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1 Introduction

Pathogens have presented a major challenge to individuals and populations of living
organisms, probably as long as there has been life on earth. They are a prime object of
study for at least three reasons: (1)Understanding theway of pathogens affords the basis
for preventing and treating the diseases they cause. (2) The interactions of pathogens
with their hosts afford valuable insights into the working of the hosts� cells, in general,
and of the host�s immune system, in particular. (3) The co-evolution of pathogens and
their hosts allows for transferring knowledge across the two interacting species and
affords valuable insights into how evolution works, in general. In the past decade
computational biology has started to contribute to the understanding of host-pathogen
interaction in at least three ways which are summarized in the subsequent sections of
this chapter.

Taking influenza as an example the computational analysis of viral evolution within
the humanpopulation is discussed in Sect. 2. This evolutionary process takes place in the
time frame of years to decades as the virus is continuously changing to evade the human
immune system. Understanding the mechanisms of this evolutionary process is key to
predicting the risk of emergence of new highly pathogenic viral variants and can aid the
design of effective vaccines for variants currently in circulation.

Section 3 addresses the molecular basis of how such vaccines can be developed.
Vaccines present the human immune system molecular with determinants of viral
strains that elicit an immune response against the virus and activate the buildup of
molecular immune memory without being pathogenic. That section also gives a
succinct introduction to the workings of the human immune system.

Section 4 addresses the issue of highly dynamic viral evolution inside a single
patient. Some viruses have the capability of this kind of evolution in order to evade the
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immune response of the host or the effects of a drug therapy. HIV is the example
discussed here. Drug therapies against HIV become ineffective due to the virus evolving
to a variant that evades the therapy. If this happens the therapy has to be replaced with
another therapy that effectively targets the viral variant now present inside the patient.

2 Viral evolution in the human population

Influenza is a classic example of a pathogen that evades immunity at the population
level. Due to a strong immune response in the host, which clears the virus within a few
days, the virus can only survive by moving on quickly. Following an infection, hosts
retain strong immunity to a particular antigenic type. As immunity accumulates in the
population, there is increasing selection for pathogens with altered antigenic types that
are less effectively recognized and thus have a higher probability of finding a susceptible
host. By rapid evolution influenza is able to persist at relatively high prevalence in the
human population. Consequently, vaccines must be frequently updated to ensure a
good match with the circulating strain. However, even with current vaccination
programs, endemic influenza remains a significant burden and is associated with an
estimated 37,000 deaths in the U.S. alone.

In addition to the endemic activity, influenza pandemics occasionally occur when
avian forms of the virus adapt to humans or provide genetic material that is incorpo-
rated into existing human forms. The antigenic novelty of these variants allows them to
sweep though the global population, often causing severe disease. There were three such
pandemics in the twentieth century. The most severe of them, the �Spanish Flu� of 1918,
resulted in 30 to 50 million deaths.

Thus, two key goals of influenza research are predicting viral evolution in the human
population to determine optimum vaccine configurations and the early recognition of
potential pandemic strains circulating in, or emerging from, the avian population.
Large-scale genome sequencing and high-throughput experimental studies of influenza
isolates from various sources have a central role in both of these endeavors.

2.1 Biology and genetics

Influenza viruses are single-stranded, negative sense RNA viruses of the family
Orthomyxoviridae (Webster et al. 1992). Three phylogenetically and antigenically
distinct types currently circulate, referred to as influenza A, B and C. All types infect
humans and some othermammals. InfluenzaA also infects birds. This sectionwill focus
on influenza A, because of its high prevalence and increased virulence in humans,
compared to types B and C.

The influenza A genome is composed of eight RNA segments totaling approxi-
mately 14 kb of sequence. The segments encode eleven proteins that are required for the
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replication and infection cycle of the virus. The two major determinants recognized by
the human immune system are the surface glycoproteins hemagglutinin (HA) and
neuraminidase (NA). Hemagglutinin is responsible for binding to sugar structures on
the ephithelial cells lining the respiratory tract and entry into the cell during the first
stage of infection. Neuraminidase plays a part in releasing assembled viral particles from
an infected cell by cleaving terminal sugar structures from neighboring glycoproteins
and glycolipids on the cell surface. Several subtypes of influenza A are distinguished on
the basis of the antigenic properties of the HA and NA proteins. There are 16 known
subtypes for HA and 9 for NA, all of which occur in birds. In humans, subtypes H2N2
and H3N8 have circulated in the past but currently only H3N2 and H1N1 are endemic.
Of these H3N2 is more virulent and evolves more rapidly.

There are two distinctmechanisms bywhich the influenza genome evolves. One is the
acquisition of mutations, deletions or insertions during the replication process. This
occurs at a higher rate than for DNA-based viruses, as RNA polymerases do not possess a
proof-reading mechanism. Some of these changes subsequently become fixed in the viral
sequence, either through the random fixation process of genetic drift or because they
confer a selective advantage. This gradual change and its impact on the phenotype level
is referred to as antigenic drift. The second mechanism of evolution is reassortment
(see Fig. 1). If two different strains simultaneously infect the same host, a novel strainmay
arise with a combination of segments from the two. The phenotypic change associated
with the emergence of such a viral variant is referred to as antigenic shift.

