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Abstract

Background: The protist Plasmodiophora brassicae is a biotrophic soil-borne pathogen that causes clubroot on Brassica
crops worldwide. Clubroot disease is a serious threat to the 8 M ha of canola (Brassica napus) grown annually in
western Canada. While host resistance is the key to clubroot management, sources of resistance are limited.

Results: To identify new sources of clubroot resistance (CR), we fine mapped a CR gene (Rcr1) from B. rapa ssp.
chinensis to the region between 24.26 Mb and 24.50 Mb on the linkage group A03, with several closely linked markers
identified. Transcriptome analysis was conducted using RNA sequencing on a segregating F1 population inoculated
with P. brassicae, with 2,212 differentially expressed genes (DEGs) identified between plants carrying and not carrying
Rcr1. Functional annotation of these DEGs showed that several defense-related biological processes, including signaling
and metabolism of jasmonate and ethylene, defensive deposition of callose and biosynthesis of indole-containing
compounds, were up-regulated significantly in plants carrying Rcr1 while genes involved in salicylic acid metabolic
and signaling pathways were generally not elevated. Several DEGs involved in metabolism potentially related to
clubroot symptom development, including auxin biosynthesis and cell growth/development, showed significantly
lower expression in plants carrying Rcr1.

Conclusion: The CR gene Rcr1 and closely linked markers will be highly useful for breeding new resistant canola
cultivars. The identification of DEGs between inoculated plants carrying and not carrying Rcr1 is an important
step towards understanding of specific metabolic/signaling pathways in clubroot resistance mediated by Rcr1.
This information may help judicious use of CR genes with complementary resistance mechanisms for durable
clubroot resistance.
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Background
Clubroot, caused by the biotrophic protist Plasmodiophora
brassicae Woronin, is one of the most serious diseases of
Brassica crops worldwide [1]. In western Canada, clubroot
disease has become a major threat to the production of
canola (Brassica napus L) [2], where more than 8 M ha
of canola crops are grown annually [3]. The pathogen is
able to survive for up to 20 years in soil [4] and many
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conventional disease-management measures, including
cultural techniques and application of fungicides, are
not effective [3,5,6]. Genetic resistance is the most effect-
ive and economical approach to clubroot management on
canola. European fodder turnips (Brassica rapa L. ssp.
rapifera) are the major source of clubroot-resistance (CR)
genes, which have been introduced into other Brassica
crops including oilseed rape (B. napus), rutabaga (B.
napus L. ssp. napobrassica) and Chinese cabbage (B.
rapa L. ssp. chinensis) [7-11].
Since 2009, several resistant (R) canola cultivars have

been released in Canada, and all of them carry a single
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dominant CR gene. The source and genetic information
are not revealed for these CR genes [12]. The durability
of these clubroot R cultivars remains unknown in west-
ern Canada, but resistance conferred by a single gene is
generally not durable. Breakdown of clubroot resistance
has been reported on Chinese cabbage [13] and oilseed
rape [14,15]. A resistant canola cultivar showed substan-
tially increased clubroot severity after being exposed to
pathotype 3 of P. brassicae after only two cycles under
controlled conditions [16]. Rotation or pyramiding of
CR genes with different mechanisms of resistance may
be used to increase the durability of clubroot resistance
if a diverse group of CR genes can be identified and
their resistance mechanisms characterized. Our prior
work evaluated 955 Brassica accessions and identified a
range of CR candidates from B. rapa, B. nigra and B.
oleracea [17].
Most of the known CR genes have been identified

from B. rapa, with eight loci reported previously: Crr1,
Crr2, Crr3, Crr4, CRa, CRb, CRc and CRk [18-22]. CRa
and Crr1 have been isolated recently [23,24]. Another
CR gene, RPB1, was identified from Arabidopsis thali-
ana ecotype Tsu-0 [25], but there has been no further
report on its orthlogs in other Arabidopsis ecotypes. A
new CR gene (Rpb1) was identified recently from the cv.
Flower Nabana (FN) of pak choy (B. rapa ssp. chinensis)
via rough mapping [26]. Rpb1 is identical to Rcr1de-
scribed in this paper, and the name change was to avoid
potential confusion with the RPB1 from Arabidopsis.
There has been little information on molecular mecha-
nisms associated with any of the CR genes reported. In
A. thaliana, host metabolism was altered by P. brassicae
infection; transcriptome studies based on microarray
analysis showed that genes encoding enzymes involved
in carbohydrate metabolism were upregulated in root
tissues of the susceptible (S) Col-0 ecotype [27,28], but
not in moderately resistant (MR) ecotypes which appeared
to reduce or delay pathogen-triggered metabolic diversion
and cell enlargement or proliferation in the host [29].
Reduced trehalose and arginine metabolism were also
reported with the partially resistant A. thaliana ecotype
Bur-0 when compared with that in a susceptible ecotype
[30,31]. Secondary metabolism, including flavonoids, may
also contribute to formation of characteristic club symp-
toms in Arabidopsis, and inhibition of oxoglutaric acid-
dependent dioxygenases reduced club development [32].
Treatment with the phytohormone salicylic acid or bio-
fungicides reduced clubroot development on A. thaliana
and B. napus via activation of several defense-related path-
ways in the hosts [33-36]. However, there is no informa-
tion on molecular mechanisms of clubroot resistance in
Brassica species based on transcriptome analysis. RNA
sequencing (RNA-seq) has been employed recently to elu-
cidate resistance mechanisms involved in plant-pathogen
interactions including Sclerotinia homoeocarpea-creeping
bentgrass [37] and Phytophthora infestans-potato tuber [38].
In the present study, we intended to: 1) identify and

characterize the CR gene from a highly resistant pak
choy cultivar using genetic mapping; 2) develop molecular
markers closely linked to this CR gene to facilitate
marker-assisted selection (MAS) at the young seedling
stage; and 3) analyze the global transcriptome profile asso-
ciated with the CR gene based on RNA-seq. We examined
differential gene expression between R and S F1 plants,
and the result provided important insights into the mo-
lecular mechanisms of clubroot resistance. This work also
sets the first step toward the development of canola germ-
plasm using CR genes with potentially different modes of
action against clubroot.

Results
The clubroot resistance in cv. FN is associated with a
single dominant allele
All of the FN plants were resistant to pathotype 3 of
P. brassicae, showing no clubroot symptom at 5 weeks
after inoculation, whereas all of the ACDC plants were
susceptible (Figure 1). Analyses of the F1 populations from
reciprocal crosses showed a segregation pattern that
would fit a 1:1 ratio between R and S plants (X2 = 2.98,
P = 0.084), indicating that the resistance in FN is associ-
ated with a single dominant nuclear gene. This gene was
designated as Rcr1 (previously Rpb1). Also, the pattern of
clubroot disease response in parental and F1 populations
(Figure 1) indicated that the Rcr1 locus was likely hetero-
zygous in the cv. FN.

