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Background: Recent advances in machine and deep learning based on an increased availability of
clinical data have fueled renewed interest in computerized clinical decision support systems (CDSSs).
CDSSs have shown great potential to improve healthcare, increase patient safety and reduce costs.
However, the use of CDSSs is not without pitfalls, as an inadequate or faulty CDSS can potentially
deteriorate the quality of healthcare and put patients at risk. In addition, the adoption of a CDSS
might fail because its intended users ignore the output of the CDSS due to lack of trust, relevancy or
actionability.
Aim: In this article, we provide guidance based on literature for the different aspects involved in the
adoption of a CDSS with a special focus on machine and deep learning based systems: selection,
acceptance testing, commissioning, implementation and quality assurance.
Results: A rigorous selection process will help identify the CDSS that best fits the preferences and
requirements of the local site. Acceptance testing will make sure that the selected CDSS fulfills the
defined specifications and satisfies the safety requirements. The commissioning process will prepare
the CDSS for safe clinical use at the local site. An effective implementation phase should result in an
orderly roll out of the CDSS to the well-trained end-users whose expectations have been managed.
And finally, quality assurance will make sure that the performance of the CDSS is maintained and
that any issues are promptly identified and solved.
Conclusion: We conclude that a systematic approach to the adoption of a CDSS will help avoid
pitfalls, improve patient safety and increase the chances of success. © 2019 The Authors. Medical
Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Med-
icine. [https://doi.org/10.1002/mp.13562]
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1. INTRODUCTION

The recent prominence of artificial intelligence (AI) and
machine learning (ML), coupled with the growing volume of
available clinical data, has led to an increased interest in
applications of AI in general1 and of computerized clinical
decision support systems (CDSS) in particular. A computer-
ized CDSS is any software designed to aid clinicians and
patients in clinical decision-making, defined as “active
knowledge systems which use two or more items of patient
data to generate case-specific advice,” according to Wyatt
and Spiegelhalter.2 CDSSs can make use of expert knowledge
and/or models learnt using statistics and ML from data.

In the early days of CDSSs, they were conceived as being
able to eventually replace the clinician’s decision-making. A
nuanced, more modern view of the purpose of CDSSs is to

assist the clinician to make better decisions than either the
clinician or the CDSS could make on their own, by process-
ing the vast amount of available information. Typically, a
modern CDSS makes recommendations to the clinician, and
the clinicians are expected make their own decisions and
overruling CDSS recommendations they believe to be inap-
propriate. Computerized CDSS has evolved dramatically
since their first steps featuring the computer-aided diagnosis
in the Leeds Abdominal Pain system,3 the rule-based
MYCIN,4 and the HELP alert system.5 One way they have
evolved in is their integration into clinical workflows and
other clinical information systems: in the beginning, they
were standalone systems where clinicians had to enter the
patient information before reading and interpreting the
results. Beginning in 1967, CDSSs started to be integrated
into clinical information management systems thus offering
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two main advantages: users did not have to reenter informa-
tion, and CDSSs could be proactive, that is, alerting or rec-
ommending actions, without the user actively seeking
assistance from the CDSS.6 Starting in the late 1980s, the
development and adoption of standards to represent, store,
and share clinical knowledge allowed separation of knowl-
edge content from the software code of the CDSS.7 From
2005, clinical information systems started offering applica-
tion programming interfaces (APIs) through which they could
interact with CDSS, thus allowing for a more dynamic and
less standardized relationship.8

