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Abstract: Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen 

associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the 

elderly and immunocompromised individuals. The development of a potential vaccine 

against hMPV requires detailed understanding of the host immune system, which plays a 

significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, 

animal models have been developed to better understand the mechanisms by which hMPV 

causes disease. Several animal models have been evaluated and established so far to study 

the host immune responses and pathophysiology of hMPV infection. However, inbred 

laboratory mouse strains have been one of the most used animal species for experimental 

modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. 

This review summarizes the contributions of the mouse model to our understanding of the 

immune response against hMPV infection. 
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1. Introduction 

Human metapneumovirus (hMPV), belongs to the Paramyxoviridae family and represents the first 

human member of the genus Metapneumovirus. hMPV is a leading respiratory viral pathogen causing 
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acute respiratory tract infection (ARTI) in young children, the elderly and immunocompromised 

individuals [1]. hMPV was first isolated in the Netherlands in 2001 from respiratory specimens of young 

children suffering with acute respiratory tract illness [2] and represents a major respiratory pathogen 

worldwide. Epidemiological studies show that hMPV is responsible for 5%–15% of pediatric 

hospitalizations for respiratory tract infections [3–7]. It induces clinical syndromes ranging from mild 

disease to more severe disease, with high fever, wheezing, severe cough, difficulty in breathing, 

tachypnea, bronchiolitis and pneumonia [8–10]. 

hHMPV is an enveloped, negative sense single-stranded RNA virus (Figure 1). Based on 

phylogenetic analysis, hMPV is classified into four genetic lineages, named A1, A2, B1 and B2 that 

divide into the A and B antigenic subgroups that belong to one serotype [11,12]. hMPV genome size is 

approximately 13,000 nt as it varies depending on the strain. Examples of the subgroup A indicate that 

the strain CAN97-83 is 13,335 nt and NL/00/1 is 13,350 nt, and for the subgroup B: CAN98-75 is 13,280 

nt and NL/1/99 is 13,293 nt [11,13]. The hMPV sequence includes eight genes encoding nine proteins: 

nucleocapsid (N), phosphoprotein (P), matrix (M), second matrix (M2-1, M2-2), fusion (F), small 

hydrophobic (SH), attachment (G) and RNA-dependent RNA polymerase (L). The gene order in hMPV 

is represented as 3′-N-P-M-F-M2-SH-G-L-5′ (Figure 1). The attachment (G) and small hydrophobic 

(SH) genes are found to be highly variable while a high level of sequence conservation has been observed 

for the fusion (F) gene [13]. The G protein is a transmembrane surface glycoprotein, which initiates the 

virus-host cell membrane attachment and so considered as a key player in viral replication. The fusion 

(F) protein is required for the fusion of virus with host cell membrane and is capable of being accessed 

by neutralizing antibodies. The nucleocapsid (N), phosphoprotein (P) and RNA-dependent RNA 

polymerase (L) proteins along with M2 protein are involved in RNA synthesis [11,14,15]. 

 

Figure 1. Model structure and proteins encoded by Human Metapneumovirus (hMPV). 

(a) hMPV model structure indicating viral proteins encoded by (b) the viral genome. 
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Several animal models including mouse (see Table 1), cotton rat [16–19], hamster [20–22], ferret [20] 

and nonhuman primate models [20,23,24] have been established to date to study the immunopathology 

occurring after hMPV infection. Among them, the mouse model has provided considerable knowledge 

towards our understanding of the hMPV-host interaction. Thus this review focuses on the current 

knowledge of the immunity and immunopathology induced by hMPV in the experimental mouse model 

of infection. 

Table 1. Different conditions for mouse infection with hMPV. 

Mice Strain Mice Age (Group) Strain Virus Dose Refs. 