Fine mapping of the gene Rcr1 and development of
molecular markers
Rcr1 was roughly mapped to a range of 1.31 cM in the
B. rapa linkage group A03 flanked by the markers sN8591
and sR6340I (Figure 2A), and fine mapping was based on
testing additional 1,587 F1 plants using pathotype 3 of P.
brassicae and on analysis using these flanking markers
(Figure 2B). The flanked segment is homologous to the re-
gion between 23.43 Mb and 24.50 Mb on the A03 (B. rapa
reference genome sequence, Chromosome v1.2), with 158
genes annotated (http://brassicadb.org/brad) and five of
them (Bra012541, Bra019409, Bra019410, Bra019412 and
Bra019413) identified as encoding toll interleukin-1 recep-
tor (TIR)- nucleotide-binding site (NBS)-leucine-rich
repeat (LRR) class of proteins (Figure 2C). Bra012541 is
located close to 23.69 Mb and the rest were in a cluster
located between 24.32 Mb and 24.35 Mb.
A total of 19 recombinants were identified via compari-

son of marker and phenotype data over the 1,587 F1 plants
(Figure 3), with 3 falling between sN8591 and Rcr1 and 16
between Rcr1and sR6340I. A CAPS marker (A3-020),
homologous to Bra038794 at 24.02 Mb, was developed

http://brassicadb.org/brad


Figure 1 Segregation in clubroot resistance for parents (FN and ACDC) and F1 populations derived from reciprocal crosses (FN × ACDC
and ACDC × FN, respectively). These F1 plants were not part of the F1 population (1,587 plants) used later for fine mapping of CR genes.
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for further analysis of the 19 recombinants, and showed
an approximate distance of 0.57 cM from Rcr1, which was
closer to the CR gene than sR6340I. The interval flanked
by sN8591 and A3-020 was estimated at 0.76 cM, consist-
ing of approximately 480 Kb with 67 genes annotated
(Additional file 1: Table S2). The CAPS marker MS7-9
(5′-AGAGGCTTTCTCCATCAA-3′, 5′-GACATAAGAA
Figure 2 Linkage maps of the regions in which the Rcr1 gene is locat
markers on B. rapa linkage group A03. A) Rough mapping of Rcr1 base
genetic distance is shown on the left. B) Fine mapping of Rcr1 based on 1
markers and TIR-NBS-LRR genes in the region flanked by the markers sN859
TCCCACAA-3′) was identified slightly later and appeared
even closer to Rcr1 than A3-020 (Figure 2B). Based on the
rate of recombination, the genetic distance of Rcr1 was es-
timated at 0.19 cM from sN8591 and 0.06 cM from MS7-
9, respectively. The cluster of four TIR-NBS-LRR genes
and one defense-related gene (Bra019401, ccr4-associated
factor 1b) are located also within this interval. The gene
ed. Broken lines drawn regions defined by different molecular
d on a small F1 population (300 plants) derived from ACDC × FN. The
,587 F1 plants. C) Physical locations in Mb (left) of the molecular
1 and sR6340I.



Figure 3 Genotypes and phenotypes of recombinants selected from the mapping population inoculated with pathotype 3 of
Plasmodiophora brassicae. Line identifications and phenotypes (R for resistant, S for susceptible) are denoted on the left and right, respectively,
with marker names at the top. Resistance alleles are denoted in light grey and susceptible alleles in black. The two markers in a grey shadow
flank the narrowest interval containing the Rcr1 gene.
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ontology (GO) terms for these genes are in Table 1 and
Figure 4.

Validation of selected markers for detection of Rcr1 in
backcross populations
On the BC1 B. napus population, sN8591 detected Rcr1
in 99.8% of the resistant (R) and 0.2% of susceptible (S)
plants, while sR6340I detected the CR gene in 95.9% of
R and 4.1% of S plants, respectively (Table 2). On B.
rapa, however, the accuracy was slightly poorer for both
sN8591 (96.5% of R, 3.5% of S) and sR6340I (92.7% of R,
7.3% of S). The accuracy was much poorer for the
markers sB4889B and sS2093 on both B. napus and B.
rapa, with erroneous identification of Rcr1 at >7.3%.

Transcriptome profiling based on RNA-seq
Inoculated F1 seedlings from the cross ACDC × FN were
bulked (R and S) based on MAS and examined for glo-
bal transcriptomes using RNA-seq. Approximately 856
million raw reads were generated from a total of six
pooled samples. About 92% of them passed the quality
control standard, yielding 784 million of clean reads
(Table 3). About 60% of the total reads were mapped to
the B. rapa reference genome, with 97% of them being
uniquely mapped, while 33% of the total reads were
unmapped.
A total of 41,018 genes were annotated in the B. rapa

reference genome sequence (v1.2). Transcripts of 36,221
of these genes were detected based on RPKM calcula-
tions (data not shown), and among them, more than
75% (27,322) had a coverage of 90% or higher by the
mapped reads. A total of 2,212 differentially expressed
genes (DEGs) were identified in this study (Additional
file 1: Table S3), with 1,246 genes upregulated and 966
down-regulated in the R samples relative to S samples.
Almost all genes in the fine mapped Rcr1 region between
24.32 Mb and 24.35 Mb of A03 were expressed, but only a
few of them were identified as DEGs and most of them
showed no difference in expression levels between inocu-
lated R and S. Interestingly, two of the TIR-NBS-LRR
genes (Bra019412, Bra019413) within this region were
significantly upregulated in the inoculated R treatment
relative to the inoculated S treatment.
RT-qPCR analysis of 10 selected genes over the same

R and S bulk samples showed a trend consistent with
that of RPKM calculations and statistical analyses of
transcript data (Figure 5). The RT-qPCR data confirmed
up-regulation of a class-1 non-symbiotic hemoglobin



Figure 4 Gene ontology (GO) annotations of genes residing in the region flanked by the markers sN8591 and sR6340I in fine
mapping: GO terms in the category of A) Biological Process and B) Molecular Functions. The value labeled in the pie chart of both A) and B) are
the number of genes annotated with the corresponding GO term.

Table 1 The defense-related genes annotated within the fine mapped region flanked by the markers sN8591 and
A3-020 in the Brassicae rapa linkage group A03 and their associated gene ontology (GO) terms

Seq. ID Seq. description GO term

Bra019401 ccr4-associated factor 1b P: Intracellular signal transduction; F: Ribonuclease activity; P: Ethylene biosynthetic
process; P: RNA modification; P: Abscisic acid mediated signaling pathway; C: nucleus;
P: Ethylene mediated signaling pathway; F: Nucleic acid binding; P: Defense response,
incompatible interaction; P: MAPK cascade; P: Respiratory burst involved in defense
response; P: defense response to bacterium; C: Intracellular; P: Nuclear-transcribed mRNA
poly(A) tail shortening; P: Vegetative to reproductive phase transition of meristem; P:
Response to chitin; F: 3′-5′ exonuclease activity; P: Response to biotic stimulus; P: Response
to wounding

Bra019407 autophagy-related protein 8a F: Receptor activity; F: Microtubule binding; P: Para-aminobenzoic acid metabolic process;
C: Autophagic vacuole; F: APG8-specific protease activity; P: Defense response to fungus;
P: Heat acclimation; F: APG8 activating enzyme activity; C: Vacuolar lumen; F: Atg8 ligase
activity; P: Autophagy

Bra019409 tir-nbs-lrr class resistance protein P: Defense response to bacterium; F: Adenyl ribonucleotide binding

