the RNN Reinforcement Learning
for fast local decisions and DL for long-term memory to remember network identity: QoS metrics
(Delay, Loss and Bandwidth) and Cyber keys (User, Packet and Node). The addition of a layer of
DL Management Clusters (QoS, Cyber and CEO) takes the final routing decision based on the inputs
from the DL QoS clusters and RNN Reinforcement Learning algorithm (Figure 6). The Deep Learning
Cluster Structures has been applied in the CPN for Quality of Service metrics and Cyber Security keys
in Management Decisions based on packet routing and flow control.
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The RNN RL Algorithm is chosen by the CEO DL Management Cluster under normal or conscious
operations due to its fast and adaptable routing learning as short memory whereas DL clusters are
selected under external cyber-attacks based on the long-term memory in unconsciousness operation as
a safe and resilient although inefficient and inflexible routing.

The RNN RL Algorithm instantaneously updates its network weights based on the direct
observations from the network; this enables its routing algorithm to take quick decisions adaptable
to changes. Deep Learning algorithm adapts slowly to network changes where the proposed model
applies it as a reliable and safe routing when the CPN is compromised by a Cyber-attack; it emulates
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the brain in a subconscious mode with long-term memory; where it takes minimum decisions for
defense or survival.

3.5.2. Deep Learning Clusters

DL clusters (Appendix A) learn the network identity that consists of QoS network metrics,
including best routes for each QoS metric, and Cyber keys. A DL cluster is assigned to each QoS metric:
Delay, Packet Loss and Bandwidth. Each QoS DL cluster learns the best-associated QoS metric with
its best-associated node gates. When a node observes a better QoS route with a lower QoS metric; it
learns its value and includes the gate on the first position of the QoS DL routing table.

In addition, a DL cluster is assigned per Cyber key: User, Packet and Node. The user cyber
network weights authenticate the application that has transmitted the packet. The packet cyber
network weights validate the packet transmitted is legitimate; this secures the network against Denial
of Service attacks. The node cyber network weights authenticate the nodes within the CPN; this
secures the CPN against impostor nodes. The Cyber network weights could have been assigned
previously to the CPN nodes by the network administrator or the CPN nodes could have learnt them
in an initialization mode. When a CPN node receives a CP; each Cyber DL cluster extracts its relevant
keys and uses them as input and output values. If the quadratic error between the Cyber DL cluster
output vector and the input vector is over a threshold then the CPN node considers the certificate as
invalid or the CPN is under Cyber-attack.

This model defines three QoS clusters; Delay, Packet Loss and Bandwidth:

• IQoS = (iQoS
1, iQoS

2, . . . , iQoS
u) a U-dimensional IQoS ∈ [0,1]U vector where iQoS

1, iQoS
2, and iQoS

u

are the same value for each QoS type;
• w−QoS(u,c) is the U × C matrix of weights of the QoS Deep Learning Cluster;
• YQoS = (yQoS

1, yQoS
2, . . . , yQoS

c) a C-dimensional vector YQoS ∈ [0,1]C where yQoS
1 is the QoS

metric and yQoS
2, . . . , yQoS

c are the node’s QoS best routing gates.

In addition, this model defines three Cyber clusters; User Packet and Node:

• ICyber = (iCyber
1, iCyber

2, . . . , iCyber
u) a U-dimensional vector ICyber ∈ [0,1]U where iCyber

1, iCyber
2,

. . . , iCyber
u are the Cyber keys from the CP;

• w−Cyber(u,c) is the U × C matrix of weights of the Cyber Deep Learning Cluster;
• YCyber = (yCyber

1, yCyber
2, . . . , yCyber

c) a C-dimensional vector YCyber ∈ [0,1]C where yCyber
1,

yCyber
2, . . . , yCyber

c are the Cyber keys from the DL cluster.

3.5.3. Deep Learning Management Cluster

The DL management clusters take the overall routing management decision (Figure 7). The QoS
and Cyber management clusters analyze the output from their associated QoS and Cyber DL clusters
respectively. If the Cyber management cluster detects a failure in the cyber certificates; the CEO
management cluster routes the network Cognitive Packets as safe mode using the QoS DL clusters,
otherwise, if the Cyber certificates are valid the CEO management cluster chooses the route provided
by the RNN-RL routing algorithm as normal mode.
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Figure 7. CPN node with Deep Learning clusters model. 

4. Implementation 

The Deep Learning Clusters Structure for Management Decisions is implemented in the CPN 

using the Network Simulator Omnet 5.0. The simulation covers several size nxn square CPNs where 

all the nodes in the same and adjacent layers are connected with each other. For simplicity, the 

simulation always considers the first node (Node 1) as the only transmitter and the last node (Node 

n) as the only receiver; the other nodes only participate in the routing of Cognitive Packets. An 

example of a 4 × 4 network is shown in Figure 8. 
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This model defines the QoS management cluster as:

• Iqmc = (iqmc
1, iqmc

2, . . . iqmc
c), a C-dimensional vector Iqmc ∈ [0,1]C with the values of the QoS

Metrics for each QoS cluster;
• wqmc

−(c) is the C-dimensional vector of weights that represents the Goal = (αDelay, βLoss,
γBandwidth);

• Yqmc, a scalar Yqmc ∈ [0,1] that represents the best QoS metric routing decision to be taken.

Cyber management cluster as:

• Icmc = (icmc
1, icmc

2, . . . icmc
c), a C-dimensional vector Icmc ∈ [0,1]C with the values of the key

errors for each Cyber cluster (User, Packet, Node);
• wcmc

−(c) is the C-dimensional vector of weights that represents the relevance of each
Cyber Cluster;

• Ycmc, a scalar Ycmc ∈ [0,1] that represents if the packet has passed the Cyber network security.