BALB/c F 6–8 week-old (A) NL 00-01 3.3 × 105 PFU [25] 
BALB/c F 4–6-week-old (A) C-85473 1.5 × 105–108 TCID50 [16,26–32] 
BALB/c F 6–8-week-old (A) C4-CJP05 106 PFU [33] 
BALB/c F 4–6-week-old (B) CAN98-75 0.8–1 × 106 PFU [29,34,35] 
BALB/c F 5–7 week-old (A) NL/1/00 106–107 PFU [20,36] 
BALB/c F 6–7 week-old (B) NL/1/99 107 PFU [36] 
BALB/c F 6–10 week-old (A) CAN97-83 106–107 PFU/TCID50 [30,37–41] 
BALB/c F 5–6 week-old (A) CZ0107 106 PFU [42] 
BALB/c M 19 month-old (A) CAN97-83 2 × 107 geq [43] 
BALB/c F 8–10 week-old (A) D03-574 2 × 105 PFU [44] 
C57BL/6 6–10 week-old (A) CAN97-83 106–107 PFU [38,45–49] 
C57BL/6 F 6–12 week-old (A) TN/94-49 0.6–1.5 × 106 PFU [50–53] 
DBA/2 5–6 week-old (A) TN/94-49 105.9 PFU [17] 
SCID F 6–8 week-old (A) NL/1/00 6.5 × 106 PFU [54] 

PFU = Plaque Forming Units; geq = genome equivalents; TCID50 = 50% tissue culture infective dose. 

2. hMPV Infection in Mice 

The experimental mouse model of hMPV infection has been established in several mouse 

backgrounds using different hMPV strains at diverse inoculum concentrations, as shown in Table 1. 

Intranasal inoculation of mice with hMPV induces pulmonary inflammation characterized by 

interstitial inflammation and/or peribronchiolar and perivascular cellular infiltration [30,35,39,49], body 

weight loss with a peak of 15%–25% [16,25,32,34,41], altered respiratory function characterized by a 

significant increase in airway obstruction on day 5 after hMPV infection that could persist until day 21 [30], 

and lung viral titers that peak between day 3 to day 14 after hMPV infection [16,25,30,41]. 

However, some variations can be observed depending on the different experimental conditions.  

For instance, intranasal inoculation of BALB/c mice with hMPV CAN98-75 resulted in a biphasic lung 

viral replication with peaks at day 7 and day 14 [34,35] while infection of BALB/c mice with any other 

hMPV strain led to a one-peak only of viral titer on or before day 5 after infection (Table 2). Based on 

the data from the reports included in Table 2, BALB/c mice appear to be more permissive than C57BL/6 

mice. Although, shedding of infectious virus beyond the recovery phase has been rarely reported [34], 

detection of hMPV transcripts have been found at day 154 [30] and 180 [34] after infection, suggesting 

that hMPV could persist in the lung of infected animals since hMPV infection has been characterized as 

a localized infection affecting just the airways but no other organs [35]. 
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Table 2. Mouse susceptibility and permissibility to hMPV. 

Mice Strain Virus Strain Virus Inoculum Peak Viral Titer Ref. 

BALB/c NL/1/00 3.3 × 105 PFU Day 4 (Log10 2.37 PFU/g) [25] 
BALB/c CAN97-83 107 TCID50 Day 4 (105 TCID50/g) [41] 
BALB/c C85473 1.5 × 105 TCID50 Day 6 (~104 TCID50/lung) [26] 
BALB/c C85473 1 × 108 TCID50 Day 5 (7 × 106 TCID50/lung) [30] 
BALB/c C85473 1 × 108 TCID50 Day 5 (1.92 × 107 TCID50/g) [16] 
BALB/c C85473 5.8 × 105 TCID50 Day 5 (~105 TCID50/g) [32] 
BALB/c NL/1/00 1.5 × 105 PFU Day 5 (5.1 × 105 PFU/g) [55] 
BALB/c D03-574 2 × 105 PFU Day 4 (~103.6 PFU/lung) [44] 
C57BL/6 CAN97-83 5 × 106 PFU Day 5 (104.9 PFU/g) [46] 
C57BL/6 TN/94-49 1 × 106 PFU Day 5 (~4.7 Log10 PFU/g)  [53] 
C57BL/6 CAN97-83 1 × 107 PFU Day 5 (~4.1 Log10 PFU/g) [47] 
C57BL/6 TN/94-49 6 × 105 PFU Day 5 (~4.2 Log10 PFU/g) [51] 