Bra019410 disease resistance protein P: Defense response to bacterium; F: Nucleotide binding

Bra019412 tir-nbs-lrr class resistance protein F: Nucleoside-triphosphatase activity; P: Defense response; F: ADP binding; P: Signal
transduction; C: Intracellular

Bra019413 tir-nbs-lrr class resistance protein C: Golgi membrane; C: Endoplasmic reticulum membrane; F: Binding; P: Defense response
to fungus, incompatible interaction; C: Plasma membrane; P: Response to oomycetes

Bra038776 cysteine-rich receptor-like protein kinase 29 C: Vacuole; P: Response to chitin; C: Plasma membrane; P: Respiratory burst involved in
defense response; P: Protein phosphorylation; F: ATP binding; P: Response to abscisic acid
stimulus; F: Protein serine/threonine kinase activity
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Table 2 Validation of flanking markers for detecting the
Rcr1 gene (%) in clubroot resistant BC1 progeny

B. napusa B. rapaa

Molecular
markers

Resistantb Susceptibleb Resistant Susceptible

sN8591 99.8% 0.2% 96.5% 3.5%

sR6340I 95.9% 4.1% 92.7% 7.3%

sB4889B 79.4% 20.6% 87.8% 12.2%

sS2093 92.7% 7.3% 80.2% 19.8%
aThe BC1 populations were derived from crosses of a DH line of B. napus
(SV11-17667) and B. rapa (BH11-17938), respectively, with cv. FN. Each BC1
population use for the experiment consisted of 176 plants.
b“Resistance” and “Susceptible” are phenotypical reactions to pathotype 3 of
P. brassicae. The percentage indicates the rate of Rcr1 identification in plants
using the marker.
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(Bra001958), erd12 protein (Bra017350), protein tify 10a
(Bra016520), s-adenosyl-l-methionine:carboxyl methyl-
transferase family protein (Bra019711), transcriptional
factor bhlb92-like protein (Bra033690) and transcriptional
factor bhlh35 (Bra024115) genes in resistant samples de-
tected via RNA-seq. The data also verified down-regulation
of a chitinase-like protein (Bra027940), ralf-like 33 protein
(Bra012764), endochitinase isolog (Bra000310) and
cell-wall-protein-like protein (Bra031329) genes (Figure 5)
as indicated in RNA-seq analysis.

Annotation of DEGs
The DEGs were functionally annotated based on GO
terms (Additional file 1: Table S4) and sorted into the
GO-term biological process, molecular function and
cellular component (Figure 6; Figure 7; Additional file 1:
Table S4) using Blast2Go [39]. The statistics for GO-term
mapping were provided in Additional file 1: Figure S1. A
total of 55 DEGs retrieved no hits with BLAST (Additional
file 1: Table S4).
The annotated DEGs with upregulated patterns in R

samples fell mainly into 15 categories of biological process
Table 3 Summary of the RNA-sequencing reads from
inoculated resistant and susceptible B. rapa root
samples (F1)

Reads Amount Percentage of
total raw reads

Total raw reads 856,009,740 100%

Average reads per sample 142,668,290 Not applicable

Total clean reads 783,978,544 92%

Total mapped reads 502,147,812 59%

Perfect match 218,073,408 25%

≤5 bp mismatch 284,074,404 33%

Unique match 485,652,620 57%

Multi-position match 16,495,192 2%

Total unmapped reads 281,830,732 33%
(Figure 6A). The GO term “defense response” (6.8%) was
also one of the major categories identified. Other upregu-
lated biological processes of GO terms included signal
transduction, various metabolic/biosynthetic processes
and regulation of metabolic processes.
For molecular functions, several cellular-component

GO terms were identified, especially those associated
with the plasma membrane representing the largest group
(Figure 6C).
The GO terms for biological processes associated with

down-regulated DEGs were mostly in the category of
“anatomical-structural and multicellular-organismal devel-
opment” (Figure 7A) and “regulation of primary metabolic
process”. Most of the molecular functional GO terms as-
sociated with down-regulated DEGs were in the same cat-
egories as those of upregulated DEGs, although several
unique terms were identified, including sequence-specific
DNA binding transcription factor activity, hydrolase
activity on O-glycosyl compounds, substrate-specific
trans-membrane transporter activity, and nucleoside-
triphosphatase activity (Figure 7B). Similarly, the majority
of cellular-component GO terms of down-regulated DEGs
fell into categories similar to those of upregulated DEGs,
with only three new GO terms observed: vacuole, chloro-
plast stromal and organelle membrane (Figure 7C).
Transcription factors (TF) were also characterized

broadly for DEGs; a total of 92 upregulated and 57 down-
regulated DEGs were grouped into seven types of TF,
based on their conserved structures. For upregulated
DEGs, 18 of them belong to WRKY, 15 are MYB
domain-containing TFs, 10 are ethylene (ET)-responsive
TFs, 15 are bhlh-domain containing TFs, 13 belong to
the AP2/ERF family, 6 are heat-stress related TFs, and
the remaining 15 belong to “other” TF families (Table 4).
For down-regulated DEGs, 8, 6, 5, 2, 8, 0 and 28 of them
fell into the respective TF families (Table 5).

Biological-process GO terms for up- and down-regulated
DEGs
Analysis using the Fisher’s Exact Test in Blast2GO
identified the enrichment associated with up- and down-
regulated DEGs; a total of 89 biological-process GO terms
displayed significant enrichment (Figure 8), with 72 of
them associated with upregulated and 17 with down-
regulated DEGs. Most of these enriched GO terms were
related to “responses”, including those to chemical and
hormone stimuli. The results were similar for metabolic-
process GO terms, with most of the enriched term being
related to “responses”. Among 72 enriched GO terms for
upregulated DEGs, 7 were related to lipid metabolism, in-
cluding lipid metabolic process, cellular lipid metabolism,
lipid biosynthesis, fatty acid metabolism, fatty acid biosyn-
thesis, oxylipin metabolism and biosynthesis. Several GO
terms related to defense-related phytohormones, including



Figure 5 Validation of RPKM-calculated expression ratios for selected differentially expressed genes (DEGs) using RT-qPCR. RPKM values
from RNA-seq are denoted in black, and RT-qPCR results in while. Capped lines represent the standard deviations from three biological replicates.
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jasmonic acid and ethylene, but not salicylic acid (SA),
were also highly enriched in inoculated R plants relative
to those in inoculated S plants (Figure 8). A total of 214
DEGs were annotated under GO terms with SA-related
biological processes, including “response to SA stimulus”,
“SA biosynthetic process “systemic acquired resistance,
SA-mediated signaling pathway” etc. (Additional file 1:
Table S3), but none of them was significantly enriched in
either up- or down-regulated GO terms, as determined
with the Fisher’s Exact Test. Noticeably, genes associated
with several common defense responses were significantly
upregulated, including “callose deposition”, “defense
response by callose deposition” and “indole-containing
compound metabolic process”. In contrast, most of the
biological-process GO terms enriched in down-regulated
DEGs were related to “development” and “morphogen-
esis”, including developmental process, anatomical struc-
ture development, anatomical structure morphogenesis
and uni-dimensional cell growth (Figure 8).