CEO management cluster as:

• ICEOmc, a scalar ICEOmc ∈ [0,1] with the values of the QoS management cluster;
• wCEOmc

− a scalar wCEOmc
− ∈ [0,1] that represents the error of the Cyber management cluster;

• YCEOmc, a scalar YCEOmc ∈ [0,1] that represents the final routing decision.

4. Implementation

The Deep Learning Clusters Structure for Management Decisions is implemented in the CPN
using the Network Simulator Omnet 5.0. The simulation covers several size nxn square CPNs where all
the nodes in the same and adjacent layers are connected with each other. For simplicity, the simulation
always considers the first node (Node 1) as the only transmitter and the last node (Node n) as the only
receiver; the other nodes only participate in the routing of Cognitive Packets. An example of a 4 × 4
network is shown in Figure 8.
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Figure 8. CPN Network (4 × 4 Nodes).

Each node has normalized QoS Delay, Loss and Bandwidth metrics as relative to their number;
in an n × n network node i will have Delay: 10i; Loss: 5(n − i) and Bandwidth: 5 + 10i respectively.
The approach is represented in Table 1 for a 4 × 4 network. After two Cognitive Packets are sent with
a defined QoS; the QoS metric swaps between each internal node the within the same column for a
4 × 4 CPN. This model proposes to set the RNN-RL network weights with initialization packets sent
at random gates.

Table 1. QoS Values (4 × 4 Nodes).

Node 4 Initial—Final Node 5 Initial—Final Node 9 Initial—Final Node 16 Initial—Final

Delay: 40–40 Delay: 50–80 Delay: 90–120 Delay: 160–160
Loss: 65–65 Loss: 60–45 Loss: 40–25 Loss: 05–05

Bandwidth: 45–45 Bandwidth: 55–85 Bandwidth: 95–125 Bandwidth: 165–165

Node 3 Initial—Final Node 6 Initial—Final Node 10 Initial—Final Node 15 Initial—Final

Delay: 30–30 Delay: 60–70 Delay: 100–110 Delay: 150–150
Loss: 70–70 Loss: 55–50 Loss: 35–30 Loss: 10–10

Bandwidth: 35–35 Bandwidth: 65–75 Bandwidth: 105–115 Bandwidth:155–155

Node 2 Initial—Final Node 7 Initial—Final Node 11 Initial—Final Node 14 Initial—Final

Delay: 20–20 Delay: 70–60 Delay: 110–100 Delay: 140–140
Loss: 75–75 Loss: 50–55 Loss: 30–35 Loss: 15–15

Bandwidth: 25–25 Bandwidth: 75–65 Bandwidth: 115–105 Bandwidth: 145–145

Node 1 Initial—Final Node 8 Initial—Final Node 12 Initial—Final Node 13 Initial—Final

Delay: 10–10 Delay: 80–50 Delay: 120–90 Delay: 130–130
Loss: 80–80 Loss: 45–60 Loss: 25–40 Loss: 20–20

Bandwidth: 15–15 Bandwidth: 85–55 Bandwidth: 125–95 Bandwidth: 135–135

4.1. Quality of Service Deep Learning Cluster

The QoS DL clusters have three input cells (u = 3) and three output clusters (c = 3). The model
therefore has iQoS-d

1 = 0.5; iQoS-d
2 = 0.5 and iQoS-d

3 = 0.5; yQoS-d
1 is the best QoS Delay metric, yQoS-d

2

the best QoS Delay route and yQoS-d
3 the second best Delay route. The model follows a similar

approach for the Loss and Bandwidth QoS DL clusters respectively. The model normalizes the inputs
of the DL clusters to (0.5+ QoS Metric/1000) and (0.5+ Best Gate/100) respectively.

4.2. Cyber Deep Learning Cluster

The Cyber DL clusters have ten input cells (u = 10) and ten output clusters (c = 10). The key is a
vector of 10 dimensions. iCyber-u

u, iCyber-p
u, iCyber-n

u have a value between 0.1 and 0.9 with increments
0.1∆. The Cyber DL clusters network weights are trained with the value of the input the same as
the output.
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4.3. Deep Learning Management Cluster

The inputs of the Cyber management cluster are the errors provided by each Cyber DL cluster
and the value of its network weights are set with the same value (0.1) therefore different cyber DL
clusters have the same priority. The output Ycmc is the overall Cyber quantified error decision based
on a threshold. The input of the QoS management cluster are the best QoS metrics from each QoS DL
cluster and the value of its networks weights corresponds to the Goal = (αDelay, βLoss, γBandwidth).
The output Yqmc is quantified best QoS metric decision.

The input of the CEO management cluster is the value provided by the QoS management cluster
and its network weight is the value provided by the Cyber management cluster. The output is the
final routing decision between the different gates provided by the RNN-RL algorithm, Delay, Loss and
Bandwidth DL clusters.

5. Experimental Results

The DL Clusters Structure for Management Decisions has been simulated in three different n × n
Cognitive Packet Network sizes, 3 × 3, 4 × 4, and 5 × 5 with different Cyber keys; QoS metrics and
Goal changes to assess the routing decision-making of our proposed DL Structure. Please note that we
are not evaluating the routing protocol but the routing decision.

5.1. Cyber Deep Learning cluster results

The different Cyber DL clusters are validated where the security keys are modified at node 1 and
the cyber validation error is measured at the next node 4 once the CPs have a stable route. The keys are
gradually changed; from the correct key to 0.1∆ increments applied to the different key dimensions.