The evolution of CDSSs has led to a high variety of types
of CDSS,9 which can be classified in terms of a number of
features. CDSS can offer support on demand or unprompted,
as is the case of alert systems.10 In addition, CDSSs can be
classified in terms of their underlying technology as based on
rules, deep learning,11 probabilistic models, genetic algo-
rithms, or reinforcement learning,12 among others. In terms of
their function, CDSSs can be classified as supporting diagno-
sis, outcome prediction,13 treatment planning,14 prescribing
and managing medications,15,16 preventative care,17 chronic
disease management,18 image interpretation (contouring,19

segmentation, and pathology detection), and many others.
Systematic reviews suggest that use of CDSSs reduces

unwarranted practice variation, improves quality of health-
care, reduces waste in the healthcare system, and reduces the
risk of overload and burnout among clinicians.20–24 However,
CDSSs can also have important negative consequences, since
a faulty CDSS or its inappropriate use can lead to deteriora-
tion of the quality of care. Major ethical questions and patient
safety concerns still remain.25 The role of CDSSs has tradi-
tionally been to “enhance and support” users (clinicians or
patients) who are ultimately liable for the clinical decisions.22

With the advent of deep learning, CDSSs are reaching human
performance levels at a variety of tasks, especially image anal-
ysis, often acting as “black boxes” where the reasoning for the
recommendation is unknown.26 This raises new questions
regarding responsibility and liabilities. Regulatory processes
are adapting accordingly, classifying some CDSSs as medical
devices (with its legal implications) while excluding from this
definition other CDSSs, such as those that do not analyze
images and that allow the users to review the basis of the rec-
ommendations.27 However, not even regulatory approval is a
guarantee of positive impact. CDSS can inadvertently
increase the workload of the clinicians. For example, a well
known consequence of a CDSS alerting system in patient
monitoring is “alert fatigue,” that occurs when clinicians
come to ignore alerts due to an overwhelming frequency of
false alarms.28 Another potential risk arising from the adop-
tion of CDSSs is clinicians losing the ability to make deci-
sions on their own or to determine when it is appropriate to
override the CDSS — and again current gains in artificial
intelligence, which make it a reality that CDSS is equal or bet-
ter in decision-making than humans, make these risks more
pertinent. This could become critical in case of computer sys-
tem downtime, or if a patient with an unusually rare medical
condition is admitted for treatment. As such, it is important to

remain alert to both the positive and negative potential impact
of CDSS on clinical decision-making.22 Some forms of
CDSSs have been in use for decades, but their use is not yet
widespread due to a number of issues related to design and
implementation, such as clinicians not using them due to lack
of time or lack of confidence in the CDSS’s output.29,30

However, there remains an immense potential need for
CDSSs due to increasing volume of available data, growing
diversity of treatment options, and rapidly evolving medical
technologies. CDSSs could be valuable as a means of deliver-
ing medical care tailored toward patients’ preferences and
biological characteristics. Patients could benefit from an over-
all accumulation of human knowledge and clinical expertise
guiding their diagnosis, treatment, and condition monitoring.
There remains a growing global need for high-quality person-
alized medicine to improve patient outcomes, reduce finan-
cial burden, and avoid unwarranted practice deviations.
Machine learning-based CDSSs are expected to help alleviate
some of the current knowledge and associated quality of care
variation across countries and regions. Thus, the question of
designing, developing, presenting, implementing, evaluating,
and maintaining all types of clinical decision support capabil-
ities for clinicians, patients, and consumers remains a key
area of research in modern medicine.31

The aim of this paper is to provide guidance on the differ-
ent stages for a safe and successful adoption of CDSSs (see
Table I) in a clinic safely and successfully. The paper is orga-
nized as follows: the next section explains how to select a
CDSS; the next two sections provide recommendations for
the acceptance testing and commissioning of a CDSS; then,
the implementation section describes how to roll out a CDSS
while Section 66 provides guidelines for the quality assur-
ance of CDSSs; finally, we draw some conclusions.

2. SELECTION

The range of commercially available CDSSs for clinical
applications has been growing during recent years. Hence,
selecting the most appropriate CDSS from those available is

TABLE I. Summary of stages in the adoption of a CDSS.