2.2 Vaccine strain selection for endemic influenza

The human immune system primarily targets the hemagglutinin surface protein of the
influenza virus. Whether primed by infection or vaccination, antibodies provide long
lasting immunity to that particular HA configuration. However, due to antigenic drift

Fig. 1 Schematic representation of influenza evolution by reassortment (left) and mutation (right). Each
viral genome is composed of 8 RNA segments. Reassortment of the 8 segments from twodistinct viruses can
result a new viable form of the virus. Drift occurs when errors during viral replication produce novel variants
with small changes, i.e. insertions, deletions or mutations in the sequence segments
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within just a few years those antibodies do not efficiently recognize the circulating HA.
Influenza vaccines must thus be regularly updated and re-administered. The WHO
makes vaccine recommendations based on the prevalence of recently circulating strains.
If a new genotype, based on the HA segment, appears to be increasing in prevalence,
then hemagglutination-inhibition (HI) assays using post infection ferret sera are carried
out to determine whether this is associated with phenotypic change in terms of the
antigenicity. If there is significant phenotypic change, the current vaccine is unlikely to
be effective against the proposed emergent strain and must be updated. The genotype-
phenotype map for influenza virus is unclear and genotyping is only used to choose
candidate strains forHI assays. However, recent advances have indicated several ways in
which genome-based methods may improve vaccine selection.

Fig. 2 Phylogenetic tree for the influenza HA coding sequences constructed by maximum parsimony
using the software PAUP (http://paup.csit.fsu.edu/) from the sequences of 507 viruses isolated between
1983 and 2007. Dates to the right of the tree indicate the year that themajority of sequences contributing to
that section were isolated. The tree has a distinctive cactus like shape characterized by constant turnover
and limited diversity at any point in time
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Bioinformatic analyses of the hemagglutinin encoding sequences have revealed
characteristics of the evolutionary process and also determined relevant properties with
respect to viral fitness. Phylogenetic trees of these sequences have a cactus-like topology
(see Fig. 2). A diverse strain repertoire is periodically replaced by just a single strain,
which constitutes the progenitor for all future lineages (Fitch et al. 1997). Population
genetic theory states that such trees can be derived by random genetic drift if population
size becomes very small or by selection if fitter variants emerge and periodically replace
all others.

Further analyses of such trees led to the identification of a set of rapidly evolving
codons in the antibody-binding and receptor-binding sites of the protein (Bush et al.
1999). These codons show a significantly higher ratio of synonymous to nonsynon-
ymous substitutions than expected by chance, indicating that the driving force in the
evolution of the HA gene is selection for variants that are fitter in terms of the evasion of
host immunity acquired from previous infections. These positively selected for codons
also possess predictive value with respect to the future fitness of a set of viral strains.

The relationship between the influenza genotype and phenotype has been eluci-
dated by the application of multidimensional scaling to create a low dimensional
representation of antigen-antibody distances measured with hemagglutinin inhibition
assays (Smith et al. 2004). This showed that genotypes isolated over the same 2–5 year
period cluster in phenotype space. Significant differences between clusters mostly
localize to antibody-binding sites, the receptor-binding site and positively selected
codons of the HA sequence. As more data become available, the combined analysis of
genotypes and their relationship to the antigenic phenotype will enhance our capability
to predict dominant circulating strains and estimate the efficacy of proposed vaccines.

2.3 Pandemic influenza

Antigenic drift allows partial immune evasion, but the host population, on average,
always has some degree of immunity. Occasionally however, novel strains with no
antigenic history cause global pandemics. In the twentieth century this happened in
1918, 1957 and 1968. Further pandemics are considered inevitable unless their origin
can be rapidly detected or, better still, predicted (Taubenberger et al. 2007). Whole
genome analysis has shown that the 1968 and 1957 pandemic strains were reassortants
that introduced avian HA, PB1 and, in 1957 NA, segments into viruses already
circulating in, and adapted to, the human population. The antigenic novelty of the
1918 pandemic strain also stems from its introduction from an avian source.Whether it
crossed to humans directly from birds, circulated in swine first, or was a reassortment of
existing avian and human strains remains a matter of debate.

Since 1997, the avian H5N1 subtype has been considered a serious candidate for a
novel pandemic, due to a small but increasing number of human cases. This requires the
avian HA protein to undergo adaptation to bind to human receptors. Analysis of the
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viral genotypes responsible for the human H5N1 cases has identified several common
amino acids changes in and around the binding region. It has also shown that the virus is
repeatedly crossing directly from birds, without reassortment or sustained human to
human transmission (2005). So far, an H5N1 strain with pandemic potential has not
emerged, but continual surveillance is vital. Early detection of the accumulation of
mutations that may facilitate a host switch, the mixing of genetic material from human
and avian forms or evidence of human to human transmission will be critical for
containment strategies

The efficiency of such surveillance measures may also be improved by targeting
particular geographic regions. Based on a phylogenetic tree of avian H5N1 sequences, a
phylogeography of significant migratory trajectories has been constructed for Eurasia
by minimizing the number of migration events necessary to keep the phylogeny
geographically consistent (Wallace et al. 2007). These data indicated that Indochina
is a largely isolated subsystem in terms of H5N1 evolution and Guangdong in China is
the main source of diversity and diffusion throughout Eurasia. It may therefore be
practical to invest more of the surveillance effort into this region.

2.4 Conclusion

Even withmodernmedicine the burden of annual influenza is significant and the threat
of a pandemic constantly hangs over the world. Vaccines, chemo prophylactics,
detection and containment strategies are all in use. But the influenza virus, like malaria
and HIV, is a constantly moving target and optimizing pharmaceutical design and
public health policy is a complex problem requiring an integrated knowledge of, among
other things, epidemiology, immunology and molecular biology. Bioinformatics has
provided, and will continue to provide, vital insights in all of these areas.