The Cyber DL cluster error largely increases even only with one 0.1∆ increment (Table 2).
The results are consistent between the different Cyber DL clusters. Cyber key increments have
a bigger error if they are applied in the same dimension rather than split into different dimensions.

Table 2. Cyber Deep Learning Cluster Validation.

Dimension ∆ = 0.0 ∆ = 0.1 ∆ = 0.2 ∆ = 0.3 ∆ = 0.4

1 9.7500 × 10−11 0.0102 0.0409 0.0921 0.1638
2 9.7537 × 10−11 0.0213 0.0851 0.1915 0.3406
3 9.7537 × 10−11 0.0326 0.1305 0.2938 0.5226
4 9.7537 × 10−11 0.0451 0.1806 0.4067 0.7238
5 9.7537 × 10−11 0.0576 0.2306 0.5195 0.9249
6 9.7537 × 10−11 0.0715 0.2867 0.6465 1.1519
7 9.7537 × 10−11 0.0851 0.3414 0.7703 1.3732
8 9.7537 × 10−11 0.1006 0.4038 0.9119 1.6273
9 9.7537 × 10−11 0.1153 0.4633 1.0470 1.8698

10 9.7537 × 10−11 0.1323 0.5321 1.2038 2.1526

5.2. Quality of Service Deep Learning Cluster Results (3 × 3 Nodes)

The 3 × 3 CPN is simulated with a continuous 160 Cognitive Packet stream. The first 20 packets
are used to initialize the CPN network. Goal changes after 20 packets whereas QoS metric changes
2 packets after the new Goal is selected following Tl = 0.9Tl−1 + 0.1R where Tl is the Threshold at
decision packet l and R is the Reward. The QoS DL clusters have been validated with seven different
variable Goals for the same Cognitive Packet stream (Table 3).
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Table 3. QoS Deep Learning Cluster Validation (3 × 3 Nodes)—Simulation Parameters.

Packet Goal Number Goal Description QoS

001–020 - Network Initialization Packets
021–022 1 1 × Delay Initial Values
023–040 1 1 × Delay Final Values
041–042 2 1 × Loss Initial Values
043–060 2 1 × Loss Final Values
061–062 3 1 × Bandwidth Initial Values
063–080 3 1 × Bandwidth Final Values
081–082 4 0.5 × Delay + 0.5 × Loss Initial Values
083–100 4 0.5 × Delay + 0.5 × Loss Final Values
101–102 5 0.5 × Delay + 0.5 × Bandwidth Initial Values
103–120 5 0.5 × Delay + 0.5 × Bandwidth Final Values
121–122 6 0.5 × Loss + 0.5 × Bandwidth Initial Values
123–140 6 0.5 × Loss + 0.5 × Bandwidth Final Values
141–142 7 0.3 × Delay + 0.3 × Loss + 0.3 × Bandwidth Initial Values
143–160 7 0.3 × Delay + 0.3 × Loss + 0.3 × Bandwidth Final Values

The average error and learning algorithm iteration values for the QoS and Cyber DL clusters is
shown in Table 4. The learning error of the QoS and Cyber DL Clusters is very reduced.

Table 4. Deep Learning Cluster Validation (3 × 3 Nodes).

Cyber DL Cluster Error Iteration QoS DL Cluster Error Iteration

Cyber User 6.96 × 10−10 58 QoS Delay 9.59 × 10−10 163.67
Cyber Packet 7.34 × 10−10 108 QoS Loss 9.16 × 10−10 163.14
Cyber Node 9.94 × 10−10 1162.33 QoS Bandwidth 9.16 × 10−10 135.33

The number of updates in the network weights, or routing table, for the DL cluster and the RNN
Reinforcement Learning is represented in Table 5.

Table 5. Deep Learning Cluster vs RNN-RL (3 × 3 Nodes).

Updates RNN-RL QoS Delay QoS Loss QoS Bandwidth

Initialization 0 4 1 3
CP 021-160 140 9 1 9

The RNN Reinforcement Learning algorithm continuously updates its network weighs whereas
the DL Cluster route only refreshes when a better route is found, however, the number of required
iterations to update RNN-RL is only one whereas QoS DL clusters require approximately 160 iterations
as shown in Table 4. The route decision taken by the CEO Management Cluster when the Cyber
management cluster has authorized the different Cyber keys is shown in Tables 6–8 for only three
different Goals as the simulation includes seven.
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Table 6. Goal: 1 × Delay (3 × 3 Nodes).

Packet RNN-RL Route DL Route Best Route Goal 1/Reward 1/Threshold

021 1-4-9 1-4-9 1-4-9 130.00 130.00
022 1-4-9 1-4-9 1-4-9 130.00 130.00
023 1-4-9 1-4-9 1-6-9 150.00 130.00
024 1-4-9 1-4-9 1-6-9 150.00 131.76
025 1-4-9 1-4-9 1-6-9 150.00 133.38
026 1-4-9 1-4-9 1-6-9 150.00 134.87
027 1-5-9 1-4-9 1-6-9 140.00 136.25
028 1-4-9 1-4-9 1-6-9 150.00 136.61
029 1-2-6-9 1-4-9 1-6-9 150.00 137.84
030 1-6-9 1-4-9 1-6-9 130.00 138.97
031 1-6-9 1-6-9 1-6-9 130.00 138.02
040 1-6-9 1-6-9 1-6-9 130.00 132.99

Table 7. Goal: 0.5 × Delay + 0.5 × Loss (3 × 3 Nodes).