Stages Objective

Selection Pick most appropriate CDSS in terms of match with target
use case and clinical workflow, five “rights,” performance,
and user acceptability

Acceptance
testing

Test that CDSS satisfies security, privacy, and safety
requirements applicable to medical devices, covering typical
error scenarios, exceptions, and unforeseen conditions

Commissioning Prepare the CDSS for optimized use in the clinic
(including potential customization) and test its safety and
performance within the local context

Implementation Roll out the CDSS and transition from the old workflow to
the new after training the end users and managing their
expectations

Quality
assurance

Ensure that the quality of the CDSS remains fit for
purpose by monitoring internal and external updates as
well as context drift
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not always easy, yet it is a key step in the implementation of a
successful CDSS.

User acceptance of CDSS is critical; several implementa-
tion studies32,33 show that how beneficial a CDSS is per-
ceived largely determines uptake and usage by clinicians and
allied health professionals. Therefore, the recommended first
step in the process would be to form a multidisciplinary steer-
ing committee comprising key clinical stakeholders, such as a
number of clinician “champions,” patient representatives,
department administrators, and information technology
experts, who would be willing to take decisions and be
accountable for the implementation of a CDSS.34 Studies
show that likelihood of user acceptance increases when
CDSS implementation involves the end users instead of forc-
ing the CDSS onto the end users.32 In order for the CDSS to
be effective, the CDSS should be conceived as part of a
wider, coherent, and department-wide quality improvement
strategy, where a clinical quality gap between current patient
outcomes or process and the desired end state has been
clearly identified and carefully measured.35

Two main aspects to consider when selecting a CDSS are
the quality of the CDSS and how well the CDSS fits with
closing the clinical quality gap. The quality of a CDSS needs
to be considered at least at two levels: the level of the technol-
ogy platform and that of the data or knowledge used to build
it. CDSSs, as software that is potentially also a medical
device, should be designed, implemented, tested, and docu-
mented using generally recognized quality assurance methods
for software development used in the medical domain. The
medical knowledge used in the construction of the CDSS
cannot be proven clinically complete or objectively correct,
but it must attempt to capture the current state of professional
and scientific opinion. Furthermore, it must be possible to
verify formally that the relevant medical knowledge satisfies
certain requirements such as being unbiased, consistently
interpreted, and reasonably completed.36 In the case of CDSS
based on models learnt using statistical analysis or by
machine learning, an assessment of the quality of the source
data is necessary. Data quality is important, since the “gar-
bage in, garbage out” principle especially applies to machine
learning. Data are generally defined as of high quality if it fits
closely to the intended purpose,37 and more specifically it
should consist of a representative, unbiased sample of the
domain (patients or clinical conditions) being modeled. The
appropriate processes for anomaly detection, data cleansing,
and handling of incomplete or missing data should have been
applied to the dataset, and the existence of potential biases
assessed and corrected.

A key indicator of the quality of a CDSS is its perfor-
mance. Measures of performance vary across different types
of CDSS. For example, in CDSS performing outcome predic-
tion, the area under the receiver operating characteristic
(ROC) curve or the c-index is commonly used performance
metrics.13 In other cases, performance can be measured in
terms of saved time.19 However, the assessment of the perfor-
mance might be complicated,38 especially when a gold stan-
dard of performance does not exist, such as in the case of

therapy-advice systems, where even experts may disagree. In
the end, the most difficult to measure, yet most valuable per-
formance metric, is the effect of the CDSS on health out-
comes or processes.35 Publication by CDSS vendors of
detailed evaluations of usability and effectiveness of CDSS
implementation might facilitate purchasing decisions,34 but it
should be kept in mind that trials conducted by developers of
CDSS might overestimate their benefits, and third party exter-
nal validation is required.39 A thorough hazard analysis,
resulting in an exhaustive list of potential risks and their pos-
sible consequences along with a mitigation plan for said
risks,36 is part of the regulatory process and could provide
valuable insights into the desirability of the CDSSs.