3. Lung Antiviral and Inflammatory Responses 

3.1. Innate Immunity 

Innate immune responses to viral infections in the lung serve as the first line of defense and it is 

activated upon recognition of the pathogen by immune cells in the respiratory tract. The cellular barrier 

constituting neutrophils, macrophages, natural killer (NK) cells and dendritic cells (DC) play a key role 

in the innate immune responses, which is triggered by the recognition of pathogen associated molecular 

pattern (PAMP) by cell receptors called pattern recognition receptors (PRRs) expressed in most cells of 

the respiratory tract. These pattern recognition receptors are broadly classified into membrane bound 

Toll-like receptors (TLRs), C-type lectin receptors (CLR), cytoplasmic RIG-I-like receptors (RLRs) and 

nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) [56]. The recognition of viral 

PAMPs by the cellular PRRs initiate the activation of signaling pathways leading to the production of 

cytokines and chemokines by the cells in the respiratory tract, that in turn regulate the inflammatory and 

immune responses in the infected host. 

3.1.1. Pattern Recognition Receptors and Signaling Pathways 

We have recently demonstrated the importance of the RLR helicase melanoma differentiation-associated 

gene 5 (MDA5) in the type I (α/β) and type III (λ) interferon (IFN) production by hMPV infection [45]. 

In a model of MDA5-deficient mice (C57BL/6J background) infected with hMPV CAN97-83, the lack 

of MDA5 resulted in a decreased viral clearance, enhanced disease severity and pulmonary 

inflammation, and was necessary for the production of IFN-α/β and IFN-λ2/3. Moreover, MDA5 

regulated the production of cytokines and chemokines in response to hMPV, demonstrating the critical 

role MDA5 plays in the control of hMPV-induced disease [45]. Downstream of the MDA5 signaling 

pathway, this helicase interacts with the adaptor molecule IFN-promoter stimulator 1 (IPS-1) at the 

mitochondrial membrane in order to induce the expression of cytokines [57]. In that regard, studies in 

neonatal IPS-1 deficient mice (C57BL/6 background) have shown that the absence of IPS-1 led to an 

increased viral load and decreased production of IFN-β and IFN-λ2/3 at day 1 after hMPV infection [58], 
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indicating that IPS-1 contributes to the antiviral response and hMPV clearance. Moreover, similar IFN 

response to hMPV infection in the absence of IPS-1 has been reported in adult mice [59]. Thus, these 

findings confirm the key role for the MDA5 and IPS-1 signaling pathway in the antiviral response against 

hMPV infection. 

On the other hand, data of hMPV infection in C57BL/10ScSnJ Toll-like receptor 4 (TLR4) deficient 

mice have shown that absence of TLR4 resulted in a decreased inflammatory response, disease severity, 

as well as IFN-α/β and cytokine production [48]. In line with those data, the lack of myeloid 

differentiation protein response 88 (MyD88), an essential adaptor molecule for TLR’s (except TLR3), 

led to a reduced lung inflammation and disease severity compared to wild type mice. The absence of 

MyD88 also impaired the production of cytokines and chemokines and the recruitment of DC, CD4 and 

CD8 T cells into the lungs of infected mice [47]. Collectively, these studies indicate that TLR4 and 

MyD88 are key molecules that regulate the hMPV-induced pulmonary inflammation and disease 

pathology in mice. 

Signaling via PRRs ultimately leads to the activation of the transcription factors interferon (IFN) 

regulatory factors (IRFs), which induce the expression of the interferons and cytokine responses.  