Packet RNN-RL Route DL Route Best Route Goal 1/Reward 1/Threshold

081 1-4-9 1-4-9 1-4-9 82.50 82.50
082 1-4-9 1-4-9 1-4-9 82.50 82.50
083 1-4-9 1-4-9 1-6-9 87.50 82.50
084 1-5-9 1-4-9 1-6-9 85.00 82.97
085 1-6-9 1-4-9 1-6-9 82.50 83.17
086 1-6-9 1-6-9 1-6-9 82.50 83.10
087 1-6-9 1-6-9 1-6-9 82.50 83.04
088 1-6-9 1-6-9 1-6-9 82.50 82.99
089 1-6-9 1-6-9 1-6-9 82.50 82.94
090 1-6-9 1-6-9 1-6-9 82.50 82.90
091 1-6-9 1-6-9 1-6-9 82.50 82.86
100 1-6-9 1-6-9 1-6-9 82.50 82.64

Table 8. Goal: 0.3 × Delay + 0.3 × Loss + 0.3 × Bandwidth (3 × 3 Nodes).

Packet RNN-RL Route DL Route Best Route Goal 1/Reward 1/Threshold

141 1-4-9 1-4-9 1-4-9 101.66 101.66
142 1-4-9 1-4-9 1-4-9 101.66 101.66
143 1-4-9 1-4-9 1-6-9 111.66 101.66
144 1-4-9 1-4-9 1-6-9 111.66 102.58
145 1-4-9 1-4-9 1-6-9 111.66 103.42
146 1-4-9 1-4-9 1-6-9 111.66 104.18
147 1-5-9 1-4-9 1-6-9 106.66 104.89
148 1-6-9 1-4-9 1-6-9 101.66 105.06
149 1-6-9 1-6-9 1-6-9 101.66 104.71
150 1-6-9 1-6-9 1-6-9 101.66 104.40
151 1-6-9 1-6-9 1-6-9 101.66 104.12
160 1-6-9 1-6-9 1-6-9 101.66 102.60

The route provided by the QoS DL clusters remains unchanged due to its slow learning process
until the new best route is found by the RNN-RL. The Reward and Threshold of route decision taken
by the CEO Management Cluster when the Cyber management cluster has authorized the different
Cyber keys is shown in Figure 9 for the seven different Goals. When the new best route is discovered;
the CPN Threshold adapts gradually to the original value.
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5.4. Quality of Service Deep Learning Cluster Results (4 × 4 Nodes)

The 4 × 4 CPN is simulated with a continuous 380 Cognitive Packet stream. The first 100 packets
are used to initialize the CPN network. Goal changes after 40 packets whereas QoS metric changes
2 packets after the new Goal is selected following Tl = 0.99Tl−1 + 0.01R where T is the Threshold at
decision packet l and R is the Reward. The QoS DL clusters have been validated with seven different
variable Goals for the same Cognitive Packet stream (Table 10).



Sensors 2018, 18, 3327 15 of 22

Table 10. QoS Deep Learning Cluster Validation (4 × 4 Nodes) —Simulation Parameters.

Cognitive Packet Goal Number Goal Description QoS Metric

000–100 - Network Initialization Cognitive Packets
001–002 1 1.0× Delay + 0.0× Loss + 0.0× Bandwidth Initial Values
003–040 1 1.0× Delay + 0.0× Loss + 0.0× Bandwidth Final Values
041–042 2 0.0× Delay + 1.0× Loss + 0.0× Bandwidth Initial Values
043–080 2 0.0× Delay + 1.0× Loss + 0.0× Bandwidth Final Values
081–082 3 0.0× Delay + 0.0× Loss + 1.0× Bandwidth Initial Values
083–120 3 0.0× Delay + 0.0× Loss + 1.0× Bandwidth Final Values
121–122 4 0.5× Delay + 0.5× Loss + 0.0× Bandwidth Initial Values
123–160 4 0.5× Delay + 0.5× Loss + 0.0× Bandwidth Final Values
161–162 5 0.5× Delay + 0.0× Loss + 0.5× Bandwidth Initial Values
163–200 5 0.5× Delay + 0.0× Loss + 0.5× Bandwidth Final Values
201–202 6 0.0× Delay + 0.5× Loss + 0.5× Bandwidth Initial Values
203–240 6 0.0× Delay + 0.5× Loss + 0.5× Bandwidth Final Values
241–242 7 0.3 × Delay + 0 × 3Loss + 0.3 × Bandwidth Initial Values
243–280 7 0.3 × Delay + 0 × 3Loss + 0.3 × Bandwidth Final Values

The average error and learning algorithm iteration values for the QoS and Cyber DL clusters is
shown in Table 11.

Table 11. Deep Learning Cluster Validation (4 × 4 Nodes).

Cyber DL Cluster Error Iteration QoS DL Cluster Error Iteration

Cyber User 6.96 × 10−10 58.00 QoS Delay 9.34 × 10−10 158.67
Cyber Packet 7.34 × 10−10 108.00 QoS Loss 9.22 × 10−10 152.07
Cyber Node 9.93 × 10−10 1017.87 QoS Bandwidth 8.83 × 10−10 127.60

The number of updates in the network weights or routing table for the DL cluster and the RNN
Reinforcement Learning is shown in Table 12.

Table 12. Deep Learning Cluster vs. RNN-RL (4 × 4 Nodes).

Updates RNN-RL QoS Delay QoS Loss QoS Bandwidth

Initialization 0 8 6 7
CP 001-280 280 9 4 9

The number of iterations to update RNN-RL is only one whereas DL clusters require
approximately 150 iterations as shown in Table 11. The route decision taken by the CEO Management
Cluster when the Cyber management cluster has authorized the different Cyber keys are shown in
Table 13, for the first Goal only.