During selection, the acceptability of the CDSS should be
considered and weighed against performance. For users to
easily accept the output of a CDSS, the strength of evidence
supporting the clinical recommendations delivered by the
CDSS should be transparent to the user40. The levels of com-
prehensibility or explainability of models based on hand-
engineered features and simple models (e.g., decision trees)
are usually higher than those based on more advanced
approaches such as random forests and deep learning.41

As mentioned earlier, it is crucial to select a CDSS that fits
the requirements of the local site. First, following the Popula-
tion, Intervention, Comparison, and Outcome (PICO) frame-
work,42 the selection process should be restricted to CDSSs
that target the appropriate population, consider the relevant
intervention and comparators, and focus on the outcomes of
interest. When selecting a CDSS, we should consider the five
“rights” a CDSS should fulfill, namely: delivering the right
information (what), to the right people (who), in the right for-
mat (how) through the right channels (where) at the right
time in the workflow (when).43 Delivering the right informa-
tion also implies that the output of the CDSS (clinical recom-
mendations and assessments) should be clinically relevant,
brief, unambiguous, and actionable.40 The CDSS should also
fit the existing workflow of its users as closely as possible,
for example, integrated in the electronic health record (EHR),
minimizing the effort required by users to receive and act on
system recommendations.44. In order for a CDSS to fit the
workflow of a particular clinic, customization of the CDSS
might be necessary. Therefore, the customization functional-
ity offered by each CDSS should be taken into account during
selection.28 Another consideration related to the local work-
flow is whether all the necessary data for the proper function-
ing of the CDSS is available in that specific point in the
workflow.45

Another factor to consider when selecting a CDSS is its
usability, more specifically how easy is it to use or how much
training is needed to be able to use the CDSS. Vendors need
to be clear about the expertise required for using the system.

An important consideration when selecting a CDSS
should be its cost-effectiveness,46 compared to alternative
CDSS or even other medical devices (e.g., a new piece of
equipment). However, it remains difficult to demonstrate the
return on investment of CDSS, especially against many com-
peting priorities at the delivery system level.34 A
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comprehensive assessment of the costs involved in the acqui-
sition of a CDSS should be undertaken prior to its purchase,
including one-off costs (purchase, training, implementation,
etc.) but also costs incurred over time such as maintenance
costs and resource utilization (e.g., time of its users). These
costs should be weighed against not only estimated improve-
ments in health outcomes but also estimated savings due to
efficiencies facilitated by the CDSS.

Other factors to consider include the compatibility with
legacy applications, the maturity of the CDSS, and the avail-
ability of upgrades.23

3. ACCEPTANCE TESTING

For acceptance testing, a CDSS can best be seen a medical
device for which many processes are already usually in place
in health-care providers. Acceptance tests for a medical
device assure that the all defined specifications are fulfilled
and that the medical device satisfies pertinent safety require-
ments.47 These tests are usually defined by the CDSS vendor,
but should be run in the presence of the representatives of the
local site. On successful completion of the acceptance tests,
the acceptance report will be signed and the payment for the
device approved. Consequently, the set of test cases should
be comprehensive, including covering cases on the edge of
the domain of the CDSS, usually termed corner cases. The
technical aspects of acceptance tests should be conducted by
technology representatives while tests focused on usability or
clinically oriented tests should be conducted by a subgroup
of users that comprises a representative sample of the
intended end-user population. The acceptance test plan
should cover at least the following aspects:

1. Installation and setup of the device.
2. Proper functioning of APIs offered by the CDSS (if any).
3. A complete walkthrough of the user interface, operat-

ing the CDSS as part of the existing workflow.
4. Clinical completeness, relevance, comprehensibility, con-

sistency, and repeatability of the output of the CDSS.
5. Auditing, security, and privacy functions.
6. Typical error scenarios, such as unexpected, incorrect

or incomplete input data, abrupt closure scenarios
(e.g., due to power outage) leading to incomplete trans-
actions, etc. The CDSS should not output inappropriate
recommendations in the event of incomplete or inaccu-
rate data. Moreover, the CDSS is expected to handle
these situations by keeping internal consistency, pro-
viding appropriate error messages, and, if necessary,
proceeding to an orderly shutdown.