Data in C57BL/6 mice have demonstrated that the expression of both IRF3 and IRF7 were necessary for 

the production of IFN-α/β [45]. In agreement with these results, in hMPV-infected C57BL/6 neonatal 

mice, both IRF3 and IRF7 were necessary for the expression of IFN-α4 and IFN-β. Moreover, the 

absence of both IRF3 and IRF7 exacerbated the Th1, Th2, and Th17 lymphocyte responses as well as 

the recruitment of neutrophils, eosinophils, NK and NK T cells in response to hMPV infection [58]. 

Similarly, the production of IFN-λ2/3 after hMPV infection was regulated by the expression of IRF-7 in 

adult [49] and neonatal [58] mice. However, the expression of IRF-3 was necessary for the production 

of IFN-λ2/3 in neonatal mice [58] but it was dispensable when the IFN-λ2/3 was induced by hMPV in 

adult mice [49], suggesting that the activation of the IFN-λ response by hMPV in adult and young mice 

is differentially regulated by IRF-3 and IRF-7 expression. Interestingly, hMPV has also been reported 

to inhibit the IFN responses [39,49]. Studies in BALB/c mice have demonstrated that hMPV infection 

inhibits the poly-ICLC- (synthetic dsRNA, TLR3/RIG-I/MDA5 agonist) and CpG-ODN- (TLR9 

agonist) induced IFN-α production [39], suggesting that hMPV infection is able to inhibit the activation 

of RLRs and TLRs in vivo. In addition, recent data have shown that hMPV G protein inhibits the 

production of IFN-λ2/3 in BALB/c mice after hMPV infection, at least through the interference with the 

RIG-I/MDA5 pathway [49]. 

Based on the reported observations described above, hMPV-induced immune response is regulated 

by the activation of selected PRRs. It appears that hMPV infection activates TLRs to induce an 

inflammatory response while it subverts RLRs to alter the antiviral responses via the inhibition of 

interferons. This immune subversion is attributed to the expression of hMPV G protein. Taken together, 

experimental evidence demonstrates that hMPV is able to activate and subvert antiviral signaling 

pathways, likely through different mechanisms. However, unresolved pathways involved in activation 

or subversion of hMPV induced immune response, need further elucidation. A detailed understating of 

hMPV induced recognition and signaling cascades is crucial to developing effective therapeutics and 

vaccine strategies. 
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3.1.2. Cytokine Production 

hMPV is known to induce in humans a profile of cytokines distinct to other respiratory viruses such 

as respiratory syncytial virus (RSV), and influenza virus [60]. Although very scarce, studies comparing 

hMPV and RSV infection are clinically relevant as RSV is the closest related human paramyxovirus to 

hMPV [11]. In fact, symptoms between RSV and hMPV are indistinguishable, ranging from mild  

cold-like symptoms to more severe clinical manifestations like bronchiolitis or severe pneumonia that 

require hospitalizations [3,7,61]. However, some aspects of the immune response elicited by these two 

viral pathogens are distinct. This was demonstrated by the analysis of nasal washes from hospitalized 

infants showing that hMPV infection induced significantly lower amounts of proinflammatory cytokines 

including IL-12, IL-6, IL-8, TNF-α and IL-1β compared to RSV infection [60], suggesting that hMPV 

is a poor inducer of inflammatory cytokines compared to RSV in infected infants. In line with these data, 

research in the mouse model resembled the observation in human studies. Using BALB/c mice infected 

with hMPV (CAN97-83) and compared to RSV (A2) side-by-side, hMPV induced a weaker response of 

proinflammatory cytokines (IL-1α, IL-1β, IL-6, TNF-α, G-CSF) and regulatory cytokines (IL-10,  

IL-12p70, IL-17). However, hMPV induced a stronger response of IFN-α, GM-CSF, IL-18, CXCL1 

(KC) and a sustained production of IL-12p40 [37]. In contrast to this work, a study conducted in BALB/c 

mice using a clinical hMPV isolate (D03-574) induced significantly higher levels of TNF-α, IL-6 and 

MCP-1 compared to RSV (A2) at day 4 and 7 post infection [44]. The discrepancies between these two 

studies in mice could be due to the use of different virus strains and virus stock preparations. 