Transcript analysis of selected defence-related DEGs using
RT-qPCR
Based on RNA-seq analysis, 12 strongly upregulated and 4
strongly down-regulated DEGs (based on RPKM -Reads
Per Kilobase of transcriptome per million Mapped reads),
involved possibly in resistance based on the functional an-
notation (Additional file 1: Table S4, with yellow high-
light), were subjected to RT-qPCR analysis. All of the 12
upregulated DEGs displayed similar transcriptional pat-
terns; the transcript levels, based on their relative quantity,
were comparable for R and S plants without pathogen in-
oculation but significantly higher in R plants after inocula-
tion (Figure 9). The 4 down-regulated DEGs, however,
showed different transcriptional patterns; Bra029933 and
Bra031940 displayed comparable transcript levels in non-
inoculated S and R plants but these genes were signifi-
cantly induced by P. brassicae in S plants and suppressed
in R plants (Figure 10). Bra031329 and Bra001852 did not
show significant induction by the pathogen in S plants
relative to those in non-inoculated S or R plants, but sup-
pressed in inoculated R plants (Figure 10). Two of the
TIR-NBS-LRR genes (Bra019412, Bra019413) residing in
the Rcr1 region were also identified as DEGs in the RNA-
seq, but were not included in the RT-qPCR test due to
only moderate RPKM values. Preliminary RT-qPCR trials
on DEGs with moderate RPKM showed unsatisfactory
amplification (data not shown).

Discussion
Mapping of the Rcr1 gene and development of genetic
markers
The CR gene Rcr1 (formerly Rpb1) was mapped previ-
ously to a genomic region in the linkage group A03
flanked by the markers sN8591 and sR6340I [26]. Add-
itional markers were developed in the current study
using the B. rapa genome information, with the markers
A3-020 and MS7-9 being much closer to the CR gene
than sR6340I. Several markers were highly accurate in
detecting Rcr1 in both B. rapa and B. napus plants, es-
pecially when two flanking markers were used together.
These markers will be useful for MAS in resistance
breeding. Rcr1 is the only CR gene reported in pak choy
(B. rapa ssp. chinensis), but the original source of the
gene is not known. Most of the CR genes identified in
Chinese cabbage (B. rapa ssp. pekinesis) originated from
European turnip [40]. Four CR genes have been mapped
previously to the linkage group A03, including CRa
[18,41], CRb [21], CRk [22] and Crr3 [20,42]. CRa has
also been cloned recently [23]. Based on the relationship
between common markers and the location of these CR
loci, Diederichsen et al. [10] suggested that CRa and
Crr3 are identical, allelic or at least closely linked to
CRb and CRk. Recent work also indicated that CRb is
likely in the same position as CRa, and both genes



Figure 6 GO terms associated with upregulated DEGs. A) GO terms in the Biological Process category. B) GO terms in the Molecular
Functions. C) GO terms in Cellular Components. The values labeled in the pie charts of panel A, B and C are the percentage of DEGs annotated
with the corresponding GO term relative to the total DEGs.
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Figure 7 GO terms associated with down-regulated DEGs. A) GO terms in the Biological Process category. B) GO terms in Molecular
Functions. C) GO terms in Cellular Component. The values labeled in the pie charts of panel A, B and C are the percentage of DEGs annotated
with the corresponding GO term relative to the total DEGs.
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Table 4 Up-regulated differentially expressed genes (DEGs) annotated as transcription factors (TFs)

TF annotations Log2-fold
change

Gene ID

WRKY domain
containing

1.0 ~ 7.8 Bra008454, Bra014693, Bra013708, Bra000202, Bra009734, Bra016975, Bra005104, Bra003588, Bra019123, Bra020814,
Bra023983, Bra011299, Bra008435, Bra020628, Bra016535, Bra026467, Bra040926, Bra013584

MYB domain
containing

1.1 ~ 4.4 Bra025681, Bra006977, Bra029349, Bra037837, Bra039067, Bra027389, Bra030812, Bra040274, Bra029553, Bra008539,
Bra015939, Bra029582, Bra013000, Bra008131, Bra001202

Ethylene-responsive 1.0 ~ 3.0 Bra031903, Bra017235, Bra028703, Bra034249, Bra012345, Bra029302, Bra026280, Bra023748, Bra028291, Bra017656

Bhlh domain
containing

1.1 ~ 3.5 Bra024115, Bra011152, Bra027501, Bra033690, Bra000291, Bra036640, Bra039926, Bra035639, Bra011790, Bra001168,
Bra010467, Bra037887, Bra018461, Bra004532, Bra030208

AP2/ERF family 1.0 ~ 3.8 Bra037794, Bra029147, Bra035919, Bra019087, Bra027612, Bra007975, Bra028009, Bra016518, Bra017879, Bra027002,
Bra032665, Bra030255, Bra011002

Heat stress 1.0 ~ 2.2 Bra000557, Bra000235, Bra012829, Bra007739, Bra008593, Bra012828

Other 1.1 ~ 7.6 Bra036071, Bra001648, Bra022189 Bra031691, Bra005688, Bra019154, Bra008113, Bra012500, Bra025398, Bra001290,
Bra036483, Bra016389, Bra012887, Bra007869, Bra015582
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conferred resistance to pathotypes 3 and 4 but not to
pathotypes 1 and 2 of P. brassicae [43]. Based on the
linkage distance, Rcr1 is close to both CRa and CRb.
However, the cv. FN which carries Rcr1 is highly resistant
to both pathotypes 2 and 3 [17], suggesting a different
resistance spectrum from that of CRa or CRb.
The mechanisms for clubroot resistance are not well

understood. Among the 67 genes annotated within the
region defined by sN8591 and A3-020 (Figure 2C), four
TIR-NBS-LRR genes can be located (http://brassicadb.
org/brad/). The protein family containing NBS and LRR
domains is the largest class of R genes cloned so far [44].
CRa and Crr1 isolated from B. rapa also encode TIR-
NBS-LRR proteins [23,24]. Therefore, it is possible that
Rcr1 is one or a cluster of these TIR-NBS-LRR genes in
the mapped region.

Transcriptome analysis and GO annotation of DEGs
Transcriptome profiling can provide insights into the
mechanisms of disease resistance. This approach has
been used to characterize several molecular components
associated with clubroot disease development, especially
the role of cytokinins on A. thaliana [27] and B. juncea [45].
However, no comparative analysis of gene transcription
Table 5 Down-regulated differentially expressed genes (DEGs