In addition to the above, acceptance testing of a CDSS
should test the accuracy of the CDSS recommendations, as
inaccurate recommendations might endanger the safety or
well-being of patients. These tests should compare the out-
come of the CDSS to the expected outcome on a fixed, small,
and restricted but representative sample of real cases. The
estimated accuracy based on these acceptance test results

should be compared against the accuracy claimed by the ven-
dor and statistically test whether it is within the specified
error tolerance. The same applies to the other quantitative
and qualitative estimates provided by the vendor. In order to
test whether the real accuracy of the CDSS (or any other
parameter) is within a given error tolerance based on a sam-
ple of tests, a statistical test (e.g., Mann–Whitney U test)
should be used to calculate the probability that the accuracy
observed in the sample belongs to a probability distribution
determined by the claimed accuracy and error tolerance. If
the calculated probability is below a certain significance
threshold, we can reject the hypothesis that the actual accu-
racy is within the error tolerance. Finally, a check for com-
pleteness and accessibility of the CDSS user manual as part
of acceptance testing would be important for novice users or
in emergency, unusual situations.

4. COMMISSIONING

Commissioning is the process that prepares the CDSS for
safe clinical use in the local site, meeting established require-
ments and end users’ expectations.48 As such, commissioning
verifies that the CDSS has been installed in the local site fol-
lowing the agreed requirements, successfully handed over from
the vendor, and most importantly, that it functions properly. It
is widely recommended to prepare for this phase by devising a
commissioning plan that describes the tasks, schedule, and
required human and equipment resources as well as the amount
of support required from the CDSS vendor.

The first step in the commissioning plan is the installation
in the local site, which in the case of CDSSs inevitably
requires some degree of configuration or customization. Cus-
tomization might be required for technical or safety reasons,
for example, to make sure that parameters in the CDSS are
correctly linked to the local EHR and that the definitions of
clinical terms are in sync between the CDSS and local EHR.
Customization is also a powerful tool to make the output of
the CDSS more relevant, useful, and safe for use.39 A qualita-
tive study found that all successful sites devoted considerable
staff time to customization of their CDSS.45 An example of
customization could be to assess and improve the appropri-
ateness of alerts to avoid alert fatigue.10

In order to test that the installed CDSS functions properly
in the local site, a test plan needs to be designed and exe-
cuted. To begin with, the implementation of the CDSS is
likely to require some changes in the workflow on the users
end. In that case, the information necessary to support the
future workflow needs to be identified and the new workflow
tested. Once the new workflow is established, the aim is to
ensure that the CDSS is functioning properly by testing as
many clinically relevant scenarios and corner cases as possi-
ble. The steering committee formed by clinicians, administra-
tors, and information technology experts should be involved
in identifying all the relevant situations and corner cases
where the installed CDSS could fail in the local site environ-
ment and lead to poor quality or reliability. A set of past
cases, which includes difficult and rare cases along with a
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representative sample of the local case population could be
retrospectively tested if a database with past cases exists. In
this case, the recommendations of the CDSS is either
assessed by a panel of clinical experts in a blind study where
the experts ignore the CDSS’s output or compared against
the decisions that were taken in the past. However, is impor-
tant that CDSS should be tested on real-world cases from the
users’ own clinical practice prior to implementation.45 An
option is to test the CDSS prospectively by running a pilot
program where the CDSS is used in parallel to the existing
workflow or where the CDSS is used with supervision using
the existing workflow as fallback.49 Strategies to cover a rep-
resentative sample of usual and rare cases include random
sampling, input selection, and control flow testing.50 During
the pilot, it is interesting to perform an initial assessment of
the clinical relevance of the CDSS in terms of user accep-
tance, adherence to the CDSS’s recommendations, and its
impact on the clinical decisions and ultimately on patient or
health outcomes. Significant deviations on the estimated per-
formance of the CDSS during this phases as compared with
that in acceptance testing or vendor’s claims of performance
and error tolerance should be discussed with the vendor. Fail-
ure mode analysis is an important part of commissioning test-
ing, where faults in data entry are simulated and the behavior
or CDSS is analyzed and tested for consistency.51 Testing
during commissioning is also important to grow confidence
of local physicians in that the support system works in their
local setting.13

