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THE BIGGER PICTURE In 2020, the COVID-19 outbreak turned into a pandemic. Non-pharmaceutical inter-
ventions (NPIs) remain decisive tools to prevent SARS-CoV-2 transmission and contain the spread of novel
viral variants. Strategies that combine NPIs with SARS-CoV-2 testing may help to improve efficacy and
shorten the duration of quarantine, thereby reducing the socioeconomic burden of SARS-CoV-2.
We derived a novel intra-host viral dynamics model that realistically represents time-dependent infectious-
ness and test sensitivity profiles. We utilized this model to quantify the transmission risk reduction of com-
bined NPI and testing strategies in different contexts. The underlying model is designed for rapid evaluation
and flexibility in formulating NPI strategies and has been compiled into a user-friendly software (van der
Toorn et al., 2021) that allows users to design and evaluate arbitrary NPIs schemes with regard to their effi-
cacy in reducing the risk of SARS-CoV-2 onward transmission.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Non-pharmaceutical interventions (NPIs) remain decisive tools to contain SARS-CoV-2. Strategies that
combine NPIs with testing may improve efficacy and shorten quarantine durations. We developed a stochas-
tic within-hostmodel of SARS-CoV-2 that captures temporal changes in test sensitivities, incubation periods,
and infectious periods. We used the model to simulate relative transmission risk for (1) isolation of symptom-
atic individuals, (2) contact person management, and (3) quarantine of incoming travelers. We estimated that
testing travelers at entry reduces transmission risks to 21.3% ([20.7, 23.9], by PCR) and 27.9% ([27.1, 31.1], by
rapid diagnostic test [RDT]), compared with unrestricted entry. We calculated that 4 (PCR) or 5 (RDT) days of
pre-test quarantine are non-inferior to 10 days of quarantine for incoming travelers and that 8 (PCR) or 10
(RDT) days of pre-test quarantine are non-inferior to 14 days of post-exposure quarantine. De-isolation of in-
fected individuals 13 days after symptom onset may reduce the transmission risk to <0.2% (<0.01, 6.0).
INTRODUCTION

The SARS-CoV-2 outbreak began with a cluster of pneumonia

cases of unknown origin in Wuhan City, China.1 In January

2020, Chinese authorities imposed a cordon sanitaire onWuhan,

but corona disease 2019 (COVID-19) cases had already been ex-
This is an open access article under the CC BY-N
ported to countries outside of China;2 the World Health Organi-

zation (WHO) declared a pandemic in March 2020.3 Since

then, SARS-CoV-2 has continued to spread globally. At the

time of writing, over 100 million cases of COVID-19 have been

confirmed worldwide, including over 2 million deaths.4 Given

the high fatality rate of COVID-19,5–7 emerging evidence of its
Patterns 2, 100262, June 11, 2021 ª 2021 The Author(s). 1
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mid- or even long-term sequelae,8–14 as well as its capacity to

overwhelm health care systems15–18 and inflict economic dam-

age,19,20 it is imperative to contain—or at least mitigate—the

spread of SARS-CoV-2.

Although scientific progress has beenmade at unprecedented

speed, resulting in rapid expansion and improvement of thera-

peutic modalities,21–28 curative treatment options are still lack-

ing; vaccines of high efficacy have been developed and

approved,29,30 but (1) they may not be available in sufficient

amounts to achieve population-level impact at the global scale

in the near future31 and (2) some vaccines may not protect

against new variants of concern.31–35 Non-pharmaceutical inter-

ventions (NPIs) are currently, and will remain, important mea-

sures to curb SARS-CoV-2 spread for as long as the pandemic

is ongoing. The large-scale lockdowns implemented by govern-

ments all over the world during the first and second waves of the

pandemic have proven extremely successful at controlling the

outbreak and limiting the number of deaths, but induced signifi-

cant economic damage.36,37 As lockdowns were gradually lifted,

many of the more limited NPIs were maintained, with the goal of

keeping the number of infections low and maintaining an effec-

tive reproduction number at time t (Rt) of <1. These NPIs include

social distancing and hygiene measures, mask mandates, and

restrictions on public gatherings. In addition, given that a sub-

stantial fraction of SARS-CoV-2 transmissions originate from

asymptomatic and pre-symptomatic individuals,38–42 a combi-

nation of public health measures termed test-trace-isolate (TTI)