TF annotations Log2-fold
change

Gene ID

WRKY domain containing −1.0 ~ −2.3 Bra027480, Bra004864, Bra020546,

MYB domain containing −1.0 ~ −4.6 Bra002107, Bra033291, Bra036412,

Ethylene-responsive ~ − 1.3 Bra036360, Bra002168

Bhlh domain containing −1.1 ~ −2.0 Bra031852, Bra017024, Bra040856,

AP2/ERF family −1.0 ~ −3.5 Bra011782, Bra015478, Bra026949,

Heat stress n/a n/a

Other Bra010225, Bra010287, Bra003483, B
Bra005396, Bra030783, Bra036854, B
Bra035077, Bra012583, Bra014657, B
between clubroot resistant and susceptible plants was
available. In our study, transcripts of 36,621 genes were
analyzed via RNA-seq and 2,212 DEGs were identified
between inoculated R and S plants. This number of
DEGs is comparable to that observed in a previous tran-
scriptome analysis between rosette and folding leaves of
Chinese cabbage [46]. Fifty DEGs retrieved no hit in a
BLAST search (Additional file 1: Table S2), indicating a
number of unknown genes expressed in inoculated R
plants. The GO terms “defense response” (6.8%) and
“plasma membrane” (17.8%) accounted for a substantial
portion of upregulated DEGs. Some of these genes may
be candidates for further studies of clubroot resistance,
because the plasma membrane is where most plant-
pathogen interaction occurs (reviewed by Day and Graham
2007) [47]. Additionally, a large proportion of upregulated
DEGs were annotated with the GO term Biological Process
involved in responses to external stimuli (Figure 6A) and
many of these GO terms were also significantly
enriched for upregulated DEGs (Figure 8). These re-
sults indicate that many cellular activities in inoculated
R plants were significantly upregulated at 15 dpi when
root infection and pathogen colonization were taking
place [48-51]. It also appears that infection may have
) annotated as transcription factors (TFs)

Bra031900, Bra030273, Bra006178, Bra032340, Bra030178

Bra036202, Bra001311, Bra038774

Bra007228, Bra008716

Bra004878, Bra036536, Bra009824, Bra028690, Bra008460

ra014478, Bra005777, Bra032727, Bra011190, Bra018027, Bra002595, Bra002004,
ra000301, Bra015960, Bra028824, Bra007727, Bra039127, Bra010875, Bra029778,
ra001032, Bra022968, Bra022225, Bra031302, Bra014971

http://brassicadb.org/brad/
http://brassicadb.org/brad/


Figure 8 Comparison of GO annotations (in Biological Process) of up- and down-regulated DEGs. Blue bars represent the upregulated
DEGs while red bars represent down-regulated DEGs. The values were the percentage of DEGs annotated with the corresponding GO terms
relative to the total up- or down-regulated DEGs. Statistics of enrichment analysis are presented in the Additional file 1: Table S5.
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Figure 9 The relative transcription quantity (RTQ) measured with RT-qPCR for selected upregulated DEGs identified in RNA-seq. The
treatments were S-susceptible (without Rcr1) and R-resistant (with Rcr1) plants inoculated with Plasmodiophora brassicae or water (non-inoculated).
The vertical axis represents RTQ against an endogenous control (the actin gene Bra037560). Treatments with one asterisk showed significantly
higher RTQ (LDS, P < 0.05) than those without asterisk, but lower RTQ than those with two asterisks.
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caused differential activation or deactivation of certain
genes in the host that may affect clubroot development
on resistant and/or susceptible plants.
The enrichment analysis identified GO terms for Bio-

logical Process associated with both upregulated and
down-regulated DEGs. Several lipid compounds were
implied to play a role in the inoculated R plants. Lipids
have been shown to play critical roles in detecting infec-
tion and may also have a key role in regulating gene
transcription [52]. During infection by P. brassicae, the
R plants appeared to be able to mobilize lipid biosyn-
thesis and metabolism, because several genes involved in
oxylipin biosynthetic and metabolic processes, including
Bra016520, Bra003006 and Bra008269, were upregulated
substantially (Figure 8). One group of the most inten-
sively studied oxylipins is jasmonates, likely due to their
involvement in multiple plant biological processes [53].
GO terms associated with “response to jasmonic acid (JA)
stimulus”, “JA metabolic process” and “JA biosynthetic
process” were significantly enriched within the group of
upregulated DEGs (Figure 8). This possibly indicates that
jasmonates have a role in clubroot resistance mediated by
Rcr1. Prost et al. [54] employed in vitro growth inhibition
assays to evaluate 43 natural oxylipins and found that 41
of them had inhibitory effects on a wide range of plant
pathogens. Similarly, jasmonates appear to play a role in
Figure 10 The relative transcription quantity (RTQ) measured with RT
The treatments were S-susceptible (without Rcr1) and R-resistant (with Rcr1) p
The vertical axis represents RTQ against an endogenous control (the actin gen
level of RTQ (LDS, P < 0.05) relative to without asterisk or with two asterisks.
induced resistance to clubroot caused by biofungicides
[33,36]. Oxylipins may also be used by both host and
pathogen as regulatory compounds during the host-
pathogen interaction (reviewed by Tsitsigiannis and
Keller; Christensen and Kolomiets) [55,56]. Further
work is needed to confirm the specific role(s) of oxyli-
pins in clubroot resistance.

Potential molecular mechanisms for clubroot resistance
Several clubroot-resistance mechanisms identified previ-
ously were supported in the current study. For example,
genes involved in olefin (ET is the simplest form of olefin)
metabolic and biosynthetic processes and in response to
ET stimulus, were upregulated in plants carrying Rcr1
(Figure 8). ET had previously been shown to restrict club
development in A. thaliana [57] and to have a role in in-
duced resistance mediated by biofungicides [33,36]. This
result supports the current opinion that JA and ET may
act synergistically in plant defense [58]. Reinforcement of
plant cell wall was also indicated based on the enrichment
of GO terms for upregulated DEGs associated with callose
localization and deposition (Figure 8). The role of callose
has been well documented in resistance to penetration of
plant cell wall by fungal pathogens [59]. In Arabidopsis,
genes encoding the synthesis of β-1,3 glucan (callose) were
suppressed in a compatible interaction between P. brassicae
-qPCR for selected down-regulated DEGs identified in RNA-seq.
lants inoculated with Plasmodiophora brassicae or water (non-inoculated).
e Bra037560). Treatments with one asterisk had a significantly different
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and susceptible ecotype Col-0 [60]. In the current study,
the gene Bra012684, encoding an expansin-like protein
(Additional file 1: Table S4), showed the highest increase
in transcript among all 1,246 DEGs upregulated. This may
indicate a structural/composition alteration to the cell
wall, which could affect secondary infection in epidermal
and cortical cells. Some of the above-mentioned defense-
related DEGs were analyzed further with RT-qPCR using
inoculated and non-inoculated plants to determine tran-
script levels as affected by P. brassicae (Figure 9). The re-
sults demonstrated that the inoculation increased the
expression of these genes in both S and R plants. Inocu-
lated R plants, however, showed significantly stronger ex-
pression of these genes relative to inoculated S plants.
This result is consistent with that of RNA-seq. In addition,
genes involved in synthesis of indole-containing com-
pounds were also upregulated in R seedlings. The anti-
microbial compounds derived from this metabolic process
typically include tryptophan-derived metabolites [61] and
flavonoids converted from aromatic-acid phenylalanine
[62]. These indicate potential involvement of secondary
metabolites in clubroot resistance. Although several com-
mon resistance mechanisms are identified with RNA-seq,
further analysis is needed to assess the relative importance
of each mechanism in clubroot resistance conferred by
Rcr1.
As described above, Rcr1 may encode a TIR-NBS-LRR