The results provided by the 4 × 4 CPN are similar to the 3 × 3 CPN. The first two packets follow
the best route whereas the third packet acknowledges the QoS metrics have changed. RNN-RL finds
the optimum route after Cognitive Packets explore the network and DL learns the route a Cognitive
Packet after. The Reward and Threshold of route decision taken by the CEO Management Cluster
when the Cyber management cluster has authorized the different Cyber keys is shown in Figure 10 for
the seven different Goals. When the new best route is discovered; the CPN Threshold adapts gradually
to the original value.
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Table 13. Goal: 1 × Delay (4 × 4 Nodes).

Packet RNN-RL Route DL Route Best Route Goal 1/Reward 1/Threshold

001 1-5-9-16 1-5-9-16 1-5-9-16 300.00 300.00
002 1-5-9-16 1-5-9-16 1-5-9-16 300.00 300.00
003 1-5-9-16 1-5-9-16 1-8-12-16 360.00 300.00
004 1-5-9-16 1-5-9-16 1-8-12-16 360.00 300.50
005 1-5-9-16 1-5-9-16 1-8-12-16 360.00 301.00
006 1-5-9-16 1-5-9-16 1-8-12-16 360.00 301.49
007 1-5-9-16 1-5-9-16 1-8-12-16 360.00 301.98
008 1-6-9-16 1-5-9-16 1-8-12-16 350.00 302.47
009 1-7-9-16 1-5-9-16 1-8-12-16 340.00 302.88
010 1-2-6-10-16 1-5-9-16 1-8-12-16 360.00 303.21
011 1-8-9-16 1-5-9-16 1-8-12-16 330.00 303.69
012 1-4-5-10-16 1-5-9-16 1-8-12-16 390.00 303.93
013 1-3-5-11-16 1-5-9-16 1-8-12-16 370.00 304.61
014 1-5-11-16 1-5-9-16 1-8-12-16 340.00 305.15
015 1-6-11-16 1-5-9-16 1-8-12-16 330.00 305.46
016 1-7-10-16 1-5-9-16 1-8-12-16 330.00 305.69
017 1-2-7-11-16 1-5-9-16 1-8-12-16 340.00 305.91
018 1-4-6-12-16 1-5-9-16 1-8-12-16 360.00 306.22
019 1-8-10-16 1-5-9-16 1-8-12-16 320.00 306.68
020 1-3-6-12-16 1-5-9-16 1-8-12-16 350.00 306.80
021 1-5-11-16 1-5-9-16 1-8-12-16 340.00 307.18
022 1-4-3-7-12-16 1-5-9-16 1-8-12-16 380.00 307.48
023 1-2-8-11-16 1-5-9-16 1-8-12-16 330.00 308.07
024 1-6-12-15 1-5-9-16 1-8-12-16 320.00 308.27
025 1-7-12-15 1-5-9-16 1-8-12-16 310.00 308.39
026 1-3-4-8-12-16 1-5-9-16 1-8-12-16 370.00 308.40
027 1-8-12-16 1-5-9-16 1-8-12-16 300.00 308.92
028 1-8-12-16 1-8-12-16 1-8-12-16 300.00 308.82
029 1-8-12-16 1-8-12-16 1-8-12-16 300.00 308.73
030 1-8-12-16 1-8-12-16 1-8-12-16 300.00 308.64
040 1-8-12-16 1-8-12-16 1-8-12-16 300.00 307.80
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5.5. Deep Learning Management Cluster Results (4 × 4 Nodes)

The results provided by the DL management cluster confirm the proposed model. The correct
quantification of the DL management cluster cell states and the selection of the accurate thresholds
are fundamental to take relevant optimum decisions. Three different strategic Cognitive Packets are
chosen (CP 107, CP 228 and CP 341) for the 4 × 4 CPN validation, where each one has a different Goal.
Results for the two different Cyber Security scenarios; ∆ = 0: normal operation and ∆ = 0.1: CPN under
Cyber-attack are shown in Table 14.

Table 14. DL Management Cluster Validation (4 × 4 Nodes).

Variable Cognitive Packet: 107
G: 1.0 × D + 0.0 × L + 0.0 × B

Cognitive Packet: 228
G: 0.5 × D + 0.5 × L + 0.0 × B

Cognitive Packet: 341
G: 0.3 × D + 0.3 × L + 0.3 × B

Cyber Attack ∆ = 0.0 ∆ = 0.1 ∆ = 0.0 ∆ = 0.1 ∆ = 0.0 ∆ = 0.1
Cyber Icmc 5 × 10−11 3.4 × 10−4 5 × 10−11 3.4 × 10−4 5 × 10−11 3.4 × 10−4

Cyber Ycmc 0.9994 0.9969 0.9994 0.9969 0.9994 0.9969
QoS-Delay Iqmc 0.8000 0.8000 0.4000 0.4000 0.2666 0.2666
QoS-Loss Iqmc 0.0000 0.0000 0.2875 0.2875 0.1916 0.1916
QoS-Band Iqmc 0.0000 0.0000 0.0000 0.0000 0.2716 0.2716

QoS-Delay Yqmc 0.1444 0.1444 0.2523 0.2523 0.3361 0.3361
QoS-Loss Yqmc 0.9994 0.9994 0.3195 0.3195 0.4132 0.4132

QoS- Band Yqmc 0.9994 0.9994 0.9994 0.9994 0.3319 0.3319
CEO ICEOmc 0.1000 0.1000 0.1000 0.1000 0.9000 0.9000

CEO wCEOmc
−(c) 0.0000 0.9999 0.0000 0.9999 0.0000 0.9999

CEO YCEOmc 0.9994 0.5746 0.9994 0.5746 0.9994 0.1305

Routing
Decision

RNN-DL
Gate-6
Node 8

DL-Delay
Gate-3
Node 5

RNN-DL
Gate-6
Node 8

DL-Delay
Gate-6
Node 8

RNN-DL
Gate-6
Node 8

DL-Band
Gate-3
Node 5

5.6. Quality of Service Deep Learning Cluster Results (5 × 5 Nodes)

The 5 × 5 CPN is simulated with a continuous 1550 Cognitive Packet stream. The first 1500
packets are used to initialize the CPN network with a single 1.0 × Delay Goal after 50 packets whereas
QoS metric changes 2 packets after the Goal is selected following Tl = 0.999Tl−1 + 0.01R. The QoS DL
clusters have been validated with only one Goal for the same Cognitive Packet stream (Table 15).

