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Abstract: Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence
of AD necessitates the rapid development of efficient therapy options. Despite substantial study,
only a few medications are capable of delaying the disease. Several substances with pharmacological
activity, derived from plants, have been shown to have positive benefits for the treatment of AD
by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE),
β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets.
Medicinal plants have already contributed a number of lead molecules to medicine development,
with many of them currently undergoing clinical trials. A variety of medicinal plants have been
shown to diminish the degenerative symptoms associated with AD, either in their raw form or as
isolated compounds. The aim of this review was to provide a brief summary of AD and its current
therapies, followed by a discussion of the natural compounds examined as therapeutic agents and
the processes underlying the positive effects, particularly the management of AD.

Keywords: Alzheimer’s disease; natural compound; mechanism of enzyme; management;
inhibition activity

1. Introduction

Alzheimer’s disease (AD) is a severe, chronic, and progressive neurological illness
that causes memory and cognitive loss and eventually death [1]. Dementia has become
a major public health problem in both developed and developing countries as a result
of the aging population and its fast-rising incidence [2]. Aging, cholinergic pathways,
environmental factors, head injury, genetic factors, mitochondrial dysfunction, and im-
mune system dysfunction are some common causes of the development of AD [3]. The
most prevalent form of dementia is AD, which is a progressive neurological condition [4].
The reported deaths from AD increased by more than 145% [5]. According to the most
recent estimates, dementia prevalence will double in Europe by 2050 and triple globally.
AD is pathologically defined by the presence of amyloid plaques, hyperphosphorylated
tau proteins, and neurofibrillary tangles; however, oxidative–nitrative stress, endoplas-
mic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic
proteins, and altered neurotransmitter levels are all common etiological attributes in its
pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are Food and Drug
Administration-approved medications for the treatment of symptoms associated with
AD [6]. The cellular phase of AD occurs concurrently with the accumulation of amyloid,
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causing tau pathology to spread. Heritable variables account for 60–80% of the risk of
AD [7]. A decrease in brain acetylcholine (ACh) levels is implicated in the pathophysiology
of cognitive dysfunction occurring in AD. The inhibition of ACh catabolic enzymes, such
as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), can contribute to an
increase in ACh levels. It has been hypothesized that the inhibition of AChE and BuChE
may contribute to countering the formation of Aβ plaques and, therefore, represents a
disease-modifying strategy principle, but no conclusive evidence was obtained to confirm
this hypothesis [8].

AChE inhibition is one of the most used treatment approaches; however, it only
provides symptomatic alleviation and has a mild disease-modifying impact. Antioxidant
and vitamin treatment, stem cell therapy, hormone therapy, selective phosphodiesterase
(PDE) inhibitors, inhibition of β-secretase, γ-secretase and Aβ aggregation, suppression
of tau hyperphosphorylation, and intracellular neurofibrillary tangles are examples of
non-cholinergic therapeutic methods. In a number of preclinical and clinical investigations,
medicinal plants have been found to have anti-AD efficacy [9,10]. Ethnobotany plays
a significant role in the identification of anti-AD compounds from botanicals in China
and the far east, but maybe less so in Europe. Traditional Chinese medicine has been
employed in the treatment of AD in China. A variety of medicinal plants have been shown
to diminish the degenerative characteristics associated with AD, either in their crude form
or as isolated substances [1]. The consumption of bioactive compound-rich foods or the
administration of bioactive compound extracts can have a preventive impact against a
variety of pathophysiological diseases. Various sources of bioactive chemicals are employed
in the treatment of AD. We have just covered the most frequent options.

It is reported that dietary supplements might help to heal the disorders. Nutraceuticals
are food-based extracts of chemicals that offer health advantages. Nutraceuticals are
ingested in concentrated forms such as tablets, capsules, and drinks, and they have no
negative effects, even at large doses. To avoid the negative side effects of the currently
available medications, researchers are concentrating their efforts on identifying natural
bioactive chemicals found in foods that can be used to treat AD [11–14]. The consumption
of bioactive compound-rich foods or the administration of bioactive compound extracts can
have a preventive impact against a variety of pathophysiological diseases. Although there
are other sources of bioactive chemicals used in the treatment of AD, we only included
the most widely available. The impact of numerous bioactive chemicals found in widely
consumed foods on AD has been reviewed and addressed in this section. The aim of this
review is to evaluate the role of natural compounds and the mechanism of enzymes for the
management of AD. An extensive literature review (by inclusion of natural compounds
and target enzymes, and the exclusion of synthetic compounds) was carried out, and
published articles from PubMed, Scifinder, Google Scholar, Clinical Trials.org, and the
Alzheimer Association reports were thoroughly examined in order to combine information
on the various ways to battle AD. Therefore, in this article, we focus on reviewing the
potential target and small natural compounds targeting various molecular mechanisms for
the management of AD.