protein. The best characterized defense signaling pathway
related to this class of R proteins involves the biosynthesis
of salicylic acid (SA) and pathogenesis-related (PR) pro-
teins, accompanied typically by a hypersensitive reaction
(HR) [63]. Additionally, SA biosynthesis is linked fre-
quently to host resistance against biotrophic pathogens
[64]. In the current study, however, GO terms related to
SA biosynthesis, metabolism or signaling processes were
not significantly up-/down-regulated based on the enrich-
ment analysis. This lack of substantial change in transcrip-
tion of genes involved in SA biosynthesis has also been
observed with induced resistance against clubroot on can-
ola [33,36]. Previous reports have suggested HR as one of
the possible mechanisms for clubroot resistance [65,66],
but only two upregulated DEGs, i.e., Bra013123, and
Bra036984, were identified as PR genes based on GO an-
notation (Additional file 1: Table S4) in the current study
and there is no experimental evidence to link any of them
to SA- or HR-related defense responses. In a cytological
observation, Deora et al. found no evidence of HR with
clubroot resistant canola cultivars [49,51]. It is possible
that SA signaling pathways may not play a critical role in
clubroot resistance.
Another mechanism for disease resistance is suppres-

sion of metabolic processes in the host that are required
for pathogenesis. Previous research had demonstrated that
the level of auxin (indole 3-acetic acid, IAA) increased in
roots during secondary infection by P. brassicae, likely as
the result of enhanced biosynthesis and conversion of host
auxin precursors induced by the pathogen [27]. In the
current study, Bra019369, which encodes a SAUR family
of proteins, was among the most highly induced genes
(960 fold, Additional file 1: Table S3) in R plants relative
to S plants. SAUR proteins are closely linked to auxin bio-
synthesis and signaling [67]. For example, SAUR39 had
been found to be a negative regulator of auxin biosynthesis
and transport in rice [68]. With clubroot, pathogen-
induced auxin metabolism had been linked to pathogen-
esis in Arabidopsis [27]. Additionally, several genes encod-
ing the auxin-responsive GH3 family of proteins were
upregulated in R plants. The GH3 family has been linked
with increased basal immunity via suppressing pathogen-
induced auxin accumulation in rice [69,70]. In addition to
manipulating plant auxin homeostasis, over-expression of
GH3.5 in an activation-tagged mutant of Arabidopsis dis-
played enhanced biosynthesis of camalexin, the major
phytoalexin found with pathogen infection in Arabidopsis
[71,72]. Since the biosynthesis of camalexin and auxin
were derived from the common precursor tryptophan
[73], the metabolic stream may have been redirected to
flow into the biosynthesis of phytoalexin from auxin in the
R plants. Taken together, the results indicate that pathogen-
activated auxin synthesis might have been suppressed or
disrupted in R plants.
Most of the enriched GO terms associated with down-

regulated DEGs were related to growth and development,
including cell cycle, uni-dimensional cell growth, anatom-
ical structure morphogenesis, and cell morphogenesis
(Figure 7). Down-regulation of these genes may play a role
in the resistance mediated by Rcr1 because hypertrophy,
the most typical symptom of clubroot [50], is related posi-
tively to these physiological activities. Expression of genes
involved in cell enlargement and proliferation was inhib-
ited in an Arabidopsis line partially resistant to P. brassi-
cae, relative to the susceptible reaction [29]. In the current
study, two of the genes (Bra029933 and Bra031940) an-
notated for the GO term “uni-dimensional cell growth”
were upregulated by the pathogen in inoculated S plants
(Figure 10), as opposed to the same genes in inoculated
R plants that changed little relative to those in non-
inoculated plants. Down-regulation of these DEGs possibly
works in conjunction with up-regulation of defense-related
genes described above in resulting in a resistant out-
come in plants carrying Rcr1. It is not clear if down-
regulation of growth/development DEGs is directly related
to the suppression of auxin-dependent metabolism via en-
hanced expression of Bra019369 or GH3 genes observed.
However, the evidence indicates that one or more pro-
cesses related to auxin biosynthesis and cell growth/
development are disrupted in R plants, with infection by
P. brassicae.
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RNA-seq analysis revealed that the clubroot resistance
conferred by Rcr1 involves complex mechanisms via a
variety of biological processes controlled likely by corre-
sponding transcription factors (TFs). As expected, 92
upregulated DEGs were identified based on their con-
served structures as TFs responsible for activation of
several biological processes potentially involved in dis-
ease resistance (Table 4). Consistent with the roles of ET
and JA discussed above, ET-responsive TFs including the
AP2/ERF-family TFs (subfamily of ET-response factors)
[74] and bhlh-family TFs (regulating JA responses) [58]
were upregulated to relatively high levels (2-14 fold).
WRKY-family TFs were also upregulated. Their involve-
ment in disease resistance, including effector-triggered
immunity, has been suggested previously [75]. MYB-
family proteins may be involved in secondary metabol-
ism including flavonoid [76] and secondary cell-wall
biosynthesis [77]. These biological functions may contrib-
ute to clubroot resistance by generating anti-microbial
metabolites and strengthening host cell walls. Several
heat-stress and “other” types of TFs were also identified,
but their role in resistance is not understood. It is interest-
ing that no heat-stress TFs were identified in the down-
regulated DEGs, but the significance of this observation is
unclear. Only a small number of defense-related DEGs
were present in the 57 down-regulated DEGs sorted into
the TF groups. The other down-regulated DEGs in TF
groups are involved generally in cellular growth and devel-
opment. In other words, these down-regulated TFs may
represent targets that P. brassicae up-regulates during
pathogenesis in S plants.
Conclusions
Genetic resistance is the cornerstone for management of
clubroot on canola. In this study, we characterized the
CR gene Rcr1, based on genetic mapping and transcript
analysis, to develop markers for MAS and decipher mo-
lecular mechanisms of resistance associated with Rcr1.
RNA-seq analysis identified a range of biological pro-
cesses potentially involved in clubroot resistance, consist-
ing of both up-regulated defense-related and suppressed
pathogenesis-related responses. This information is highly
useful to design a breeding strategy based on modes of ac-
tion of CR genes to achieve strong and durable clubroot
resistance. Although SA biosynthesis is often linked to
plant resistance against biotrophic pathogens, genes in-
volved in SA biosynthetic pathways were not activated in
inoculated plants carrying Rcr1. In contrast, genes in-
volved in JA/ET and callose biosynthesis were upregulated
substantially. The biosynthesis or signaling of JA/ET has
not been identified previously for resistance to clubroot.
Further research is needed to confirm specific roles of
these phytohormones in clubroot resistance mediated by
Rcr1. It will also be useful to look at these phytohormones
in association with other CR genes.