is key to all successful containment strategies. TTI involves: (1)

diagnostic testing that prioritizes, but is not limited to, symptom-

atic cases; (2) isolation of confirmed cases; and (3) tracing and

quarantining exposed contacts.43 TTI is usually complemented

with quarantine for incoming travelers. The term ‘‘isolation,’’

which refers to the separation of people with confirmed infection,

is distinct from the term ‘‘quarantine,’’ which refers to the sepa-

ration of people who were—potentially or certainly—exposed to

SARS-CoV-2. For quarantine, the WHO recommends a length of

14 days,44 and for isolation, a length of at least 13 days.45 How-

ever, it is not rare for different strategies to be implemented at the

national and sub-national or institutional levels. This may be due

to perceived socioeconomic pressures;46 to staffing concerns,

especially with respect to health careworkers when hospital sys-

tems are under strain;47 or to patient care considerations, given

the detrimental effect that long isolation periods can have, for

example, on cognitively impaired patients.48 In these settings,

testing is frequently used to shorten the duration of quarantine

and/or isolation. Given that antigen-based rapid diagnostic tests

(RDTs) are being used increasingly,49 strategies that are based

on combined testing and quarantine/isolation criteria may gain

even more momentum in the near future.

Through mathematical modeling, strategies have been pro-

posed that combine regular surveillance testing and isolation

of test-positive cases to enable regular service in, e.g., educa-

tional institutions.50,51 This seminal work has been comple-

mented by real-world data, where such approaches have been

successfully implemented in businesses, in some professional

sports disciplines,52 as well as in health care and nursing facil-

ities.53 Recently, Slovakia performed massive nation-wide diag-

nostic screens for SARS-CoV-2, which were followed by a

notable prevalence decrease.54,55 Such large-scale approaches
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have previously not been implemented for the general public,

due to cost and logistic constraints. Also, the suitability of em-

ploying voluntary mass testing to end the epidemic has been

controversial.56

The durations of quarantine and isolation are under ongoing

scrutiny to find an ideal balance between infection prevention

and the socioeconomic consequences they impose and have

been the focus of several modeling studies.43,57–61 Herein, we

developed amodel of within-host infection dynamics that enable

assessing arbitrary quarantine-testing and isolation strategies

with respect to their capacity for reducing SARS-CoV-2 trans-

mission risk.

Currently, WHO recommendations for quarantine are based

on the maximum incubation time observed in studies done dur-

ing the beginning of the pandemic,44,62 whereas national guide-

lines on quarantine and testing may sometimes be determined in

the political discourse.While consultation with researchers helps

to improve strategies, quantifying the added benefit of a strategy

adaptation is often impossible, at least in a timely manner. We

aim to fill this gap by (1) consolidating our current knowledge

on SARS-CoV-2 infection dynamics and (2) computing the

consequential reduction in transmission risk for differential quar-

antine, isolation, and testing strategies. In addition, (3) the appli-

cability domain of the model covers different risk-posing sce-

narios (contact management, travelers, and isolation). The

model has been developed into a user-friendly software63 that

offers total flexibility in the design of NPIs, allows corroborating

a policy-making discourse with realistic numbers while the dis-

cussion is ongoing, and can be easily updated to reflect new clin-

ical results.

RESULTS

The viral dynamics model reproduces known
incubation-, infectivity-, and time-dependent test
sensitivity profiles
The stochastic transit compartment model utilized is shown

in Figure 1A. The model consists of five phases (incubation,

pre-symptomatic, symptomatic, post-symptomatic, and post-

detection). Each phase is sub-divided into several sub-compart-

ments, which allows one to capture inter-individual differences

as well as the shape of SARS-CoV-2 infection dynamics

(Figure S1; Table 1. We have carefully calibrated the model’s

default parameters to reproduce published and in-house clinical

data on the incubation time,64 the offset of infectiousness

after peak virus load/symptom onset (T.C. Jones, personal

communication),65–67 and the time-dependent test sensitivities

(Table 2).68,69

Figure 1B shows the cumulative time to symptom onset (gray-

shaded area) compiled in a meta-analysis of 56 studies,64

together with the model predictions (solid and dashed lines) us-

ing the default parameters. As can be seen, the utilizedmodel re-

produces not only the mean duration of incubation but also the

entire waiting time distribution. Figure 1C shows a summary of

datasets used to evaluate the duration of infectiousness after

peak virus load/symptom onset (shaded areas) (T.C. Jones, per-

sonal communication),65–67 including the analysis of in-house

data (experimental procedures and supplemental experimental

procedures). The depicted data are scaled to represent the
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Figure 1. Model validation

Published and data-derived SARS-CoV-2 intra-pa-

tient dynamics (shaded areas), as well as model-

predicted dynamics with default parameters (lines).