The effect of hMPV on the IFN response has been further confirmed since experimental observations 

indicated that hMPV induced a stronger response of IFN-β and IFN-λ2/3 when compared to RSV 

infection in BALB/c mice [49]. However, levels of IFN-γ were induced similarly by hMPV and  

RSV-infected BALB/c mice [44]. Additional data have also demonstrated the capacity of hMPV to 

induce several cytokines in the lung, where a significant induction of CCL2 (MCP-1) and CXCL1 (KC) 

on day 1 and IFN-γ, CCL5 (RANTES), CCL3 (MIP1α), and IL-4 on day 5 after hMPV infection has 

been observed [16,25]. Overall, these findings suggest that hMPV infection induces a unique profile of 

cytokines and chemokines in the lung of infected mice. 

The regulatory effects that lung cytokines and chemokines exert in hMPV-induced disease are still 

largely unexplored. In that regard, IL-12p40, an induced cytokine during hMPV infection that remains 

sustained after the resolution of the disease [37] has been shown to be critical to control disease severity 

by regulating cytokine production, inflammatory response and mucin production in the lung. Using  

IL-12p40-/- mice infected with hMPV, showed an increased goblet cell formation, increased mucin gene 

expression in the airways and decreased lung function. IL-12p40 was found to specifically regulate the 

expression of IFN-γ, IL-6, CXCL10 (IP-10), CCL11 (eotaxin), CXCL1 (KC, IL-8 homolog) and CCL2 

(MCP-1) in mice infected with hMPV [46]. Furthermore, the level of expression of inflammatory 

cytokines after hMPV infection appears to be altered in aged animals. For instance, TNF-α levels were 

decreased ~7-fold in 19 moth-old hMPV-infected mice when compared to 4–6 week-old animals [43] 

while IL-6 was increased in 18–19 month-old mice when compared to 6–8 week old mice [62]. Also, 

hMPV infection alters the cytokine response to opportunistic bacterial infection in the lung. Prior hMPV 

infection exacerbated the levels of TNF-α, IFN-γ, IL-1α, IL-1β, IL-6, IL-12p40, IL-12 p70, IL-9, IL-10, 

IL-13, KC, G-CSF, GM-CSF, MCP-1 and MIP-1α in Streptococcus pneumonia-infected mice and 
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predisposed those animals to severe pneumococcal infection [26]. The described cytokine patterns 

induced by hMPV infection are crucial to understanding the underlying mechanisms in activation of the 

innate and adaptive immune responses as well as the initiation and resolution of the inflammatory 

response and lung viral clearance. However, the role of these cytokine pathways in promoting and 

modulating inflammation and host immune responses in hMPV infection are still largely unknown. The 

use of genetically modified mice will represent a critical tool to answer these relevant questions. 

3.1.3. Dendritic Cells 

Dendritic cells (DC) are professional antigen-presenting cells within the immune system. Respiratory tract 

dendritic cells are present within airway epithelium, submucosa and associated lung parenchymal tissue 

under resting conditions [63]. Their strategic localization at the site of pathogen entry makes them 

particularly susceptible to initial viral invasion. After detection, uptake and degradation of viruses, DC 

initiate immune responses via the secretion of interferon (IFN), chemokines and proinflammatory 

cytokines, as well as the upregulation of a variety of costimulatory molecules and receptors, a process 

globally known as cell maturation. After maturation, DC efficiently present antigens and initiate adaptive 

immune response by migrating into lymph nodes (LN) to activate the virus-specific T cell response [32]. 