3 Interaction between the virus and the human
immune system

3.1 Introduction to the human immune system

The human immune system rests basically on two pillars. One pillar is solely genetically
determined and remains unchanged throughout the life of an individual. This so-called
innate immune system basically provides physical protection barriers and registers if
generally recognizable foreign substances are entering the organism. If such substances
are detected a fast and general protection mechanism sets in whose nature is
determined by the type of substance registered. The innate protection mechanisms
also include an activation of the other pillar of the immune system, the adaptive
immune system. This part evolves during the life, and its present state is highly

434

Chapter 8.1: Viral bioinformatics



dependent of the infection history of the individual. The adaptive immune system is
itself basically split up in two parts. First the humoral immunity, which happens
outside cells within the body liquids and is antibody-driven. Special immunoglobulin
molecules (antibodies) mediate the humoral response. Antibodies are produced by B
lymphocytes that bind to antigens by their immunoglobulin receptors, which is a
membrane bound form of the antibodies. When the B lymphocytes become activated,
they start to secrete the soluble form of the receptor in large amounts. Antibodies are
Y-shaped, and each of the two branches functions independently and can be recom-
binantly produced and is then known as fragments of antibodies (Fab). The antibody
can coat the surface of an antigen such as a virus and generally this will inactivate
whatever undesired function the respective objectmay have, and facilitate the uptake of
the antibody-bound object via phagocytosis bymacrophages, whichwill then digest the
object. Macrophages, B cells, and dendritic cells are all so-called professional antigen
presenting cells (APC). They carry a special receptor named the major histocompat-
ibility complex (MHC) class II. This receptor is able to present peptides derived from
degraded phagocytosed proteins. Other cells (T cells) carries a receptor, the T cell
receptor (TCR), which, if the T cell also carries a so called CD4þ receptor, is able to
bind to MHC class II molecules presenting a foreign peptide, e.g. one not originating
from the human proteome. Such an interaction will stimulate B cells to divide and
further progress to produce more antibodies as well as survive for a long time as
memory B cells. The presence of memory B cells enables the immune system to react
faster in a subsequent infection by the same pathogen. The CD4þ T cells actually also
belong to the second part of the adaptive immune system, which is the cellular immune
system. Another important feature of cellular immunity regards T cells with the CD8
coreceptor (CD8þT cells). The TCR of CD8þT cells can recognize foreign peptides in
complex with membrane bound MHC class I molecules on the outer side of nucleated
cells. Such an interaction will activate the T cells to signal and induce cell death of the
cell presenting the foreign peptide.

Both antibodies and TCRs are composed of a light and a heavy chain. These chains
are translated fromgenes resulting from a genetic recombination of two and three genes,
respectively, during the B-cell development in the bone marrow. These genes exist in
several nonidentical duplicates on the chromosome and can be combined into a large
number of different rearrangements. However, the molecular processes linking the
genes are imprecise and involve generation of P (palindromic) nucleotides, addition of
N (non-templated) nucleotides by terminal deoxynucleotidyl transferase (TdT) and
trimming of the gene ends and therefore also play a major role in the generation of the
huge diversity needed to be able to respond to any given pathogen. The T cells having a
mature TCR are being validated in the thymus. The host will eliminate T cells having a
TCR that is either unable to bind to an MHC:peptide complex or that will recognize an
MHCwith a peptide originating from the hosts proteome (self peptides). All the above is
highly simplified text book immunology (Janeway 2005).
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3.2 Epitopes

To be able to combat an infection the immune system must first recognize the intruder
as foreign. The specific parts of the pathogen that is recognized and induces an immune
response are called epitopes. Epitopes are often parts of larger macromolecules, which
most often happen to be polypeptides and proteins. B-cell epitopes are normally
classified into two groups: continuous and discontinuous epitopes. A continuous
epitope, (also called a sequential or linear epitope) is a short peptide fragment in an
antigen that is recognized by antibodies specific for the given antigen. A discontinuous
epitope is composed of residues that are not adjacent in the amino acid sequence, but are
brought into proximity by the folding of the polypeptide.

The cellular arm of the immune system consists as desribed of two parts; the CD8þ
cytotoxic T lymphocytes (CTLs), and the CD4þ helper T lymphocytes (HTLs). CTLs
destroy cells that present non-self peptides (epitopes). HTLs are needed for B cells
activation and proliferation to produce antibodies against a given antigen. CTLs on the
other hand perform surveillance of the host cells, and recognize and kill infected cells.
BothCTLs andHTLs are raised against peptides that are presented to the immune cells by
major histocompatibility complex (MHC) molecules, which are encoded in the most
polymorphic mammalian genes. The human versions of MHCs are referred to as the
human leucocyte antigens (HLA). The cells of an individual are constantly screened for
presentedpeptides by the cellular armof the immune system. In theMHCclass I pathway,
class IMHCspresents endogenous peptides toT cells carrying theCD8 receptor (CD8þT
cells). To be presented, a precursor peptide is normally first generated by cutting
endogenous produced proteins inside the proteasome, a cytosolic protease complex.
Generally, resulting peptides should bind to the TAP complex for translocation into the
endoplasmic reticulum(ER).Duringor after the transport into theER thepeptidemust be
able to bind to theMHCclass Imolecule to invoke foldingof theMHCbefore the complex
can be transported to the cell surface. When the peptide:MHC complex is presented on
the surface of the cell, it might bind to a CD8þ T cell with a fitting TCR. If such a TCR
clone exists a CTL response will be induced and the peptide is considered an epitope. The
most selective step in this pathway is binding of a peptide to theMHC class Imolecule. As
mentioned above, the MHC is the most polymorphic gene system known. The huge
variety of protein variants brought forth by this polymorphism is a big challenge forT-cell
epitope discoveries, enhancing the need for bioinformatical analysis and resources. It also
highly complicates immunological bioinformatics, as predictive methods for peptide
MHC binding have to deal with the diverse genetic background of different populations
and individuals. On a population basis, hundreds of alleles (gene variants) have been
found for most of the HLA encoding loci (1839 in release 2.17.0 of the IMGT/HLA
Database, http://www.ebi.ac.uk/imgt/hla/). In a given individual either one or two
different alleles are expressed per locus depending on whether the same (in homozygous
individuals) or two different (in heterozygous individuals) alleles are present on the two
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different chromosomes. Each MHC allele binds a very restricted set of peptides and the
polymorphism affects the peptide binding specificity of the MHC; one MHC will
recognize one part of the peptide space, whereas another MHC will recognize a different
part of this space. The very large number of different MHC alleles makes reliable
identification of potential epitope candidates an immense task if all alleles are to be
included in the search.ManyMHCalleles, however, share a large fractionof their peptide-
binding repertoire and it is often possible to find promiscuous peptides, which bind to a
number of different HLA alleles. The problem can thus be largely reduced by grouping all
the different alleles into supertypes in a manner were all the alleles within a given
supertype have roughly the same peptide specificity. This grouping generally requires
some knowledge regarding the binding repertoire of either the specific allele or an allele
with a very similar amino acid sequence.