(A) Model structure.

(B) Duration of incubation. The cumulative time-to-

symptom onset from a meta-analysis of 56 studies

is shown (gray-shaded areas),64 together with the

model-predicted time-to-symptom onset (solid line,

typical dynamics; dashed lines, upper and lower

extremes).

(C) Relative infectiousness after symptom onset/

peak viral load extracted from Singanayagam et al.

and van Kampen et al.,65,66 deduced from in-house

data (supplemental experimental procedures) and

derived from viral load kinetics reported by Ejima

et al.,67 are shown as shaded areas, whereas

model-predicted infectiousness profiles are de-

picted by lines (solid line, typical dynamics; dashed

lines, lower and upper extremes).

(D) Time-dependent PCR sensitivity after symptom

onset reported by Borremans et al.69 (error bars)

together with model-simulated PCR sensitivity us-

ing default parameters (solid line, typical dynamics;

dashed lines, lower and upper extremes).

(E) Time-dependent false omission rate as reported

by Kucirca et al.68 (shaded area). Solid and dashed

lines show model simulations with typical and

upper/lower extreme parameters. Details on the

parameter fitting procedure and analysis of

infectivity profiles are provided in the experimental

procedures and supplemental experimental

procedures.
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relative reduction in infectiousness assessed by culture positiv-

ity, as well as viral load dynamics (details on the data analysis

and parameter fitting procedure are provided in the experimental

procedures). While Singanayagam et al. and van Kampen

et al.65,66 report relative culture positivity over time, we used

the in-house data to derive and fit a mechanistic model (supple-

mental experimental procedures) that allows converting virus

load profiles post-symptom onset into infectivity profiles. We

used the mechanistic model to derive infectivity profiles from

viral loads reported by Ejima et al.67 andCharité (T.C. Jones, per-

sonal communication).

The infectiousness profiles show a marked dispersion be-

tween different studies, which may be partly due to the inves-

tigation of different cohorts (mild-moderately ill65 versus hospi-

talized severely ill patients66), differences in the definition of

‘‘symptom onset,’’ and methodological differences in the labo-

ratory assays used to assess infectiousness. We adjusted the

model’s default parameters to each study individually and

derived parameter ranges that capture the entire range of infec-

tivity profiles. Figure 1D shows the decrease in detection prob-

ability,69 whereas Figure 1E shows the reported time-depen-

dent false omission rate FORtðxÞ of the PCR diagnostics

(shaded areas),68 as well as respective model-predicted dy-

namics with default parameters (lines). As shown, the model

captures the time-dependent assay sensitivity reasonably well

with default parameters. A small deviation at the beginning

(broad range of reported uncertainty in the data) may be due

to uncertainties in determining the time of symptom onset (Fig-

ure 1D) and infection (Figure 1E).
In summary, the developedmodel, with default parameters, in-

tegrates the current state of knowledgeonSARS-CoV-2 infection

dynamics into a single mathematical model that can be used for

designing non-pharmaceutical SARS-CoV-2 control strategies.

The viral dynamics model allows quantification of the
concurrent effects of quarantine and testing strategies
For illustration,wesimulatea timecourseof infectiousness for a vir-

tual patient cohort held in quarantine after exposure (Figure 2A). In

this illustrativeexample,an individual is released fromquarantineat

day10.Thisallowsquantificationof the relative riskemanating from

this individual in terms of the ratio of the area under the infectivity

curve from the end of quarantine (hatched area) versus the entire

interval (shaded area). In Figure 2B, a diagnostic test is performed

atday8. If the test ispositive, the individualwill go into isolation, and

consequently not pose a risk. Therefore, the probability that the in-

dividual is actually infectious and not in quarantine is decreased in

relation to the false omission rate at the time of the diagnostic test.