Methods
Plant materials, pathogen inoculum, and inoculation
The hybrid pak choy cv. FN (Evergreen Y.H. Enterprises,
Anaheim, CA), highly resistant to each of the five patho-
types of P. brassicae found in Canada [17], was used to
pollinate the doubled haploid (DH) canola line ACDC (B.
rapa) developed at AAFC Saskatoon Research Centre.
This DH line is self-compatible and highly susceptible to
pathotype 3 of P. brassicae, a dominant pathotype on can-
ola in western Canada [78]. Seeds were sown in Sunshine
#3 soil-less planting mix (SunGro Horticulture, Vancouver,
BC) in tall plastic pots called “conetainers” (5-cm diam,
20-cm tall, Steuwe & Sons, Corvalis, OR), and plants were
transplanted later into the same growth medium in 15-
cm-diam. pots (1 plant/pot) at 5 weeks after seeding. The
planting mix was amended with 1% (w/v) 16-8-12 (N:P:K)
control-released fertilizer. Plants were kept in a green-
house (22/18°C, day/night) with a 14-h photoperiod
(230 μmol/m2/s at the canopy level) or in a growth room
at 23/20°C and 14-h photoperiod (512 μmol/m2/s).
A field population of P. brassicae (Leduc-AB-2010),

consisting primarily of pathotype 3 of P. brassicae, was
used for inoculation throughout the study. Mature club-
root galls filled with pathogen resting spores were dried
at room temperature for 2 weeks and stored at −20°C
until use. The inoculum was prepared as a resting-spore
suspension using the method described by [33], with the
concentration adjusted to 1 × 107spores/mL. For inocula-
tion, 5 mL of a resting-spore suspension were pipetted
around the seed in each conetainer immediately after sow-
ing to result in an inoculum dose of about 1 × 106 spores/
g growth medium. Inoculated conetainers were kept in
the growth room and watered daily for 2 weeks to main-
tain a high level of soil moisture to facilitate infection.
ACDC was used as a susceptible control in all inoculated
trials. Non-inoculated plants would not develop any vis-
ible clubroot symptoms [79].
Reciprocal crosses were made between the hybrid cv.

FN and ACDC to produce F1 progenies. Five well devel-
oped buds per female plant were kept for crossing, and
the other flowers and small buds were removed. Each bud
that remained was opened and the anthers removed care-
fully with a pair of forceps. Anthers were collected from
newly opened flowers of donor plants, and pollen grains
were dusted to pistils of the female plants with a small
paintbrush. Each pollenated plant was covered with a plas-
tic crossing bag for 5 days..

The bioassay for clubroot test
The parents and their progenies were inoculated as de-
scribed above, and plants were assessed at 5 weeks after
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seeding for clubroot severity using a 0–3 scale [80]. A
rating of 0 was considered resistant (R) and 1-3 suscep-
tible (S). Each FN plant used in the crosses was resistant
to clubroot. Due to heterozygosity of cv. FN, F1 populations
resulting from the reciprocal crosses between ACDC and
FN segregated for resistance and susceptibility. The good-
ness of fit for the segregation was analyzed using the Chi-
square (X2) Test [81]. For fine mapping and RNA-seq,
only the F1 population from the ACDC (female) × FN
(male) cross was used.

Fine mapping based on marker analysis
Simple sequence repeat (SSR) markers (http://aafc-aac.
usask.ca/BrassicaMAST/) were used for the fine map-
ping work. Over 2,000 SSR markers had been developed
at AAFC Saskatoon Research Centre, which distributed
on 19 linkage groups of B. napus. A total of 97 poly-
morphic SSR markers on the A genome were identified
and Rcr1 was rough mapped to A03 [26]. SSR markers
flanking Rcr1 were further used to screen a segregating
F1 (testcross) population of 1,587 plants, each of which
was also tested for clubroot reaction.
The MegaBACE 1000 DNA Analyser (GE Healthcare,

Mississauga, CA), a capillary-array electrophoresis sys-
tem with automated gel matrix replacement, sample in-
jection, DNA separation and base calling, was used for
SSR marker analysis. PCR products were amplified with
selected polymorphic markers, and forward primers la-
beled by adding fluorescent phosphoramidite (PE Biosys-
tems, Foster City, CA) as HEX (yellow), TET (green) or
6-FAM (blue), and segregated on the MegaBACE. Laser
excitation and confocal laser scanning are used to excite
and detect fluorescent dye-labelled DNA fragments, re-
spectively, as they migrate past a detection window. The
fragment analysis was carried out using the Genetic
Fragment Profiler Software Suit V1.2 (GE Healthcare).
DNA fragments from the F1 population could be sepa-
rated into three bands (1, 2 and 3) by some markers; the
band 1 and 2 were from the heterozygous FN, and band
3 from homozygous ACDC. Since we were more inter-
ested in the R allele (band 1), only two genotypes were
grouped based on marker analysis; genotypes with the
band 1 and 3 were scored as “h” and those with band 3
and 2 as “a”. The linkage analysis was performed using
JoinMap 4.1 [82]. DNA sequences identified within the
region of the CR gene flanked by SSR markers were used
to search for similar B. rapa genomic DNA sequences at
http://brassicadb.org/brad/, and the information used to
develop CAPS markers. PCR primers were designed using
Primer3 (http://frodo.wi.mit.edu/). Protocols described
previously [83] were followed for amplification reac-
tions and cleavage.
DNA sample preparation and PCR conditions: DNA

was extracted following the method described previously
[84] with these slight modifications: Freeze-dried leaf sam-
ples were incubated with extraction buffer (2% CTAB;
pH 8.0) at 65°C, followed by chloroform-isoamylalcohol
(24:1, v/v) extraction and alcohol precipitation. RNA was
eliminated by adding 1/10 volume of 10 mg/mL RNase A.
The DNA concentration was estimated using the Nano-
Drop ND-2000c (Thermo Scientific, Wilmington, DE) and
adjusted to10 ng/μL with sterile Milli-Q water. A PCR
mixture containing 0.5 μL each of forward and reverse
primers (5 μmol/L), 4 μL 10 ng/μL genomic DNA, 5 μL
AmpliTaq Master Mix (Life technologies, Burlington, CA)
was pipetted to a 384-well PCR plate. The reaction loosely
linked to these CR genes conditions were as follows: de-
naturation at 95°C for 10 min, followed by 8 cycles of
94°C for 15 s, 50°C for 15 s, and 72°C for 30 s; then
27 cycles of 89°C for 15 s, 50°C for 15 s, 72°C for 30 s, and
a final extension at 72°C for 10 min.

Validation of selected markers for detection of Rcr1 in
backcross populations
Four markers, i.e., sN8591, sR6340I, sB4889B and sS2093,
were examined to confirm the presence of Rcr1 in resist-
ance BC1 (BC1F1) progeny derived from backcrossing the
canola DH lines BH11-17938 (B. rapa) and SV11-17667
(B. napus), respectively, with cv. FN. These two popula-
tions were different from that used for mapping and
RNA-seq (ACDC × cv. FN); they were produced during
introgression of Rcr1 into AAFC canola breeding lines.
The purpose of this experiment was to assess the selected
markers for the presence of Rcr1 during resistance intro-
gression. To produce BC1 progenies, about 20 plants were
produced for each donor F1 population (B. rapa, B.
napus), with five resistant plants selected based on their
clubroot reaction, assessed as described previously. The
crosses of recurrent breeding lines (female) × resistant F1
(male) lines were made and BC1 seeds were bulked in case
some of the “resistance plants” were misidentified due to
escape. A population of 176 plants were tested from each
of the B. rapa and B. napus BC1 populations. The club-
root reaction of each plant was assessed as described pre-
viously. Marker detection for Rcr1 was performed on the
MegaBACE and compared with phenotype data for each
plant.