2. Natural Compounds and Alzheimer’s Disease

Natural products and their molecular frameworks have a long history of serving as
important starting points for medicinal chemistry and drug development [15]. Recent stud-
ies have discussed the many therapeutic properties of natural products, such as their ability
to improve sleep [16], hypolipidemic activity and anticancer effects [17,18], protective
effects against viral pneumonia and anti-inflammatory effects [19], anticancer and antiox-
idative effects [20,21], neuroprotective effects [22], antioxidative stress and anti-asthmatic
effects [23–25], alleviating the effect of skin inflammation [26], and anti-Trypanosoma ef-
fects [27]. However, natural products can cause pulmonary and central nervous system
(CNS) irritation [28], developmental toxicity [29,30], nephrotoxicity and hepatotoxicity [31],
and allergic responses [32,33]. There are presently no effective drugs available to treat ND.
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In traditional medicine, ashwagandha is used to treat general debility, nervous weariness,
insomnia, and memory loss [34]. In studies, these natural compounds have been shown
to exhibit biological qualities, such as antioxidant, anti-inflammatory, and antiapoptotic
effects. In vitro and in vivo studies have confirmed the use of natural products in a variety
of preclinical models of ND. Phytoconstituents, such as polyphenolic antioxidants found in
herbs, fruits, nuts, and vegetables, as well as marine and freshwater flora, are examples of
natural products. These phytoconstituents have the ability to prevent several NDs, such as
AD [35,36]. Consumption of these substances at adequate quantities may have promising
benefits in the prevention of AD [37].

3. Inhibition of Acetylcholinesterase Activity Using Natural Compounds

Acetylcholinesterase (AChE) is a serine hydrolase that hydrolyzes the neurotransmit-
ter acetylcholine (ACh) into acetic acid and choline. The ellipsoidal structure of AChE has
three binding sites: catalytic anionic (Ser200, Glu334, and His440), the aromatic gorge, and
the peripheral anionic site (Tyr70, Asp72, Tyr121, Trp279, and Tyr334), where inhibitory
chemicals engage. AChE inhibitors (AChEI) bind to this enzyme and prevent it from
breaking down ACh, causing ACh to accumulate in nerve synapses and impair neurotrans-
mission. Many medicinal compounds targeting AChE have been developed based on this
mechanism of action [38–41]. As a result, using AChEI to treat symptoms associated with
cholinergic imbalances in AD seemed a sensible strategy. AChE and the cholinergic system,
on the other hand, appear to have broader impacts in AD. Many useful compounds that
demonstrate a wide spectrum of pharmacological action against cholinesterase enzymes
have been discovered through phytochemical research of various therapeutic plants [42].
Dihydroberberine and macelignan potently and effectively inhibited AChE with IC50 val-
ues of 1.18 and 4.16 µM, respectively [43]. Quercus suber cork and corkback ethanol–water
extracts have been proven to be remarkable antioxidants with interesting AChE inhibitory
activity [44]. Using the in vitro Ellman’s technique, extracts, fractions, and compounds
from Calceolaria talcana and Calceolaria integrifolia showed substantial inhibitory effects on
AChE activity. The most active samples were derived from the ethyl acetate extract, which
inhibited AChE in a mixed-type manner (69.8 and 79.5% at 100 and 200 µg/mL, respec-
tively) [45]. It was also reported that between 0 and 5 min, AChE inhibition increased as the
time spent exposed to Malathion increased [46]. The edible component of the Garcinia parv-
ifolia fruit has the potential to be a natural source of antioxidants and anti-AD agents [47].
Phytochemicals continue to enter clinical trials or give leads for the development of new
therapeutic medicines [48]. The use of natural products or nutraceutical chemicals has
emerged as a potential preventative therapy approach, as most medications focusing on
specific targets have failed to establish a medical cure. Nutraceutical substances have
the benefit of a multitarget strategy, tagging several biochemical locations in the human
brain, as compared to the single-target action of most AD medications [49]. In the last
decade, more than 200 potential therapeutic candidates have failed during clinical trials,
indicating that the illness and its causes are likely to be complicated. Medicinal herbs and
herbal therapies are gaining popularity as complementary and alternative interventions to
create medication candidates for AD. Several scientific investigations have documented
the use of numerous medicinal plants and their main phytochemicals in the treatment of
AD [50,51]. The increasing collection of epidemiological and experimental research shows
that eating fruits and vegetables protects the brain from the negative consequences of ox-
idative stress, neuroinflammation, and aging. These benefits are mediated by antioxidant,
anti-inflammatory, and other beneficial phytochemical components present in plants [52].
However, it was also reported that consistent use of coffee, tea, and dark chocolate (cacao)
may boost brain health and lower the incidence of age-related neurodegenerative disease
(ND). Caffeine’s mode of action is based on the antagonism of several adenosine receptor
subtypes. Theobromine and theophylline, which are downstream xanthine metabolites,
may also contribute to the therapeutic benefits of coffee, tea, and cocoa on brain func-
tion [53]. Tea is said to have powerful antioxidant effects. Flavonoids, tannins, caffeine,
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polyphenols, boheic acid, theophylline, theobromine, anthocyanins, gallic acid, and ulti-
mately epigallocatechin-3-gallate, which is regarded the most potent active element, are
all abundant. Tea catechins, which are flavonoid phytochemicals that target common risk
factors, including obesity, hyperlipidemia, hypertension, cardiovascular disease, and stroke,
may help to reduce the risk of AD [54]. The effects and probable mechanisms of numerous
widely eaten phytochemicals on neuropathology and AD outcomes are discussed in this
study. We propose that frequently eating bioactive phytochemicals from a range of fruits
and vegetables reduces age and insult-related neuropathology in AD, based on available
data. This holistic approach to nutraceuticals paves the way for future research and clinical
trials, which are expected to provide outcomes based on medical evidence. The molecular
mechanism of AChE was described in Figure 1, along with the inhibition process of AChE
using natural compounds.
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Figure 1. The inhibition process of AChE using natural compounds. AChE inhibitors such as natural
compounds bind to the AChE enzyme and prevent the breaking down of ACh, causing ACh to
accumulate in nerve synapses and impair neurotransmission.