Again, the relative risk is the ratio of the area under the infectious-

ness curve from the end of the quarantine (crosshatched area in

Figure 2B), relative to the entire interval (shaded area in Figure 2A).

The time profiles of the corresponding percentage relative risks for

the two illustrative scenarios are shown in Figures 2C and 2D. The

corresponding fold risk reduction (=1/relative risk(t)) for 10 days

quarantine would be 2.6 (1.90; 5.26) and would be 10.0 (7.2; 14.0)

for a 10 day quarantine with a PCR test on day 5, as indicated by

the horizontal bars in Figures 2C and 2D. In the testing and quaran-

tineexample (Figures2Band2D), thepre-andpost-testquarantine

had a minor effect on the risk reduction, whereas the test reduced
Patterns 2, 100262, June 11, 2021 3



Table 1. States of the underlying Markov model

j State Detectable Infectious Symptoms

1 pre-detection no no no

2 pre-symptomatic yes yes no

3 infectious (and

symptomatic)

yes yes (yes)+

4 post-infectious (and

symptomatic)

yes no (yes)+

5 post-detectable no no no
+Asymptomatically infected individuals are assumed to have the same

infection dynamics without symptoms.
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the relative risk considerably. In this example, the pre-test quaran-

tine increased the test sensitivity considerably, making the com-

bined strategy effective. In summary, these examples illustrate

how the model can be used to assess the concurrent effects of

quarantine and testing strategies.

Next, we use the model to assess NPI strategies. Therein, we

focus on three scenarios in particular: (1) isolation of symptom-

atic individuals, (2) management of individuals with a known

time of exposure (contact management), and (3) quarantine of

incoming travelers. The three scenarios can easily be simulated

by adjusting the initial conditions pt0ðxÞ of the model.

Calculations for quarantine and testing strategies in
contact management
Strategies for contact management focus on reducing the risk

emanating from individuals who have been in contact with a

confirmed case. In this scenario, we assume that the time of the

last exposure, t0, is known and equals the time of the putative

infection.Hence,all entries in pt0 ðxÞareset tozero, except for x1;1.
Using the model with default parameters, we calculated the

percentage relative risk during quarantine with and without

‘‘symptom screening’’ (Figure 3A). Symptom screening was im-

plemented as follows: if individuals develop symptoms, they

stay isolated andhencedonot posea risk (compareEquation12).

Note that in these simulations we considered 20%of cases to be

asymptomatic, and thus never developing symptoms. As can be

seen, symptom screening markedly reduces the relative risk. For

example, after 14 days of quarantine, the relative risks are 8.18%

(4.5, 12.7) versus 16.31% (5.6, 30.3) for contact person manage-

ment with and without symptom screening, respectively.

Currently, the WHO and several national guidelines recommend
Table 2. Model parameters

Pre-detection Pre-symptomati

n1 t1 n2 t2

Step 1 estim. estim. fix* estim.

Step 2

Step 3 U U U U

Final parameter

estimate

5 2.86 (2.38; 3.37) 1 3.91 (3

The three steps in the estimation procedure to derive parameters from availa

step are indicated as ‘‘estim.’’ and fixed parameters are denoted as ‘‘fix.’’

are highlighted by checkmarks (U). Asterisk (*) indicates fixed to 1. The l

parentheses.
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14 days of quarantine in combination with symptom screening

for contact management.44 We will use the model-derived esti-

mate (relative risk of 8.18%) to suggest a combined testing and

quarantine strategy that has an equivalent efficacy. We will focus

on testing strategies in which a test is conducted after a pre-test

quarantine. In the case of a negative test result, the person is

immediately released from quarantine; in the case of a positive

test result the person stays isolated and does not pose a risk.

For the antigen test, we assumed a relative sensitivity of 85%

compared with PCR, as outlined in the experimental procedures.