To date, there have been at least three major subsets of murine lung DC described. These include 

plasmacytoid DC (pDC), the myeloid DC (also known a conventional DC, cDC), and the  

interferon-producing killer dendritic cells (IKDC). DC have been reported to participate in the innate 

and adaptive immune response to hMPV infections, indicating their critical role in the antiviral immunity 

to this virus. Dendritic cells are susceptible to hMPV infection in vitro [64] and in vivo [40,65]. In fact, 

hMPV activates mouse lung DC, and induces the upregulation of costimulatory molecules and the 

secretion of several cytokines including IL-6, IFN-α, IFN-β and TNF-α [40]. hMPV infection also 

induced the recruitment of pDC and IKDC which peaked by day 8 after infection. The predominant 

subset recruited to the lung corresponded to cDC, and this remained the highest subset for at least  

18 days, beyond the acute phase of infection. CD103+ cDC substantially decreased until three weeks 

after infection and returned to basal levels by week 8. Differential production of cytokines by murine 

lung pDC and cDC infected with hMPV was also observed. More interestingly, hMPV infection reduced 

the capacity of lung cDC to stimulate T cell responses [40], which is in line with some reports in vitro 

using human DC that indicate that hMPV alters their capacity to activate T cells [64,66]. 

3.1.4. Alveolar Macrophages 

Alveolar macrophages (AMs) are known to be the first line of defense against respiratory pathogens [67]. 

They reside in the pulmonary alveolus and survey the exposed airways to contribute to the innate host 

defense against inhaled insults [68]. They are essential source of immunomodulatory cytokines for host 

responses against lung infections and their depletion results in impaired host response [67,69,70]. In fact, 

recent work has demonstrated that AMs differentially control the antiviral response and airway 

inflammation in hMPV infection when compared with RSV [69]. Using a BALB/c mouse model, AMs 

were depleted using clodronate liposomes (L-CL2MBP) prior to hMPV infection. Depletion of AMs 

altered the hMPV-induced disease since there was a reduced body weight loss, lung viral titer, decreased 

lung inflammation and airway hyperresponsiveness (AHR). Moreover, the recruitment of CD4+  
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T lymphocytes was significantly decreased following AM depletion. AMs are sources of pro 

inflammatory cytokines and chemokines. In line with this, depletion of AMs resulted in significantly 

lower level of cytokines including IL-1α, IL-1β, TNF-α, IL-6, GM-CSF, G-CSF, CCL4, IFN-α and  

IFN-β. However, their depletion also induced an increased release of CCL3, CCL5, and IL-12p40 after 

hMPV infection [69]. Thus, the results of this study indicate that the presence of alveolar macrophages 

regulate and contribute to the hMPV-induced disease. 

3.1.5. Natural Killer Cells 

Another component of the innate immune system are the natural killer (NK) cells, which are 

lymphocytes that respond to malignant tumors and intracellular pathogens including viruses.  

Studies conducted by Alvarez et al. demonstrated that NK cells have a leading role in controlling hMPV 

viral clearance [36]. Depletion of NK cells with anti-CD49b/Pan-NK cell monoclonal antibody in 

BALB/c mice resulted in increased lung viral titers on days 7, 28 and 60 after infection compared to NK 

cell competent mice. In contrast, work reported by Wen S. et al. in C57BL/6 mice have demonstrated 

that NK cells do not contribute to hMPV clearance [51]. Lung NK cell numbers in infected mice were, 

however, increased as early as day 1 after hMPV infection and peaked on day 3 compared to mock 

infected mice. Moreover, hMPV infection induced activation of lung NK cells, as indicated by the 

upregulation of CD69. However, depletion of NK cells using the anti-NK1.1 antibody did not result in 

changes in lung viral titers, lung histopathology, or the numbers of CD4+ and CD8+ T lymphocytes. 

Suggesting that, NK cells do not play a significant role in the host responses against hMPV, and that the 

clearance of the viral infection requires different set of immune components in vivo. The discrepancies 

between these two studies could be attributed to the use of different experimental conditions, as detailed 

above. Thus, further work to fully define the role of NK cells in hMPV infection is warranted. 

3.2. Adaptive Immunity 

Cell mediated immunity serves as an important barrier in the multi-step paradigm of immune 

responses to pathogenic mechanisms. These responses function mainly by activation of cytotoxic  

T-lymphocytes to induce apoptosis of virus-infected cells or by activating T helper cells to stimulate 

other immune cells such as macrophages, B cells and NK cells and aid in the production of distinct 

cytokine profiles to induce intercellular communication. Experimental evidence with clone-specific 

induction of cytotoxic T cells [38] and experimental models with T cell depletion studies [34,38,41] 

demonstrate the essential role of T lymphocytes in immune surveillance and protection in hMPV infection. 