RNA isolation, RNA-seq and data analysis
The F1 population of ACDA × cv. FN used for fine map-
ping was also used for RNA-seq. The whole root system
was cut from each plant at 15 days post inoculation
(dpi). At this point, infection of the root cortex has been
initiated but clubbing symptoms are not yet visible in
susceptible plants [48,49]. The roots were dug out,
rinsed with tap water, and separated into R and S groups
using the flanking markers MS1-3 (5′-AAAACAAATATC
CACCACG-3′ and 5′-CTCAATCCCACAAACCTG-3′)

http://aafc-aac.usask.ca/BrassicaMAST/
http://aafc-aac.usask.ca/BrassicaMAST/
http://brassicadb.org/brad/
http://frodo.wi.mit.edu/
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and A3-028 (5′-GAGGCCTCCTTTTCTGGTTT-3′ and
5′-CCGGAGAAGTTTGATTCGAG-3′). These markers
were located at 24.06 Mb and 25.36 Mb, respectively, in
the linkage group A03. The effectiveness of these markers
in detecting Rcr1 was verified prior to the experiment
using the F1 population consisting of 50 plants, and the re-
sult matched 100% with that of clubroot reaction assessed
at 5 weeks after inoculation (data not shown). To verify
root infection by 15 dpi, 10 plants from each of the inocu-
lated R and S groups (based on marker detection) were
kept in pots until 21 dpi for examination of root symp-
toms. All of the S plants showed tiny galls, indicating that
root infection had likely occurred at 15 dpi. All of the R
plants were free of galls (data not shown). There were four
treatments, consisting of inoculated and non-inoculated
R and S plants. The entire root system of nine random
plants were bulked to produce a biological replicate,
with three replicates per treatment (R or S, inoculated
and non-inoculated). This bulk sampling method has
been used previously in studies for marker identification
and transcriptome analysis [85,86]. The total RNA from
each replicate (9 roots, bulked) was isolated using an
RNeasy Plant Mini Kit (Qiagen; Toronto, CA) with on-
column deoxyribonuclease (DNase) digestion using a
Qiagen RNase-Free DNase Set following the manufacturer’s
instruction. The RNA concentration and quality were
checked using Nanodrop 2000c and Agilent Bioanalyzer
2100 (Agilent Technologies; Mississauga, CA) respect-
ively, to ensure that the RNA integrity number (RIN) was
greater than 9 for each sample.
RNA-seq was carried out on each inoculated S and R

sample using the Illumina Hiseq 2500 platform at Plant
Biotechnology Institute-National Research Council (NRC-
PBI, Saskatoon, Canada). The cDNA library was prepared
using TruSeq RNA Sample Preparation Kits v2 (Illumina;
San Diego, CA). The raw reads were filtered to remove
sequencing adapters, as well as low-quality reads (>5%
unknown bases, or >50% of the bases with a quality <5),
to generate “clean” reads that subsequently were aligned
to the Chinese cabbage (B. rapa ssp. pekinesis) Chiifu
genome (V1.2; http://brassicadb.org/brad) using the SOA
Paligner/SOAP2 package [87] with ≤ 2 mismatches.
Gene expression was calculated using the RPKM method,

because comparison analysis [88] showed a better correl-
ation between RPKM and qPCR than between FPKM
(Fragments Per Kilobase of exon per Million fragments
mapped) and qPCR. Identification of DEGs followed the
protocol developed by [89], and a log2-based ratio was cal-
culated to indicate fold changes in gene expression levels
between R and S samples based on the results from the
three biological replicates. The false discovery rate (FDR)
was used to measure the threshold of the P-value for the
three tests, and a threshold FDR ≤ 0.001 and the absolute
value of log2 ratio ≥ 1 were used to identify DEGs [90].
Annotation of differentially expressed genes (DEGs)
The DEGs for R samples were separated initially into the
DEGs-UP and DEGs-DOWN groups relative to the gene
expression observed in S samples. Both groups were sub-
jected to annotation of gene ontology (GO) using Blast2GO
[39] to run BLASTX algorithms against the non-redundant
protein database from the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov). All BLAST
hits were mapped to the functional information stored
in the GO database to retrieve GO terms associated with
the hits in the BLAST search. A GO-term pool generated
by GO mapping was used to annotate each of the se-
quences, with combined graphs generated and presented
in the Results. The statistical assessment of annotation for
DEGs-UP and DEGs-DOWN was performed using the
Gossip package [91] integrated in Blast2GO.

Real-time reverse transcription (RT) quantitative PCR
(qPCR)
There were two purposes for conducting this procedure:
1) to provide a snap shot for the reliability of RNA-seq
data; the Log2 fold of RPKM values for 10 highly acti-
vated or suppressed DEGs in RNA-seq were compared
with the expression ratio (also on the Log2 scale) of the
same set of genes in RT-qPCR; 2) to assess potential in-
duction of defense-related genes with P. brassicae inocu-
lation; transcription of 16 selected defense-related genes
(12 upregulated and 4 down-regulated in RNA-seq) in
inoculated and non-inoculated roots was quantified. The
experiment was performed on the StepOne® Plus system
(Life technologies). RNA samples from both inoculated
and non-inoculated plants were prepared as described
above. The primers (Additional file 1: Table S1) were de-
signed using the Applied Biosystems Primer Express
V3.0 (Life Technologies) and synthesized by Integrated
DNA Technologies Inc. (Coralville, IA). Complementary
DNA was synthesized using the Invitrogen SuperScirpt
III First-strand Synthesis system (Life Technologies)
from 1 μg of total RNA. PCR was conducted using the
Power SYBR green master mix (Life technologies) follow-
ing manufacturer’s instruction. Cycling conditions were
95°C for initial 10 min followed by 40 cycles of 15 s at
95°C, 30 s at 50°C and finally 30 s at 60°C. Melt-curve
profiling and agarose gel electrophoresis were conducted
to evaluate the specificity of the reaction and absence of
primer dimers. The actin gene Bra037560 was used as an
endogenous control to normalize the expression level of
target genes because of its consistent level of expression
among the samples tested. The absolute expression levels
for this reference gene, measured as RPKM in RNA-seq,
were 601.6117144, 712.4030486 and 612.0688501 for
three R replicates, and 593.0082633, 579.5445779, and
623.4046585 for three S replicates. The relative expres-
sion data were analyzed using the StepOne® software

http://brassicadb.org/brad
http://www.ncbi.nlm.nih.gov
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V2.2.2 (Life technologies). Three technical replicates
were used for each cDNA sample and there were three
samples (biological replicates) for each treatment. The
log2-fold change observed with RT-qPCR was com-
pared with the RNA-seq data. Analysis of variance and
Fisher’s Least Significant Difference (P < 0.05) were
performed using the software Statistical Product and
Service Solutions (V20.0; IBM, Markham, CA ) to com-
pare the relative transcription quantity for genes examined
with RT-qPCR.

Additional file

Additional file 1: Figure S1. Statistics of GO term mapping by Blast2GO.
Table S1. Sequences of the primers used for qPCR validation of selected
gene expression. Table S2. GO annotations of genes residing in the fine
mapped region. Table S3. Summary of identified DEGs. Table S4.
Annotation of identified DEGs using Blast2GO. Table S5. Statistics of
enrichment analysis for data presented in Figure 8.
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