Figure 3B shows relative risks for combined quarantine and

testing strategies using default simulation parameters and

assuming symptom screening. Our assessments show that

testing before day 5 in contact person management has limited

effects on risk reduction. Furthermore, a PCR test at day 8

versus an antigen test at day 10 would result in a non-inferior

relative risk (<8.18%) compared with the WHO guidelines.44

Importantly, in addition to allowing one to shorten quarantine

duration, a benefit of testing is that it allows one to detect

asymptomatic cases. Moreover, it reduces the uncertainty in

the risk reduction assessment: for example, a quarantine of

14 days in contact person management with symptom screening

reduces the risk to stay within the bounds 4.5%–12.7% (mean

~8.18%). The equivalent combined quarantine and testing strat-

egy of 8 days (PCR), with respect to 10 days (antigen test),

tightens the confidence bounds to 6.33%–7.47% (PCR) and

5.02%–8.41% (antigen test), effectively reducing the uncertainty

by a factor 7.2 (PCR) and ~2.4 (antigen test).

The viral dynamics model can be used for prevalence
estimation
Based on a recent incidence history, the model can be used to

compute the anticipated SARS-CoV-2 prevalence in the setting

of interest, as outlined in the experimental procedures. More-

over, it also computes which phase of infection individuals

from the defined setting are expected to be in, which can have

consequences for quarantine and testing strategies. In Figures

4A–4C, we show the model-predicted prevalence of infected

and infectious individuals, as well as the probability of PCR pos-

itivity, depending on whether the incidence is stable (Figure 4A),

on the rise (Figure 4B), or declining (Figure 4C; the incidence pa-

rameters used are stated in the caption). Corresponding model-

predicted probabilities of detecting infectious individuals among

the PCR-positive specimens in the days post-entry are depicted
c Infectious Post-infectious

n3 t3 n4 t4

estim. estim.

U U fix* estim.

.27; 4.62) 13 7.5 (2.79; 11.47) 1 8

ble clinical data are highlighted. Estimated parameters for the respective

Parameters that are carried forward from the preceding estimation step

ast row depicts the derived default parameters, with extreme values in
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Figure 2. Simulation of quarantine and

testing strategies

(A) Model-simulated probability of infectiousness.

The shaded area indicates the transmission risk

emanating from an infected individual. If a quaran-

tine were imposed until day 10 (dashed black ver-

tical line), the risk of transmission would relate to the

red-hatched area. Hence, the relative risk denotes

the risk after the quarantine divided by the risk

without quarantine.

(B) Model-simulated probability of infectiousness

when a test (dashed red vertical line) was performed

at day 5. If the test were positive, the person would

go into isolation, thus not posing a risk, whereas

there would be a residual risk that the person was

infectious if the test were negative (false negative).

The risk after a 10 day quarantine (dashed black

vertical line) with a test at day 5 is indicated by the

red-crosshatched area.

(C) Relative risk profile for a pure quarantine (as

exemplarily shown in [A]). Line, typical parameters;

shaded area, extreme parameters.

(D) Relative risk profile for a testing and quarantine

scenario (as exemplarily shown in [A]). Line, typical

parameters; shaded area, extreme parameters.
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in Figure 4D, showing differing utility to filter out potential

spreaders in the settings considered.

In summary, if the provided incidence history resembles the

force of infection in a region of travel, the model can be used

to inform differential quarantine and testing strategies for return-

ing travelers coming from high-risk areas with active or waning

pandemic dynamics. Next, to evaluate strategies for incoming

travelers, we first use the proposed prevalence estimation

method to obtain the probability distribution at the time of travel,

ptentry ðxÞ, based on a given incidence history. We then set

pt0 ðxÞ=ptentry ðxÞ and assess quarantine and testing strategies

for incoming travelers.

Calculations for quarantine and testing strategies for
incoming travelers
Using the model with default parameters, we calculated the per-

centage relative transmission risk during quarantine for incoming

travelers (stable incidence history) (Figure 5A).
A B

(14 day quarantine with symptom screening) is indicated by a horizontal dotted

assuming 20% asymptomatic infections, solving Equations 9 and 13. We assume

0 for all other ðj; iÞ. Line, typical parameters; error bars, extreme parameters.
Because some travelers could have been exposed prior to

entering, a proportion may already have progressed through

their infection. Therefore, greater risk reductions can be

achieved for incoming travelers comparedwith contact manage-

ment of recently exposed individuals. For example, after 14 days

of quarantine, the relative risks are 2.32% (1.06, 4.57) versus

4.69% (1.31, 11.79) for incoming travelers with and without

symptom screening, respectively. In comparison, for contact

management, the relative risks were 8.18% (4.51, 12.7) versus

16.31% (5.57, 30.30).