The peptides recognized by the CD4þ T cells are called helper epitopes. These are
presented by theMHC class IImolecule, and peptide presentation on thisMHC follow a
different path than the MHC class I presentation pathway: MHC class II molecules
associate with a nonpolymorphic polypeptide referred to as the invariant chain (Ii) in
the ER. The Ii chain is a type II membrane protein, and unlike MHC molecules the
C-terminal part of themolecule extends into the lumen of the ER. TheMHC:Ii complex
accumulates in endosomal compartments and here, Ii is degraded, while another
MHC-like molecule, called HLA–DM in humans, loads the MHC class II molecules
with the best available ligands originating from endocytosed antigens. The peptide:
MHC class II complexes are subsequently transported to the cell surface for presenta-
tion to the CD4þ T helper cells. The helper T cells will bind the complex and be
activated if they have an appropriate TCR.

3.3 Prediction of epitopes

Amajor task in vaccine design is to select and design proteins containing epitopes able
to induce an efficient immune response. The selection can be aided by epitope
prediction in whole genomes, relevant proteins, or regions of proteins. In addition,
prediction of epitopes may help to identify the individual epitopes in proteins that have
been analyzed and proven to be antigens using experimental techniques based on, e.g.,
Western blotting, immunohistochemistry, radioimmunoassay (RIA), or enzyme-linked
immunosorbent assays (ELISA).

Today, the state-of-the-art class I T-cell epitope prediction methods are of a quality
that makes these highly useful as an initial filtering technique in epitope discovery.
Studies have demonstrated that it is possible to rapidly identify and verifyMHC binders
from upcoming possible threats with high reliability, and take such predictions a step
further and validate the immunogenicity of peptides with limited efforts, as has been
shown with the influenza A virus (see next subsection). It is also possible to identify the
vast majority of the relevant epitopes in rather complex organisms using class I MHC
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binding predictions and only have to test a very minor fraction of the possible peptides
in the virus proteome itself. MHC class II predictions can be made fairly reliably for
certain alleles. B-cell epitopes are still the most complicated task. However, some
consistency between predicted and verified epitopes is starting to emerge using the
newest prediction methods (Lundegaard et al. 2007).

B-cell epitope prediction is a highly challenging field due to the fact that the vast
majority of antibodies raised against a specific protein interact with parts of the antigen
that are discontinuous in the polypeptide sequence. The prediction of continuous, or
linear, epitopes, however, is a somewhat simpler problem, and may be still useful for
synthetic vaccines or as diagnostic tools. Moreover, the determination of continuous
epitopes can be integrated into determination of discontinuous epitopes, as these often
contain linear stretches. More successful methods combine scores from the Parker
hydrophilicity scale and a position specific scoring matrix (PSSM) trained on linear
epitopes. Different experimental techniques can be used to define conformational
epitopes. Probably the most accurate and easily defined is using the solved structures of
antibody–antigen complexes. Unfortunately, the amount of this kind of data is still
scarce, compared to linear epitopes. Furthermore, for very few antigens all possible
epitopes have been identified. The simplest way to predict the possible epitopes in a
protein of known 3D structure is to use the knowledge of surface accessibility and newer
methods using protein structure and surface exposure for prediction of B-cell epitopes
have been developed. The CEP method calculates the relative accessible surface area
(RSA) for each residue in the structure. The RSA is defined as the fraction of solvent
exposed surface of a given amino acid in the native structure relative to the exposed
surface the same amino acid placed centrally in a tri-peptide, usually flanked by glycines
or alanines. It is then determined which areas of the protein are exposed enough to be
antigenic determinants. Regions that are distant in the primary sequence, but close
in three-dimensional space will be considered as a single epitope. DiscoTope (www.cbs.
dtu.dk/services/DiscoTope) uses a combination of amino acid statistics, spatial in-
formation and surface exposure. The system is trained on a compiled dataset of
discontinuous epitopes from 76 X-ray structures of antibody–antigen protein com-
plexes. (Haste Andersen et al. 2006). B-cell epitope mapping can be performed
experimentally by other methods than structure determination, e.g., by phage display.
The low sequence similarity between the mimotope (i.e. a macromolecule, often a
peptide, whichmimics the structure of an epitope) identified through phage display and
the antigen complicates the mapping back onto the native structure of the antigen,
however, a number of methods have been developed that facilitate this.