Table 15. QoS Deep Learning Cluster Validation—Simulation Parameters (5 × 5 Nodes).

Cognitive Packet Goal Number Goal Description QoS Metric

0000–1500 - Network Initialization Cognitive Packets
001–002 1 1.0× Delay + 0.0× Loss + 0.0× Bandwidth Initial Values
003–050 1 1.0× Delay + 0.0× Loss + 0.0× Bandwidth Final Values

The average error and learning algorithm iteration values for the QoS and Cyber Deep Learning
clusters is shown in Table 16.

Table 16. Deep Learning Cluster Validation (5 × 5 Nodes).

Cyber DL Cluster Error Iteration QoS DL Cluster Error Iteration

Cyber User 7.56 × 10−13 62 QoS Delay 9.4 × 10−13 221.11
Cyber Packet 8.60 × 10−13 125 QoS Loss 9.30 × 10−13 182.40
Cyber Node 9.91 × 10−13 2128.68 QoS Bandwidth 9.30 × 10−13 200.71

The number of updates in the network weights, or Routing Table for the DL cluster and the RNN
Reinforcement Learning is represented in Table 17.
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Table 17. Deep Learning Cluster vs RNN-RL (5 × 5 Nodes).

Updates RNN-RL QoS Delay QoS Loss QoS Bandwidth

Initialization 0 8 20 7
CP 001-050 50 1 0 0

The Network keeps sending Cognitive Packets until the value of the 1/Reward is lesser than the
1/Threshold. When the new best route is discovered as shown in Figure 11; the CPN Threshold adapts
gradually to the original value.Sensors 2018, 18, 3327 18 of 21 
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5.7. Deep Learning Management Cluster Results (5 × 5 Nodes)

Results for the two different Cyber Security scenarios; ∆ = 0: normal operation and ∆ = 0.1: CPN
under Cyber-attack are shown in Table 18. For the 5 × 5 CPN, the results of the DL Management
cluster are consistent with the previous results, the DL management cluster adapts to network changes
and provides the optimum route based on the current network conditions.
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Table 18. DL Management Cluster Validation (5 × 5 Nodes).

Variable Cognitive Packet: 034
G: 1.0 × D + 0.0 × L + 0.0 × B

Cyber Attack ∆ = 0.0 ∆ = 0.1
Cyber Icmc 5.14 × 10−14 3.47 × 10−4

Cyber Ycmc 0.9994 0.9969
QoS-Delay Iqmc 0.5590 0.5590
QoS-Loss Iqmc 0.0000 0.0000
QoS-Band Iqmc 0.0000 0.0000

QoS-Delay Yqmc 0.1945 0.1945
QoS-Loss Yqmc 0.9994 0.9994

QoS- Band Yqmc 0.9994 0.9994
CEO ICEOmc 0.1000 0.1000

CEO wCEOmc
−(c) 0.0000 0.9999

CEO YCEOmc 0.9994 0.5746

Routing
Decision

RNN-RL
Gate-8

Node 10

DL-Delay
Gate-4
Node 6

6. Conclusions

This paper has presented a Deep Learning Cluster Structure for Management Decisions.
The proposed hierarchical decision model has been validated in the Cognitive Packet Network
with three configurations: small size 3 × 3, medium size 4 × 4 and large size 5 × 5 with one, two and
three layers of decision respectively. The addition of Deep Learning clusters specialized in different
functions (Cyber, QoS, and Management) provides a flexible approach similar to how our brain
performs; Deep Learning clusters are able to adapt and being assigned where more routing, computing
and memory resources are required.

The RNN Reinforcement Learning algorithm adapts very quickly to variable QoS changes with
fast decisions in short-term memory; whereas Deep Learning is slow to adapt to QoS changes as it
learns from the RNN-DL algorithm and stores routing information in long-term memory. The CEO
management cluster takes the right routing decisions based on the inputs from the QoS and Cyber
Management Clusters. This allows the CPN to use a safe route in case of Cyber-attack, or a fast route
under normal conditions. Future work will expand the validation gradually up to very large-scale
networks (100 nodes, 8 decision layers).
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Figure A1. Deep Learning Cluster Structures for Management Decisions—Neural Schematic. 

References 

1. Bassett, S.; Bullmore, E. Small-World Brain Networks. Neuroscientist 2007, 12, 512–523. 

2. Squire, L. Declarative and Nondeclarative Memory: Multiple Brain Systems Supporting Learning and 

Memory. J. Cogn. Neurosci. 1992, 4, 232–243. 

3. Grossberg, S. The Link between Brain Learning, Attention, and Consciousness. Conscious. Cogn. 1999, 8, 1–

44. 

4. Ericsson, G. Cyber Security and Power System Communication, Essential Parts of a Smart Grid 

Infrastructure. IEEE Trans. Power Deliv. 2010, 25, 1501–1507. 

Figure A1. Deep Learning Cluster Structures for Management Decisions—Neural Schematic.