The current German guidelines recommend 10 days of post-

entry quarantine with symptom screening for incoming travelers,

which amounts to a relative risk of 6.39% (3.64, 10.24). Figure 5B

shows risk reductions for combined quarantine and testing stra-

tegies using default simulation parameters and assuming symp-

tom screening. As before, PCR or antigen testing is conducted at

the end of the quarantine to release individuals if they have a

negative test result. Under the parameters used, a single PCR
Figure 3. Risk reduction through quarantine

and testing strategies in contact manage-

ment

(A) Calculated percentage relative risk during

quarantine with and without symptom screening

relative to no intervention. The WHO recommen-

dation (14 day quarantine with symptom screening)

is marked as the reference intervention (red star).

Line, typical parameters; error bars, extreme pa-

rameters.

(B) Calculated percentage relative risk for combined

test and quarantine strategies. Here, an individual

goes into a pre-test quarantine with a diagnostic

test at the end of it, which, when negative, results in

the release from quarantine. The reference efficacy

red line. All calculations were performed with parameters from Table 2 and

d that exposure occurred on day 0 (today), with pt0 ðxj;iÞ= 1 for ðj; iÞ= ð1; 1Þ and

Patterns 2, 100262, June 11, 2021 5
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Figure 4. Pre-entry risk calculation for

incoming travelers

(A–C) (A) Prevalence estimation for travelers

entering from a country with 20% probability of

detection (PðdetectÞ = 20%) and a stable incidence

(50 cases/100,000/week for the last 5 weeks), (B) a

declining incidence (200, 160, 120, 80, 40 cases/

100,000/week for the last 5 weeks), and (C) a rising

incidence (20, 40, 80, 160, 320 cases/100,000/week

for the last 5 weeks). Typical dynamics; error bars

and values in parentheses, upper and lower ex-

tremes.

(D) Time-dependent probability of detecting infec-

tious individuals among the PCR-positive speci-

mens in the respective cohorts of travelers in the

days post-entry. Calculations were performed as

outlined under ‘‘prevalence estimator’’ in the

experimental procedures. Typical dynamics; error

bars and values in parentheses, upper and lower

extremes.
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test at day 4 post-entry (6 days for antigen) reduced the risk for

incoming travelers (unknown time of infection) in a similar

manner compared with a 10 day quarantine after entry

(Figure 5B).

Notably, these simulations assume that incoming travelers are

exposed to the infection dynamics provided by the incidence

history (here, stable incidence) and that there is no elevated

risk for the actual travel. For travelers that become infected dur-

ing their travels, the contact management calculations hold.

Calculations for isolation and testing strategies for
symptomatic individuals (de-isolation)
Themodel can also be used to assess themanagement of symp-

tomatic individuals. Strategies for symptomatic individuals focus

on the duration of the isolation period. In this scenario, we as-

sume symptom onset (peak viral load) to be at t0. Hence, all en-

tries in pt0ðxÞ are set to zero, except for x3;1.

The calculated percentage relative risk with default parame-

ters for different isolation durations are shown in Table 3. The

fraction of infectious individuals decreases substantially

(compare also Figure 1B). Under the parameters used, the rela-

tive transmission risk after 10 days of isolation post-symptom

onset is 2.10% (<1 3 10�10, 18.15), and after 13 days it is

0.17% (<1 3 10�10, 6.01). However, it should be mentioned

that the uncertainty in these estimates is large, as depicted in

the parentheses.

Diagnostic testing for de-isolation is less straightforward

compared with testing during quarantine and requires a differen-

tiated approach. The probability of having a positive PCR and the

positive predictive value (PPV) of the PCR with regard to detect-

ing infectious individuals are shown in columns 3 and 4 of Table

3: the PPV is high initially (>0.9 after 5 days of isolation) and drops

rapidly from there. Therefore, a positive PCR result alone is not

an appropriate criterion for retaining in isolation a person who

has already completed an isolation period by symptom- or dura-

tion-based clinical criteria. Also, the prediction range, due to in-
6 Patterns 2, 100262, June 11, 2021
ter-individual differences in viral kinetics, is very wide. The nega-

tive predictive value (NPV) of the PCR with regard to assessing

non-infectiousness is initially very low (<0.3 before day 6) and in-

creases to >0.9 after 10 days of quarantine (see column 4 in

Table 3). This implies that negative testing of isolated individuals

is informative only after a considerable duration of isolation.