A number of methods for predicting the binding of peptides to MHC molecules
have been developed. Themajority of peptides binding toMHC class I molecules have a
length of 8–10 amino acids. Position 2 and the C-terminal position have turned out
generally to be very important for the binding to most class I MHCs and these positions
are referred to as anchor positions (Fig. 3). For some alleles, the binding motifs
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have additional anchor positions. E.g., eptides binding to the humanHLA-A
�
0101 allele

have positions 2, 3 and 9 as anchors (Rammensee et al. 1999) (Fig. 1A). The discovery of
such allele-specific motifs led to the development of the first reasonably accurate
algorithms. In these prediction tools, it is assumed that the amino acids at each position
along the peptide sequence contribute a given binding energy, which can be added up to
yield the overall binding energy of the peptide. Several of these matrix methods are
trained on exclusively positive examples like peptides eluted fromMHCs on living cells,
peptides that have been shown to induce significant interferon gamma responses inCTL
assays, or peptides that bind the MHC more strongly than a certain binding affinity
value (usually below 500 nM). Other matrix methods, like the SMM method, aim at
predicting an actual affinity and thus use exclusively affinity data. However, matrix-
based methods cannot take correlated effects into account (when the binding affinity of
peptide with a given amino acid at one position depends on amino acids that are present
at other positions in the peptide). Higher-order methods like ANNs and SVMs are
ideally suited for taking such correlations into account and can be trained with data
either in the format of binder/non-binder classification, or with real affinity data. Some
of the recent methods combine the two types of data and prediction methods. The
different types of predictors are reviewed in (Lundegaard et al. 2007) and an extensive
benchmark of the performances of the different algorithms have been published by
(Peters et al. 2006).

Representing a supertype by a well-studied allele risks the confinement to selecting
epitopes that are restricted to this allele, exclusing other alleles within the supertype.
Thus another, and potentiallymore rational approach, would be to select a limited set of
peptides restricted to as many alleles as possible. This should be within reach with new
methods that directly predict epitopes that can bind to different alleles (Brusic et al.
2002), or pan-specific approaches that can make predictions for all alleles, even those
whose sequences are not yet known (Heckerman et al. 2007; Nielsen et al. 2007a).
Finally, even though MHC binding is the most limiting step in the class I pathway the
cleavage and transporting events are not insignificant. Several tools have been developed
that integrate predictions of the different steps, and this has been shown to improve the
predictions of actual CTL epitopes (Larsen et al. 2007).

Unlike the MHC class I molecules, the binding cleft of MHC class II molecules is
open at both ends, which allows for the bound peptide to have significant overhangs in
both ends. As a result MHC class II binding peptides have a broader length distribution
even though the part of the binding peptide that interacts with the MHC molecule
(the binding core) still includes only 9 amino acid residues. This complicate binding
predictions as the identification of the correct alignment of the binding core is a crucial
part of identifying the MHC class II binding motif. The MHC class II binding motifs
have relatively weak and often degenerate sequence signals. While some alleles like
HLA-DRB1

�
0405 show a strong preference for certain amino acids at the anchor

positions, other alleles like HLA-DRB1
�
0401 allow basically all amino acids at all
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positions. In addition, there are other issues affecting the predictive performance of
mostMHC class II binding predictionmethods. Themajority of thesemethods take as a
fundamental assumption that the peptide:MHC binding affinity is determined solely by
the nine amino acids in binding core motif. This is clearly a large oversimplification
since it is known that peptide flanking residues (PFR) on both sides of the binding core
may contribute to the binding affinity and stability. Some methods for MHC class II
binding have attempted to include PFRs indirectly, in terms of the peptide length, in the
prediction of binding affinities. It has been demonstrated that these PFRs indeed
improve the prediction accuracy (Nielsen et al. 2007b).

3.4 Epitope prediction in viral pathogens in a vaccine
perspective

As described in Sect. 2 some of the important B cell antigens vary significantly between
different influenza A viral strains. Current influenza vaccines are based on inactivated
influenza virus and thus mimic only the B cell response obtained by a fully infection
competent strain. This has the drawback that only closely related strains will be covered
by this response and new vaccines have to be produced annually as a result of the
antigenic drift (see Sect. 2). Thus the ideal influenza vaccine will raise an immune
response against parts of the pathogen that are conserved between as many strains as
possible. To identify these parts the described prediction tools will be an invaluable help.
Initial in silico scans of the viral genome for potential immunogenic parts will reduce the
potential epitope space, and thusmake experimental validations feasible. In a published
example all genomic sequenced strains of H1N1 were scanned for CTL epitopes. Only
9-mer peptides in the influenza proteome that were at least 70% conserved in all strains
were considered. The top 15 predicted epitopes for each of the 12 supertypes were
subsequently selected to be synthesized for further validation. Because of the limited size
of the influenza genome and the high variability of some of the proteins the conservation
criteria resulted in relatively low prediction scores of some of the chosen peptides. 180
peptideswere selected and 167were synthesized and further validated forMHCbinding
and CTL response. The fraction of validated MHC binding peptides (with a binding
affinity of below 500 nM) was relatively low (about 50%) compared to some other
studies (60–75%) (Sundar et al. 2007; Sylvester-Hvid et al. 2004), but 13 of the 89
binding peptides, or 15%, gave a positive output in a CTL recall assay. Obviously, the
conserved epitopes were found in the less variable proteins, but the large majority of the
validated epitopes (85%) turned out to be 100% conserved not only in H1N1 strains but
also in the H5N1 avian strains that in the last few years have infected humans resulting
in severe symptoms and high mortality (Wang et al. 2007). Such epitopes can be highly
valuable starting points for vaccine development. Even though cellular immunity does
not protect against infections it might protect against a fatal outcome of an infection
with a new aggressive strain.
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To find conserved B cell and helper epitopes a similar approach could be used even
though conserved conformational epitopes might be hard to find and even harder to
direct a response to. Figure 2 displays a three-dimensional protein structure model of
the variable surface protein hemagglutinin fromaH5N1 strain. Predicted B cell epitopes
are mapped on the structure, as well as helper epitopes restricted to the relatively
common HLA-DRB

�
0101 allele.