5. IMPLEMENTATION

The implementation process is an important factor in the
success of a CDSS52 and consists of the design and execution
of the rollout plan, transitioning from the old workflow to the
new one including the CDSS and the deployment of the
CDSS within the local site. An effective implementation of
CDSS requires preparing both users and the local site’s
infrastructure for the widespread use of the CDSS. The
preparation of the infrastructure will vary across CDSSs and
local sites, but there are common themes on how to prepare
users for the use of a new CDSS. Prior to and surrounding
implementation, it is important to communicate with and
educate the affected users.53 Effective training of all the
stakeholders and intended users of the CDSS is key to its suc-
cess 54 and should comprise different aspects such as when
(and when not) to use it, how to use it, how to interpret the
output of the CDSS, and when to override the CDSS recom-
mendations, among others. It also includes helping users
understand how the CDSS will impact their daily activities
and how they can provide feedback.53 It is important as part
of the training to manage users’ expectations in terms of effi-
ciency and effectiveness and make sure users understand the
strengths and limitations of the CDSS.22 Different stakehold-
ers might have different expectations: some primarily view
CDSSs as a vehicle for promoting standardization, quality,
and safety while clinicians might see it differently.45 Training
should also serve the purpose of preparing users for a

necessary leap of faith: a CDSS will only be used if it is per-
ceived as beneficial by those using it, but the benefits of the
CDSS will be appreciated only after overcoming the initial
challenges of using it.33 Hands-on training is a valuable tool,
as users might need some handholding at first, as is on-site
support from vendors as needed to help with any immediate
issues that may occur.53 The deployment or rollout of the
CDSS can be undertaken incrementally (e.g., rolling it out in
a single post or facility to “get the kinks worked out”) or all
at once, which requires good preparation.32

6. QUALITY ASSURANCE

Before the CDSS has been deployed, it is crucial to design
a quality assurance (QA) program to ensure that the perfor-
mance and safety of the CDSS are maintained by assuring
that its quality remains fit for the purpose throughout its life
cycle.

As part of the QA program for a CDSS, performance must
be defined using a set of metrics in terms of efficiency and
efficacy so that the impact of the CDSS can be measured over
time.45 Measures of efficacy might be specific to the func-
tioning of the CDSS (e.g., sensitivity and specificity for a
diagnostic tool) or generic, such as patient safety and change
in health outcomes (such as life expectancy). Efficiency can
be measured in resources saved, such as costs and productiv-
ity.34 In order to assess the CDSS performance, it is espe-
cially valuable to quantify baseline performance levels (i.e.,
before the implementation of the CDSS) as well as have an
estimate of the target performance upfront.53

The QA plan must guarantee that any malfunctions are
identified and resolved in the shortest time possible. To facili-
tate the discovery of CDSS malfunctions, mechanisms need
to be in place for receiving user feedback and acting on it.55

Besides, CDSS malfunctions can be identified by a combina-
tion of qualitative and quantitative analyses (e.g., of firing
rates for alert systems or overrides for recommender
CDSS).28 Visual detection and statistical process control
analysis have shown good results as tools to detect malfunc-
tion.56 In addition to malfunctions, it is important to log or
track the cases where the CDSS was not adhered to (such as
when an alert was ignored or a recommendation overridden),
as knowing how often the CDSS is being overridden and why
can offer valuable insights and lead to an identification of
previously undetected malfunction.45 Similarly, monitoring
proper utilization of the installed CDSS is important as this
could lead to a reduced performance.22

At the data quality front, local sites have to define and
enforce internal standards to assure the integrity of entered
data.45 Data providers to the CDSS should be trained about
the importance of high-quality data and their responsibility in
assuring its accuracy.