References

1. Bassett, S.; Bullmore, E. Small-World Brain Networks. Neuroscientist 2007, 12, 512–523. [CrossRef] [PubMed]
2. Squire, L. Declarative and Nondeclarative Memory: Multiple Brain Systems Supporting Learning and

Memory. J. Cogn. Neurosci. 1992, 4, 232–243. [CrossRef] [PubMed]
3. Grossberg, S. The Link between Brain Learning, Attention, and Consciousness. Conscious. Cogn. 1999, 8,

1–44. [CrossRef] [PubMed]
4. Ericsson, G. Cyber Security and Power System Communication, Essential Parts of a Smart Grid Infrastructure.

IEEE Trans. Power Deliv. 2010, 25, 1501–1507. [CrossRef]
5. Ten, C.; Manimaran, G.; Liu, C. Cybersecurity for Critical Infrastructures: Attack and Defense Modeling.

IEEE Trans. Syst. Man Cybern. A 2010, 40, 853–865. [CrossRef]
6. Cruz, T.; Rosa, L.; Proença, J.; Maglaras, L.; Aubigny, M.; Lev, L.; Jiang, J.; Simões, P. A Cybersecurity

Detection Framework for Supervisory Control and Data Acquisition Systems. IEEE Trans. Ind. Inform. 2016,
12, 2236–2246. [CrossRef]

7. Wang, Q.; Guo, W.; Zhang, K.; Ororbia, A.; Xing, X.; Liu, X.; Giles, L. Learning Adversary-Resistant Deep
Neural Networks. arXiv, 2016; arXiv:1612.01401.

8. Tuor, A.; Kaplan, S.; Hutchinson, B.; Nichols, N.; Robinson, S. Deep Learning for Unsupervised Insider Threat
Detection in Structured Cybersecurity Data Streams; Association for the Advancement of Artificial Intelligence:
Menlo Park, CA, USA, 2017; pp. 4993–4994.

9. Wu, M.; Song, Z.; Moon, Y. Detecting cyber-physical attacks in CyberManufacturing systems with machine
learning methods. J. Intell. Manuf. 2017, 1–13. [CrossRef]

10. Huang, S.; Zhou, C.-J.; Yang, S.-H.; Qin, Y.-Q. Cyber-physical system security for networked industrial
processes. Int. J. Autom. Comput. Sci. 2015, 12, 567–578. [CrossRef]

11. Schmidhuber, J. Deep Learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
[PubMed]

http://dx.doi.org/10.1177/1073858406293182
http://www.ncbi.nlm.nih.gov/pubmed/17079517
http://dx.doi.org/10.1162/jocn.1992.4.3.232
http://www.ncbi.nlm.nih.gov/pubmed/23964880
http://dx.doi.org/10.1006/ccog.1998.0372
http://www.ncbi.nlm.nih.gov/pubmed/10072692
http://dx.doi.org/10.1109/TPWRD.2010.2046654
http://dx.doi.org/10.1109/TSMCA.2010.2048028
http://dx.doi.org/10.1109/TII.2016.2599841
http://dx.doi.org/10.1007/s10845-017-1315-5
http://dx.doi.org/10.1007/s11633-015-0923-9
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637


Sensors 2018, 18, 3327 21 of 22

12. Bengio, Y.; Courville, A.; Vincent, P. Unsupervised Feature Learning and Deep Learning: A Review and New
Perspectives. arXiv, 2012; arXiv:1206.5538.

13. Shao, J.; Zhao, Z.; Su, F.; Cai, A. Progressive framework for deep neural networks: From linear to non-linear.
J. China Univ. Posts Telecommun. 2016, 23, 1–7.

14. Le, Q.; Ngiam, J.; Coates, A.; Lahiri, A.; Prochnow, B.; Ng, A. On optimization methods for Deep
Learning. In Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA,
28 June–2 July 2011; pp. 265–272.

15. Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A. Multimodal Deep Learning. In Proceedings of the
28th International Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011; pp. 689–696.

16. Sutskever, I.; Vinyals, O.; Le, Q. Sequence to Sequence Learning with Neural Networks. In Proceedings of the
27th Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3104–3112.

17. Bekker, A.; Opher, I.; Lapidot, I.; Goldberger, J. Intra-cluster training strategy for Deep Learning with
applications to language identification. In Proceedings of the 2016 IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 13–16 September 2016; pp. 1–6.

18. Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-Learning. In Proceedings of the
Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence, Phoenix, AZ,
USA, 12–17 February 2016; pp. 2094–2100.

19. Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with
Deep Reinforcement learning. In Proceedings of the International Conference on Learning Representations,
San Juan, Puerto Rico, 2–4 May 2016; pp. 1–14.

20. Mnih, V.; Badia, A.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous
Methods for Deep Reinforcement Learning. In Proceedings of the International Conference on Machine
Learning, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 1928–1937.

21. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep
reinforcement learning. In Proceedings of the International Conference on International Conference on
Machine Learning, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 1995–2003.

22. Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking deep reinforcement learning for
continuous control. In Proceedings of the International Conference on Machine Learning, New York, NY,
USA, 19–24 June 2016; Volume 48, pp. 1329–1338.

23. Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep Reinforcement Learning that
Matters. In Proceedings of the Association for the Advancement of Artificial Intelligence Conference on
Artificial Intelligence, Edmonton, AB, Canada, 13–17 November 2018; pp. 1–26.

24. Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource Management with Deep Reinforcement
Learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, Atlanta, GA, USA,
9–10 November 2016; pp. 50–56.