4. Inhibition of BACE1 Activity Using Natural Compounds

In 1991, the amyloid hypothesis was proposed. It claimed that extracellular amyloid
deposits are the primary cause of AD [55]. β-secretase (BACE1) was found to be responsible
for the creation of β-amyloid (Aβ) observed in AD [56]. Aβ is a type I transmembrane
protein with a large extracellular domain and a short cytoplasmic portion that is generated
from an amyloid precursor protein (APP). As a result of alternative splicing, several distinct
APP isoforms exist, ranging in length from 695 to 770 amino acid residues [57]. Neurons
create a considerable quantity of APP. However, it is normally digested quite fast. APP
may be cleaved by six distinct enzymes, namely, α-, β-, δ-, η- and θ-secretase and meprin
β [58]. In AD, APP is cleaved alternatively in endosomal compartments by the successive
action of the integral membrane β- and γ-secretase, releasing Aβ from the APP [59,60].
β-secretase divides APP, producing a 100 kDa soluble N-terminal APP ectodomain (APPs)
and a 12 kDa membrane-tethered C-terminal fragment with 99 or 89 amino acid residues,
depending on whether it cleaves at Asp1 or Glu11 of the APP. Under healthy settings,
BACE1 mostly cleaves APP at the Glu11 location, resulting in the non-amyloidogenic form
C89 and truncated Aβ production [61]. Verubecestat, lanabecestat, atabecestat, umibecestat,
and elenbecestat are in II/III phase clinical trials as BACE1 inhibitors [61]. The IC50 values
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for these drugs were found to be 2.2 nM for verubecestat [62], 0.6 nM for lanabecestat [63],
and 1.0–2.6 nM for atabecestat [64]. The reduction of Aβ in CSF depended on the daily
dose and it was shown that verubecestat reduces Aβ in CSF by 50–75% at a 12 mg dose
and 80–90% at a 40 mg dose [65]. Lanabecestat reduces 63% at a 15 mg dose and 79% at a
50 mg dose [66]; atabecestat reduces 50% at a 5 mg dose and 80–85% at a 30 mg dose [67];
and umibecestat reduces 95% at a 15 mg dose [68].