The QA plan must also assure that the performance and
safety of the CDSS are maintained over time. In this sense, a
CDSS is not radically different from a treatment planning
system or a radiotherapy linear accelerator, because devia-
tions of CDSS performance beyond certain bounds of
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tolerance have the potential to cause medical mistreatment.
For example, Nakatsugawa et al.57 observed the need to update
the prediction models with prospective data collection for
maintaining the performance of their RT-induced toxicity pre-
diction models. The first concern in this aspect is external
(context) drift over time. The patterns of clinical practice are
constantly evolving over time: changes in the clinic are some-
times radical (such as the introduction of image-guided radia-
tion therapy or robotic surgery) and gradual at other times
(e.g., percentage of patients with oropharyngeal squamous cell
carcinoma expressing the p16 protein from human papilloma
viral infection). Changes in patient case mixture, obsolescence
of certain drugs and treatments, and recoding of prognostic
clinical features and clinical guidelines based on new random-
ized trials could all lead to unwanted divergence of CDSS rec-
ommendations over time. Such changes are often impossible
to forecast during CDSS acceptance testing and commission-
ing and represent potential sources of time-dependent inconsis-
tencies that violate the original assumptions built into the
CDSS. These shifts can be related either to the input of the
CDSS (e.g., clinical presentation of patients changing signifi-
cantly since the CDSS was initially commissioned, thus expos-
ing a previously unknown systematic bias toward certain
patient subgroups) or its output (whereby the CDSS makes
recommendations that are not in line with the most recent clini-
cal guidelines). One other potential source of temporal diver-
gence is internal (model) drift. The models underpinning the
CDSS are likely not to remain static, but be updated at specific
times well after commissioning of the original CDSS. In addi-
tion, models developed on limited sample sizes may initially
incorporate some systematic bias that will be gradually
reduced over time as the models are fed with progressively lar-
ger datasets on which to train and validate on. As described
elsewhere,58 models could be updated via any one of the fol-
lowing: (a) shifting either the baseline risk level or (for the case
of binary models) the cutoff value for binary outcome, (b)
computing new values for an existing set of parameters, or (c)
the model is trained afresh on expanded data, leading to possi-
bly new model parameters, new coefficients, and (for binary
outcomes) new cut-off values.

A suitable safeguard for internal and external drift is to
establish and routinely review incident monitoring logs for
inappropriate or incorrect responses from the CDSS. At the
same time, a “repeated local validation” cohort should be
assembled from time to time or preferably continuously to
critically reexamine the tests done during the commissioning
stage. The repetition may help to ensure that the CDSS
remains clinically valid, despite changes in local practice or
evidence-based guidelines. Such a continuous local valida-
tion infrastructure will also be beneficial when introducing
an update to the CDSS (see below). Finally, it is important to
reemphasize that no CDSS can ever be perfect, but at the very
least, the quality assurance system will document that the per-
formance of the CDSS meets criteria based on the commis-
sion results as a benchmark.

Among the top priorities for the CDSS, steering commit-
tee would be to establish an update management protocol.