25. Gelenbe, E. Random Neural Networks with Negative and Positive Signals and Product Form Solution.
Neural Comput. 1989, 1, 502–510. [CrossRef]

26. Gelenbe, E. Stability of the Random Neural Network Model. Neural Comput. 1990, 2, 239–247. [CrossRef]
27. Gelenbe, E. Learning with the Recurrent Random Neural Network. In Proceedings of the IFIP Congress,

Madrid, Spain, 7–11 September 1992; Volume 1, pp. 343–349.
28. Gelenbe, E.; Wu, F. Large scale simulation for human evacuation and rescue. Comput. Math. Appl. 2012, 64,

3869–3880. [CrossRef]
29. Filippoupolitis, A.; Hey, L.A.; Loukas, G.; Gelenbe, E.; Timotheou, S. Emergency response simulation using

wireless sensor networks. In Proceedings of the 1st International Conference on Ambient Media and Systems,
Quebec City, QC, Canada, 11–14 February 2008; Volume 21, pp. 1–7.

30. Gelenbe, E.; Koçak, T. Area-based results for mine detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 12–24.
[CrossRef]

31. Gelenbe, E.; Sungur, M.; Cramer, C.; Gelenbe, P. Traffic and Video Quality with Adaptive Neural Compression.
Multimed. Syst. 1996, 4, 357–369. [CrossRef]

32. Atalay, V.; Gelenbe, E.; Yalabik, N. The Random Neural Network Model for Texture Generation. Int. J. Pattern
Recognit. Artif. Intell. 1992, 6, 131–141. [CrossRef]

33. Gelenbe, E. Cognitive Packet Network. U.S. Patent 6804201 B1, 12 October 2004.

http://dx.doi.org/10.1162/neco.1989.1.4.502
http://dx.doi.org/10.1162/neco.1990.2.2.239
http://dx.doi.org/10.1016/j.camwa.2012.03.056
http://dx.doi.org/10.1109/36.823897
http://dx.doi.org/10.1007/s005300050037
http://dx.doi.org/10.1142/S0218001492000072


Sensors 2018, 18, 3327 22 of 22

34. Gelenbe, E.; Xu, Z.; Seref, E. Cognitive Packet Networks. In Proceedings of the 11th IEEE International
Conference on Tools with Artificial Intelligence, Washington, DC, USA, 8–10 November 1999; pp. 47–54.

35. Gelenbe, E.; Lent, R.; Xu, Z. Networks with Cognitive Packets. In Proceedings of the 8th International
Symposium on Modeling, Analysis, and Simulation on Computer and Telecommunication Systems,
San Francisco, CA, USA, 29 August–1 September 2000; pp. 3–10.

36. Gelenbe, E.; Lent, R.; Xu, Z. Measurement and performance of a cognitive packet network. Comput. Netw.
2001, 37, 691–701. [CrossRef]

37. Gelenbe, E.; Lent, R.; Montuori, A.; Xu, Z. Cognitive Packet Networks: QoS and Performance. In Proceedings
of the 10th IEEE International Symposium on Modeling, Analysis, and Simulation on Computer and
Telecommunication Systems, Fort Worth, TX, USA, 16 October 2002; pp. 3–9.

38. Gelenbe, E.; Yin, Y. Deep Learning with random neural networks. In Proceedings of the International Joint
Conference on Neural Networks, Vancouver, BC, Canada, 24–29 July 2016; pp. 1633–1638.

39. Yin, Y.; Gelenbe, E. Deep Learning in Multi-Layer Architectures of Dense Nuclei. arXiv 2016,
arXiv:1609.07160.

40. Gelenbe, E. G-Networks: A Unifying Model for Neural Nets and Queueing Networks. Ann. Oper. Res. 1994,
48, 433. [CrossRef]

41. Fourneau, J.M.; Gelenbe, E.; Suros, R. G-Networks with Multiple Class Negative and Positive Customers.
In Proceedings of the International Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, Durham, NC, USA, 31 January–2 February 1994; pp. 30–34.

42. Gelenbe, E.; Timotheou, S. Random Neural Networks with Synchronized Interactions. Neural Comput. 2008,
20, 2308–2324. [CrossRef] [PubMed]

43. Serrano, W.; Gelenbe, E. The Deep Learning Random Neural Network with a Management Cluster.
In Proceedings of the International Conference on Intelligent Decision Technologies, Sorrento, Italy,
19 June 2017; pp. 185–195.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1389-1286(01)00253-5
http://dx.doi.org/10.1007/BF02033314
http://dx.doi.org/10.1162/neco.2008.04-07-509
http://www.ncbi.nlm.nih.gov/pubmed/18386985
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Research Background 
	Cybersecurity 
	Deep Learning 
	Deep Reinforcement Learning 

	Deep Learning Cluster Structures for Management Decisions 
	The Random Neural Network—Reinforcement Learning 
	The Cognitive Packet Network 
	Deep Learning Clusters 
	Deep Learning Management Clusters 
	Deep Learning Cluster Structures 
	Deep Learning Cluster Model 
	Deep Learning Clusters 
	Deep Learning Management Cluster 


	Implementation 
	Quality of Service Deep Learning Cluster 
	Cyber Deep Learning Cluster 
	Deep Learning Management Cluster 

	Experimental Results 
	Cyber Deep Learning cluster results 
	Quality of Service Deep Learning Cluster Results (3  3 Nodes) 
	Deep Learning Management Cluster Results (3  3 Nodes) 
	Quality of Service Deep Learning Cluster Results (4  4 Nodes) 
	Deep Learning Management Cluster Results (4  4 Nodes) 
	Quality of Service Deep Learning Cluster Results (5  5 Nodes) 
	Deep Learning Management Cluster Results (5  5 Nodes) 

	Conclusions 
	
	References