Natural products, particularly those used in traditional Chinese medicine, offer a
safety advantage, since they have been used in humans for a long period [69]. Inhibiting
BACE1 has been intensively researched as a possible AD disease-modifying medication.
Clinical failures with BACE inhibitors have risen steadily. As a result, researchers are
thinking about natural compounds as potent drug therapies for the management of AD-
targeting BACE1. The natural compounds catechins may also aid people with AD by
decreasing the formation of amyloid plaques and enhancing their cognitive ability [54]. To
explore natural BACE1 inhibitors, isoflavones, including genistein, formononetin, glycitein,
daidzein, and puerarin, were studied and found to be potent for AD management [70].
Compounds such as 2,2′,4′-trihydroxychalcone acid, quercetin, and myricetin have been
demonstrated to efficiently inhibit BACE1 activity at lower dosages [71]. The compounds
deoxyneocryptotanshinone, salvianolic acid A and salvianolic acid C were found to have
good inhibition potential against BACE1, with IC50 values of 11.53 ± 1.13, 13.01 ± 0.32 and
9.18 ± 0.03 µM, respectively [72]. The natural compounds may be alternative agents that
have β- and γ-secretase inhibition for the management of AD in the future. The molecular
mechanism of β- and γ-secretase is described in Figure 2.
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Figure 2. The molecular mechanism of β- and γ-secretase for the processing of APP. The extracellular
amyloid deposits are the primary cause of AD. The natural compounds may be alternative agents
that have β- and γ-secretase inhibition for the management of AD (APP—amyloid precursor protein,
AICD—APP intracellular domain, Aβ—β-amyloid, ROS—reactive oxygen species).

5. Inhibition of Monoamine Oxidase Activity Using Natural Compounds

Monoamine oxidases (MAOs) are flavoproteins that catalyze the oxidative deamina-
tion of biogenic and xenobiotic amines in the outer mitochondrial membrane. There are
two isoforms of MAO in mammals (MAO-A and MAO-B), which may be identified by
their substrate selectivity and susceptibility to certain inhibitors. Although both isoforms
are found in most tissues, their presence in the CNS and their capacity to metabolize
monoaminergic neurotransmitters have shifted the focus of MAO research to the adult
brain’s functions. MAO activity has been linked to neurological and mental illnesses, as
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well as NDs [73]. Some inhibitors of the enzyme have showed promise in the treatment of
a variety of NDs, such as Parkinson’s disease and AD. MAO inhibitors may be effective in
regulating the outcome of stroke and other tissue damage linked with oxidative stress, since
the process catalyzed by MAO creates hydrogen peroxide, which is a source of hydroxyl
radicals [73–75]. MAO inhibitors might be used to treat AD [76]. While MAO-A inhibitors
(e.g., chlorgyline, moclobemide, and lazabemide) are efficient antidepressants and anxi-
olytic medications, MAO-B inhibitors (e.g., l-deprenyl, pargyline, and rasagiline) are used
to treat NDs such as Parkinson’s and AD. Natural products have become appealing targets
for researchers, owing to the need for novel MAO inhibitors due to the negative effects of
existing drugs. Many investigations have shown that flavonoid, xanthone, alkaloid, and
coumarin derivatives from herbal sources have high MAO inhibitory action, making them
ideal models for synthetic MAO inhibitors [77]. Curcumin and ellagic acid suppressed
MAO activity; however, greater half-maximum inhibitory doses of curcumin (500.46 nM)
and ellagic acid (412.24 nM) were needed when compared to the known MAO-B inhibitor
selegiline. It has been discovered that curcumin and ellagic acid suppress MAO activity in
both competitive and noncompetitive ways. These natural chemicals have the potential to
be a source of MAO inhibitors, which are utilized in the treatment of Parkinson’s disease
and other NDs [78]. Chelerythrine was reported to have an IC50 of 0.55 µM for inhibiting
an isoform of recombinant human MAO-A. Chelerythrine was a reversible competitive
MAO-A inhibitor (Ki = 0.22 µM) with a substantially higher potency than the marketed
medication toloxatone, with an IC50 value of 1.10 µM [79]. The natural O-methylated
flavonoid, with strong potency (IC50 33 nM; Ki 37.9 nM) and >292-fold selectivity against
human MAO-A (vs. MAO-B), is a novel therapeutic lead for the treatment of NDs [80]. The
other natural compounds, such as morin (IC50 = 16.2 µM), alizarin (IC50 = 8.16 µM), and
fisetin (IC50 = 7.33 µM), were notable MAO inhibitors with MAO-A selectivity [80]. As
compared to known drugs, natural products have fewer side effects and are efficient for the
inhibition of these enzymes. Researchers are looking for natural products that have very
good potential to inhibit these enzymes, which may be helpful for future treatment options.