4 Viral evolution in the human host

4.1 Introduction

The previous section has discussed the evolution which a pathogen population under-
goes within the human population over a time span of years or longer. Some pathogens
but not all, by any means, play a more dynamic evolutionary game inside the host by
which they try to evade the host�s immune system or the drug therapy that is applied to
combat the disease.We observe this kind of process bothwith unicellular pathogens and

Fig. 4 3D structure of hemagglutinin with highlighted epitope predictions using chain A from the pdb
entry 2IBX. White cartoon: Other chains in multimer not used for predictions. Green cartoon: Part of chain
where no class II or B cell epitopes are predicted. Yellow sticks: Predicted helper epitopes (NetMHCII
predictions) considering the DRB

�
0101 allele. Blue spheres: Predicted B cell epitopes (DiscoTope). Orange

spheres: Residues predicted to be in both B cell and helper epitopes. The tools FeatureMap3D (www.cbs.
dtu.dk/services/FeatureMap3D/) and PyMol (pymol.sourceforge.net/) were used to generate the drawing
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viruses. An example of the former is Plasmodium falciparum which causes Malaria.
Here the pathogen evolves new suites of surface epitopes repeatedly to evade the
adaptive immune response of the host, and the immune system of the host responds to
the new populations of modified pathogens with recurrent fever bouts that manifest the
periodic amplifications of the immune system activity.

This section will present a viral example, namely the case of Human Immunode-
ficiency Virus (HIV), which causes AIDS.

4.2 Replication cycle of HIV

HIV is a single-stranded RNA virus with two copies of the genome per virus particle.
The replication cycle of the virus is schematically illustrated in Fig. 5.

The virus enters the human cell by attaching with its surface protein gp120 to the
cellular receptor CD4. It needs one of the two cellular coreceptors CCR5 or CXCR4 to
facilitate cell entry. After fusion with the cell membrane it releases its content and uses
one of the viral enzymes, namely theReverse Transcriptase (RT) to transcribe its genome
back to DNA. Another viral enzyme, the Integrase (IN) splices the DNA version of the
viral genome, the so-called provirus, into the genome of the infected host cell. This cell is
often a T-helper cell of the host�s immune system. Once this cell starts dividing, i.e., as
part of the immune response to the HIV infection, the cell starts producing the building
blocks of the virus. New virus particles assemble at the cell surface and segregate. During
a final virus maturation phase, a third viral enzyme, the Protease (PR) cleaves the viral
polyproteins into their active constituents. The dynamic evolution of HIV ismanifested
by the fact that RT lacks a proof-reading mechanism and introduces genomic variants
during the copying process. The high turnover of over a billion virus particles per host
and day during periods of high-activity immune response affords a sufficient genomic
diversity for a selective evolutionary process that lends an advantage to forms of the
virus that are resistant to the immune system and drug therapy with which they are
confronted.

Fig. 5 Replication cycle of HIV (from (Markel 2005))
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4.3 Targets for antiviral drug therapy

Antiviral drugs target one of several of the proteins involved in the viral replication
cycle. The historically earliest drugs target RT and block it by providing “fake”
nucleotides for the DNA assembly that act as terminators for the chain elongation
process. These drugs are called nucleoside analog RT inhibitors (NRTIs). Another class
of drugs targeting RT, the non-nucleoside analogs (NNRTIs), facilitate inhibition of the
enzyme by binding to a specific part of its binding pocket. Since the mid 90s, inhibitors
of PR (PIs) that substitute for the peptides to be cleaved by the enzyme have entered the
market place. Inhibitors of integrase are just about to come to market. Finally, in recent
years, several drugs have been developed that target the blockage of the process of viral
cell entry, by blocking one of the involved proteins, either the viral surface protein gp41,
or one of the cellular proteins, CD4, CCR5 or CXCR4.Within the older classes of drugs
there are up to about a dozen different compounds in each class. The justification for so
many compounds is that there are many different variants of HIV that have different
resistance profiles. This is also the reason why, for over ten years, the so-called highly
antiretroviral therapy (HAART) approach administers several drugs from several drug
classes to the patient simultaneously, in order to present a high barrier for the virus on its
evolutionary path to resistance. Still, after a time of several weeks up to about a year or
two, the virus succeeds in evolving a variant that is resistant against the given therapy
regimen. At this point, a new drug combination has to be selected to combat the new
viral variant.

4.4 Manual selection of antiretroviral combination
drug therapies

Even before the use of computers, doctors have selected drug therapies based on the
genome of the viral variant prevalent inside the patient which, in developed countries, is
routinely determined from virus in the patient�s blood serum via sequencing methods.
The basis for the selection is a set of mutation tables. There is one such table for each
molecular target. The table lists, for each drug, the observed and acknowledged set of
mutations (on the protein level) that have been observed to confer resistance against
that drug. The offered tables are updated regularly by international societies such as the
International AIDS Society (Johnson et al. 2007).