Characterization of the T cell response against this virus has indicated that hMPV results in an 

accumulation of virus-specific cytotoxic CD8+ T cells (CTL) in the lungs 7 days after infection but not 

in regional lymph nodes or spleen. However, a strong memory response can be recalled from the spleen 

at 21 days post infection [71]. Though both CD4+ and CD8+ T cells act synergistically and play an 

indispensable role in both inflammatory responses and anti-viral immunity, they have been found to 

induce different profile of cytokines after hMPV infection [35]. During primary infection, depletion of 

either of the two T cell subsets, or in fact both of them, caused reduced inflammation and body weight 

loss in hMPV-infected mice but were required for viral clearance. These data suggest that primary hMPV 

infection induces lung disease mediated, in large extent, by T cells while T cells are also necessary for 
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the clearance of primary hMPV infection [41]. Regarding the regulation of the T cell response during 

hMPV infection, a recent study by Hastings et al., showed that type I IFN signaling is essential for the 

development of functional hMPV specific CD8 T cells in the lungs using IFN-α receptor deficient 

C57BL/6 mice [53]. Moreover, in aged mice, CD4+T cells appear to play an important role in the 

exacerbated hMPV-induced disease. As demonstrated in 18-19 month-old BALB/c mice which showed 

a significant increased numbers of IL-4-producing CD4+ T cells but no change in the CD8+ T cell 

numbers when compared with younger mice [62], suggesting a Th2 skewing response in older mice after 

hMPV infection. 

As for the role of T cells in hMPV reinfection, concurrent depletion of both CD4+ and CD8+ T cells 

led to a decreased airway hyperresponsiveness (AHR) [41]. However, depletion of CD4+ T cells alone 

during hMPV reinfection, unlike in CD8+ T cell-depleted mice, led to a defective antibody response. 

Nevertheless, CD4+ T cell-depleted mice had undetectable infectious virus after hMPV challenge and 

were protected from clinical disease, indicating that protection can be provided by an intact CD8+ T cell 

response [41]. Interestingly, recent observations indicate that the CD8+ T cell response is impaired 

during hMPV infection and reinfection and that phenomenon appears to be regulated by the expression 

of the inhibitor receptor programmed death-1 (PD-1) and programed death ligand-1 (PD-L1) [52,72,73]. 

These findings indicate that a defective CD8+T cell response contributes to hMPV reinfection. Whether this 

effect characterizes the commonly observed hMPV reinfection in humans warrants future research. 

The understanding of the T cell response induced by hMPV vaccine candidates has found their initial 

steps using the mouse model. The induction of CD8+ cytotoxic T cells by peptide immunization in mice 

has proven to be protective against hMPV challenge in reducing viral load and lung histopathology [38]. 

Likewise, immunization with Bacillus Calmette-Guerin (BCG) strains expressing hMPV-phosphoprotein 

effectively induced a protective response which was mediated by a Th1 T cell response [42]. 

Immunization with hMPV F-bearing virus-like particles (VLP) was also able to stimulate an hMPV 

specific CD8+ T cell response and protected lungs from infection after hMPV challenge [50]. Further 

experimental studies in non-human primates and/or clinical trials are warranted in order to validate the 

immunological observations in the mouse model towards vaccine development. 

4. Conclusions 

The experimental mouse model represents a valuable tool for in vivo research on hMPV infection and 

has provided important information regarding the hMPV-induced disease and detailed aspects of the 

immune response induced by hMPV infection. Although, inherent limitations are observed in the mouse 

model when data are extrapolated to the natural human infection, due to the availability of several gene 

deficient mice strains and multiple murine specific antibodies, it provides a valued experimental small 

animal model that allows answering critical questions that are necessary to our better understanding of 

the immune response and disease pathogenesis of hMPV. 
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