Finally, there are certain known natural compounds listed in Table 1. These compounds
were found to be suitable for the inhibition of targeted enzymes during in silico, in vitro
and in vivo studies.

Table 1. List of several natural compounds that have potential to inhibit AChE, BuChE, BACE1 and
MAOs activity during in silico, in vitro, and in vivo studies.

S.No. Compound Pub Chem
ID Properties Work Type Therapeutic

Actions/Function Reference

1. Apigenin 5280443
Antioxidant and
antiinflammatory

in vitro Decrease Aβ burden
[1,81]

in vivo (mouse model) induced neurogenesis

2. Dibenzo[1,4,5]
thiadiazepine 71358659 antioxidant in vitro (neuroblastoma

cells)
neuroprotective and

antioxidant properties [82]

3. Berberine 2353 anti-inflammatory in vitro (rat model) inhibition of AChE [83,84]

4. Catechin 9064 antioxidant in vivo (rat model of AD) inhibition of AChE [85]

5. Genistein 5280961 Antioxidant and
anti-inflammatory

in silico and in vitro (model
of AD)

inhibition of human
monoamine oxidase A

and B
[86,87]

6. Hesperidin 10621 antioxidant and
anti-inflammatory

in silico and in vivo (rat
model of AD)

inhibition of BACE1
and Aβ aggregation [88–90]

7. Morin 5281670
antioxidant,

anti-inflammatory and
neuroprotective

(MC65 cells)

BACE1, γ-secretase, Aβ
fibrillogenesis, amyloid

plaque, and tau
hyperphosphorylation

[91,92]

8. Naringenin 932 anti-inflammatory in vitro (rat model) decrease inflammatory
cytokines [93]

9. Withanone 21679027 neuroprotective in vivo (rat model of AD) decrease Aβ fibril
formation [1,94]
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Table 1. Cont.

S.No. Compound Pub Chem
ID Properties Work Type Therapeutic

Actions/Function Reference

10. Dehydroevodiamine 9817839 anti-inflammatory rat brain slices against AD inhibition of tau
phosphorylation [95]

11. Huperzine A 449069 neuroprotective Alzheimer transgenic
mouse model reduces the level of Aβ [96]

12. N-
methylasimilobine 197017 Antioxidant in vitro inhibition of AChE [97]

13. Isorhynchophylline 3037048 neuroprotective rat model restore Aβ–induced
cognitive impairment [98]

14. Palmatine 19009 anti-inflammatory and
anti-neurodegenerative in vitro, in vivo inhibit tau aggregation [99]

15. Sanguinarine 5154 Antitumor properties in vitro inhibition of AChE [100]
16. Taspine 215159 anti-inflammatory in vitro inhibition of AChE [101]

17. Indirubin 10177 antioxidant and
anti-inflammatory in silico inhibition of AChE [102,103]

18. Rutaecarpine 65752 anti-inflammatory in silico inhibition of Caspase 8 [104]
19. Ajmalicine 441975 antihypertensive in silico inhibition of BACE1 [105]

20. Resveratrol 445154 Antioxidant in vitro and in vivo (AD
models)

neuroprotective role in
AD [106]

21. Curcumin 969516

antioxidant,
anticarcinogenic,

anti-inflammatory,
antiangiogenic

in vivo and in vitro inhibition of AChE [107]

22. Resveratrol 445154 Antioxidant in vitro inhibition of MAOA for
AD treatment [108]

23. Genistein 5280961 Antioxidant and
anti-inflammatory in vitro anti-AD activities [70]

24. Quercetin 5280343 Antioxidant - Anti-BACE1 Activity [71]

25. Ellagic acid 5281855
antioxidant,

antimutagenic, and
anticancer properties

in vitro MAO inhibitor for ND
treatment [78]

26. Chelerythrine 2703 anti-inflammatory in vitro MAO-A inhibitor [79]

6. Conclusions

The reviewed compounds have the ability to lessen the symptoms of AD. With the
increasing average life expectancy, it is critical to find and create novel molecules easily
capable of preventing AD. Several natural compounds and phytochemicals have shown
promise in clinical research for AD management. Several medications appear to be useful
for AD treatment in clinical studies. Natural substances in the early stages of study require
more investigation to determine their medicinal potential for AD management. It is critical
to recognize that alternative therapies for AD may be widely supported in medical research.
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