There are two problems with the mutation tables. (1) They regard different
mutations as independent from each other. Any one of the mutations listed in the
table is considered to confer resistance on its own. However, in some cases,
mutations at different positions have been observed to interact in complex ways.
For instance, a mutation can resensitize a virus to a drug to which an earlier
mutation has rendered it resistant. (2) Mutations are selected to enter the mutation
table by a consensus process among experts that cannot claim to be objective and
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reproducible. Problem 1 has been countered by the introduction of rule-based
expert systems that can implement complex resistance rules involving several
mutations (Schmidt et al. 2002). Problem 2 has been approached by introducing
bioinformatics methods for predicting resistance from the viral genotype. Such
methods derive statistical models directly from clinical data that comprise experi-
ence on viral resistance development. We now survey the methods by which such
statistical models are derived and applied.

4.5 Data sets for learning viral resistance

First we need data sets for deriving the statistical models. The availability of data in
sufficient volume and quality is a major hurdle for bioinformatical approaches to
resistance analysis. Data have been collected in several parts of the world, e.g., in the
USA (Stanford HIV Database (Rhee et al. 2003)), over Germany (Arevir Database
(Roomp et al. 2006)) and, more recently, over Europe (Euresist Database1). These
databases contain two types of data.

1. Genotypic data list viral variants sampled from patients together with clinical
information about the patient, including their viral load (the amount of free virus)
and counts of immune cells in the blood serum. This allows for correlating the viral
genotype with the virologic and immunological status of the patient.

2. Phenotypic data report results from laboratory experiments, in which virus
containing the resistance mutations observed in the patient is subjected to
different concentrations of single antiretroviral drugs and the replication fitness
of the virus is measured. This results in a quantitative measure of viral resistance,
the so-called resistance factor. Briefly, a virus with a resistance factor of 10 against
some drug requires ten times the concentration of that drug in comparison to the
wild-type virus in order to reduce the replication fitness of both viruses to the same
extent.

In developed countries, genotypic data are collected routinely in clinical practice.
Thus they are available in high volume (tens of thousands of data points). The viral
genotypes are usually restricted to the genes of the target molecules (here RT and PR).
Phenotypic data require high-effort laboratory procedures and cannot be collected
routinely. Thus they are available in lower quantities (thousands of data points). While
phenotypic data represent viral resistance in an artificial environment, they provide a
highly informative quantitative value for resistance. Thus can are of substantial value for
learning statistical models with high predictive power.

1 http://www.euresist.org
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4.6 Computational procedures for predicting resistance

We will survey approaches to solving three problems in resistance prediction:

1. Quantifying the information that a mutation carries with respect to the resistance of
any viral variant with that mutation against a given drug. Any method solving this
problem can be used to generate mutation tables such as the one derived by hand
through expert panels.

2. Predicting the resistance of a given genotypic variant against a given drug. Any
method solving this problem can also take complex interactions between different
mutations into account and thus competes with the rule-based expert systems
mentioned before.

3. Assessing the effectiveness of a combination drug regimen against a given genotypic
variant. Methods solving this problem can take the future viral evolution into
account. Thus, in effect, they can attempt to answer the question how effective the
virus will be in evading the present combination drug therapy. Thus they go further
methodically than any competing method.

We will now summarize the methods that are used to solve the above problems.
Several methods are available for solving Problem 1. Computing the mutual

information content of a viral mutation with respect to the wild type is one alternative
(Beerenwinkel et al. 2001). Another is to generate a support-vector machine model for
predicting resistance against the drug and deriving the desired information from it (Sing
et al. 2005). The resulting methods yield suggestions for new resistance mutations that
are highly desired by the medical community.

Problem 2 can be solved with classical supervised learning techniques such as
decision trees or support vector machines (Beerenwinkel et al. 2002). These methods
provide classification of viral variants into resistant or susceptible, or regression of
the measured resistance factor or the viral load observed in a clinical setting. The
models incur error rates of about 10–15% against measured phenotypic data and the
resulting web-based prediction servers2 are very popular with practicing physicians
and laboratories evaluating patient data. Figure 6 shows an excerpt of a respective
patient report that presents an intuitive display of the level of the virus against each
drug.

The solution of Problem 3 is somewhat more complicated. We need several
ingredients for a respective method. First, we need a notion of success and failure,
respectively, of a combination drug therapy that incurs more than a moment�s
observation of the patient. One way is to assess the effectiveness of a therapy after

2 E.g. http://www.geno2pheno.org
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some time since onset, say eight weeks. The second is a model of viral evolution under
drug therapy. We have developed a statistical model that represents the paths of the
virus to resistance by a set of trees ((Beerenwinkel et al. 2005b), see Fig. 7)
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Fig. 6 Patient report by the geno2pheno resistance prediction server. There is one line for each drug. The
level of resistance of the virus against the drug is represented by the length of the black bar. The colored bar
above indicates the region of resistance (green – susceptible, yellow – intermediate, red- resistant)

Fig. 7 Tree model of the evolutionary development of viral resistance against the NRTI zidovudine. The
model consists of two trees. Tree (a) displays two clinically observed nontrivial paths to resistance, indicated
bymutations that accumulate from thewild type from left to right. Tree (b) represents unstructured noise in
the data. Themethod also return quantitative estimates for howmuch of the data is explained bywhat tree.
In this case the left tree explains about 78% of the data
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Given such a tree model, we can derive a quantitative value for the probability of a
virus to become resistant against a certain drug after a given amount of time, given a
specific combination drug therapy. This value is called the genetic barrier to drug
resistance (Beerenwinkel et al. 2005a). Finally we use multivariate statistical learning

Fig. 8 Results of prediction of therapy effectiveness on the same sample as used for generating Fig. 2.
At the top, the user can preselect, here, by excluding the use of the protease inhibitor NFV. In the middle a
list of ranked therapies is given. The two top-ranking therapies involve two protease inhibitors, which is
not surprising since, by inspection of Fig. 2 the viral variant displays few resistances against protease
inhibitors. The distribution of therapy effectiveness with (red) and without (black) preselection is displayed
at the bottom
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techniques to generate models that classify the therapies into successes and failures
based on input comprising the viral variant, the applied therapy, phenotypic resis-
tance prediction (Problem 2), and the predicted genetic barrier to resistance. The
results of the implementation of this method called THEO are displayed as illustrated
in Fig. 8.