CDSS, in common with medical software in general, is most
likely to be updated in the “offline” mode. That is, via a ven-
dor-instigated or user-instigated change request, a CDSS is
temporarily taken out of clinical use and placed in “mainte-
nance” mode. Subsequent changes are performed in the
maintenance state, such as applying a software version
upgrade or correcting of faulty function. In analogy with
other aspects of maintenance and QA of clinical systems,
“clinical hand-over,” that is, acceptance of the system back
into clinically operational mode, following any such update
should only be allowed after some CDSS performance verifi-
cation checks have been performed on the changed system.
The minimum necessary tests should have been prespecified
by the vendor or the maintenance manual based on risk analy-
sis, but it may be advisable to include some additional tests
taken from the acceptance testing procedures, in order to cer-
tify that all of the essential functionality of the CDSS has
been restored following the update. With migration of medi-
cal software systems to “cloud services,” increasing system
automation and mathematical algorithms that are able to
learn “on-the-fly,” one also has to countenance the possibility
of CDSSs that update “online.” Such CDSSs can be allowed
to evolve in real time based on interactions between the user
and its recommendations, such that the behavior of the CDSS
might slightly change with each interaction. An update man-
agement protocol may explicitly permit online updates, which
pose a new and interesting challenge, that of seeking the ideal
trade-off between the potential of continuous improvement of
performance against the risk of undetected performance
degradation due to, for example, systematic biases in the
input.

Another top priority should be to implement a routine QA
test schedule that specifies which tests should be done, when
they should be done and by whom.53 As part of the QA tests,
various aspects of the functionality of the CDSS are tested
against an agreed upon ground truth. As a general rule, the
types of QA tasks are drawn from the same checks as for
commissioning. Therefore, the documented results of com-
missioning can be reused at specified time intervals, in order
to certify that the CDSS performance has not unduly drifted
over time. Multiple statistical anomaly detection models
applied to anomaly detection on CDSS over time have been
described and compared in the literature, and the most appro-
priate method will depend on the nature of the CDSS.59,60

The nature and frequency of such QA tests depends on the
likelihood of unwanted deviation in CDSS performance and
its potential consequences. QA tests should be performed
more frequently for either highly likely failures or nonconfor-
mance events that lead to severe consequences. Unlikely fail-
ures and events that do not have major clinical consequences
need only to be checked infrequently. An important effort
should be directed toward procedural mitigation of rare fail-
ures that carry severe consequences, because this may not be
easy to intercept within a routine QA program.

In order to adequately design and execute the QA plan, it
is recommended that the personnel in charge are in posses-
sion or acquire for the task a set of statistic and data analysis
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techniques through training. Similarly, having in-depth
knowledge of how the CDSS’s underlying technology works
will allow medical physicists to identify malfunctions and
understand their cause. This training can potentially be
offered by the vendor itself or third parties offering special-
ized training. Eventually, artificial intelligence and machine
learning aspects will be covered within the medical physics
curriculum,61 which will lead to a wider and deeper under-
standing of these systems.

7. DISCUSSION AND CONCLUSIONS

CDSSs have shown great potential for improving health-
care and patient safety as well as reducing unwarranted varia-
tion, resource use, and costs. AI-based CDSSs have recently
stood out for their ability to leverage the increasing availabil-
ity of clinical data to assist clinicians and patients in a wide
variety of situations (e.g., by providing personalized estimates
of clinical outcomes or proposing diagnoses) based on struc-
tured (e.g., EHRs) and unstructured data (e.g., medical imag-
ing). However, an inaccurate or inappropriate CDSS might
deteriorate the quality of healthcare and put patients at risk.25

AI-based CDSSs come with additional pitfalls, including (but
not limited to) overfitting to and bias and limitations in the
data used to train the AI. These could lead to the CDSS’s fail-
ure to generalize from the training data and ultimately to
undetected poor performance at the local site. Therefore, con-
siderable care must be taken to minimize the potential
adverse consequences of CDSSs.62 It is important to select
carefully the CDSS that matches the requirements of the local
site. As with any other medical device, CDSSs require strin-
gent acceptance testing, commissioning, and quality assur-
ance by the local site.13 In addition, an effective
implementation plan is key to overcome barriers for a suc-
cessful CDSS.63 In the present review, we have summarized
the guidance collected from the literature in order to provide
CDSS implementers. We conclude that following a system-
atic approach to the different aspects involved in the adoption
of a CDSS will help avoid pitfalls, improve patient safety, and
increase the chances of success.
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