The resulting method reduces the error of therapy classification from about 24%
(without any use of software) to under 15% (Altmann et al. 2007). While this is a
substantial improvement in accuracy, doctors are still hesitant to use the method in
clinical practice, for two reasons: (1) They would like more information on why the
method arrives at its results, i.e., the ask for the results to bemore interpretable. (2) They
question the “objectiveness” of the data. In some sense the subjectivity of the expert
decision is replacedwith the arbitrariness of how the dataset is collected, fromwhich the
model are built.

Addressing both issues is possible but requires additional research which is
currently under way.

4.7 Clinical impact of bioinformatical resistance testing

The methods described here are applied within clinical practice in the context of
research projects and clinical studies. They improve the rate of selection of adequate
drug combination therapies significantly. Besides the statistical evaluation by cross
validation, there has been a retrospective study, in which previously applied therapies
have been rechecked with the geno2pheno software (Problem 2 above) among other
prediction systems, and the software has proven to pick successful therapies statistically
significantly more often than therapies that turned out not to be successful. Among the
single cases that can be reported is a patientwho had been receivingHAART for 16 years
within several therapy changes but without ever having virus cleared from his blood
serum. After themutation tables offered nomore option for therapy, the bioinformatics
software made a suggestion that was amended by the doctor. The resulting therapy was
the first to clear the patient�s blood of virus and held for at least 2.5 years. Thus, while the
software does not make flawless suggestions it advances the state of therapy selection
significantly.

Bioinformatics solutions to Problem 3 have yet to win acceptance with the
practicing physicians.

The methods described here can be transferred to other diseases for which viral
evolution to resistance inside the patient can be observed and for which the relevant
genotypic and phenotypic data are available. Transferring the methods to Hepatitis B
and C is in preparation.

A recent review on bioinformatical resistance testing is provided in (Lengauer and
Sing 2006).
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4.8 Bioinformatical support for applying coreceptor inhibitors

As the new coreceptor inhibitors are entering the marketplace and affording a
completely new approach to AIDS therapy, there are also new problems that have to
be dealt with and that can be supported with bioinformatics methods. We mentioned
above that CCR5 and CXCR4 are the two coreceptors that are used alternatively byHIV
to enter the infected cell. The clinical picture manifests that, almost exclusively, CCR5 is
required for primary infection (R5 virus). As the disease progresses, the virus often
switches to using CXCR4 (X4 virus). Some viral variants can use both coreceptors
(R5X4 virus). The use of CXCR4 is often associated with enhanced disease symptoms
and accelerated disease progression. Thus, preventing the virus from evolving to an X4
variant is a therapy goal. CCR5 seems to be inessential, as humans with an ineffective
CCR5 gene shows no disease phenotype, but are highly resistant to developing AIDS.
Thus CCR5 is an attractive target for inhibiting drugs. The first CCR5 blocker
Maraviroc (Pfizer) has just entered the marketplace. Regulatory agencies, as they were
admitting the drug for clinical use, prescribed accompanying tests of the virus for
coreceptor usage, as it is ineffective to treat X4 viruses with CCR5 blockers.

For testing of coreceptor usage we have a similar picture as for resistance testing.
Coreceptor usage is determined based on the viral genotype. There are laboratory assays
for measuring coreceptor usage. They are a little bit closer to clinical routine than
phenotypic resistance tests, but they still suffer from limited accessibility, long times
(weeks) to receive the results and high cost.

Using genotypic and phenotypic data, one can develop statistical models for viral
coreceptor usage based on the viral genotype. Supervised learningmodels such as support
vector machines or position-specific scoring matrices are used for this purpose. The
methods are basedmainly on the viral genotype (this time restricted to the hypervariable
V3 loop of the viral gp120 gene that binds to the coreceptor). Prediction accuracy can
be enhanced by including clinical parameters, such aspatient immune status, in themodel
or by specifically offering 3D-structural information on the V3 loop in the form of a
structural descriptor that is based on mapping the viral variant under investigation onto
the x-ray model of a reference V3 loop. Reviews on bioinformatical prediction of
coreceptor usage can be found in (Jensen and van �t Wout 2003; Lengauer et al. 2007).

5 Perspectives

In the last decade, computational biology has embarked on the analysis of host-
pathogen interactions. However, the field is still in an early stage. The analysis of viral
evolution inside the human population is currently targeting genetic drift but does not
yet have a handle on analyzing and predicting genetic shift. The analysis of interactions
between viral epitopes and molecules of the human immune system has brought forth
effectivemethods for analyzing and predicting the strength ofMHC-binding but has yet
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to develop models that adequately represent the many stages of molecular interactions
and molecular transport that lead to eliciting an immune response. And the support of
the selection of new antiviral therapies in the face of emerging resistant strains inside a
patient is still mainly based on statistical analysis of previously applied therapies (to
many different patients) rather than on a mechanistic understanding of the molecular
interaction networks manifesting the disease. In all fields we would greatly benefit from
dynamic simulatable models of the molecular processes manifesting the disease and of
the way in which molecular determinants of the virus, the immune system of the host
and the applied drugs influence them. Basic research in the field of computational
modeling of virus-host interactions will be directed towards generating this network-
based understanding of the involved processes. Towards this end we need not only
develop new computational models but also generate the relevant experimental data for
calibrating the models and for identifying the molecular determinants involved.
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