Hence, testing individuals at these time points may ascertain

their non-infectiousness, but it may not be a reasonable tool to

shorten the isolation period in general, because the test be-

comes informative only after ~10 days of isolation. In summary,

this analysis indicates that combining PCR testing and isolation

has limited benefit compared with isolation alone. Exceptions

may arise when individuals shed virus for much longer than

typical.

DISCUSSION

As of April 2021, the COVID-19 epidemic is ongoing and many

Northern Hemisphere countries are experiencing a third se-

vere wave of cases. Although many countries have initiated

a vaccination program and some have already vaccinated a

large proportion of their population, it is not yet clear when

vaccines will be widely available globally or what their long-

term clinical efficacy will be. Thus, non-pharmaceutical con-

trol strategies, including testing, isolation, and quarantine

will remain an integral part of SARS-CoV-2 control for a

considerable time.

To help optimize these strategies, we have developed a

within-host viral dynamics model that allows the evaluation

and deduction of non-pharmaceutical SARS-CoV-2 mitigation

strategies based on quarantine, testing, and isolation.

The underlying mathematical models and methods of the pro-

posed model are entirely novel.

What sets this work apart from most other efforts to date is its

detailedmapping of the in-host viral dynamics43,57–59 to the pop-

ulation-level spread, which allows a rich and realistic



A B Figure 5. Risk reduction through quarantine

and testing strategies for incoming travelers

(stable incidence of 50 cases/100,000 inhabi-

tants/week; PðdetectÞ = 20%)

(A) Percentage relative risk during quarantine with

and without symptom screening (20% asymptom-

atic, default parameters). A 10 day quarantine with

symptom screening is marked as the reference

intervention (red star), according to current German

guidelines. Typical dynamics; error bars, upper and

lower extremes.

(B) Percentage relative risk for combined testing

and quarantine strategies. In the simulated sce-

nario, individuals go into a pre-test quarantine with a

diagnostic test at the end of it, which, when nega-

tive, results in the release from quarantine. The reference efficacy (10 day quarantine with symptom screening) is indicated by a horizontal dotted red line. All

calculations were performed with parameters from Table 2 and assuming 20% asymptomatic infections, solving Equations 9 and 13. Typical dynamics; error

bars, upper and lower extremes.
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representation of time-dependent sensitivities and specificities

of different testing procedures (e.g., PCR and antigen tests)

and thereby of the effectiveness of using such tests for different

isolation and quarantine strategies. The model thus synthesizes

the current state of knowledge onwithin-host infection dynamics

and utilizes it to enable the rational, evidence-based design of

non-pharmaceutical control strategies. Another main advantage

is that we compile this model into a software, as described in van

der Toorn et al.63 The software allows the user to design and

evaluate self-designed NPIs, rather than to rely on pre-

computed scenarios that may not enable decision-makers to

evaluate the precise NPI of interest.

The software can be accessed via https://github.com/

CovidStrategyCalculator/CovidStrategyCalculator.

Given that the model reproduces the statistical attributes of

population dynamics, we see the prime field of application in

providing rational, evidence-based guidance to policy makers

determining test, quarantine, and isolation strategies at the na-

tional and sub-national levels. Individual infection dynamics

may differ from the ensemble dynamics, depending, for

example, on age, known or unknown pre-existing conditions,

disease severity, and other factors that may affect the duration

of viral shedding.70–72 Thus, while the model is suitable for deter-

mining a strategy that has maximum benefit for most cases in a

population, this approach may not be optimal for each individual

case. In other words, the model may not be well suited to select

an individual- or case-specific NPI regimen, especially in the

context of, e.g., pre-existing conditions or critical disease. The

model’s default parameters capture typical mean incubation pe-

riods (5.6–8.0 days) that correspond to mean/median incubation

times reported in the literature (Backer et al., 6.4 days; Linton

et al., 5.6 days; Lauer et al., 5.1 days; Li et al., 5.2 days62,73–75).

However, outliers have been reported, for example, in immuno-

deficient individuals or the elderly.76,77 Likewise, the mean dura-

tion of infectiousness post-symptom onset with the model’s

default parameters lies within the range of 2.8–11.5 days, which

is well supported by current knowledge (compare Figure 1C)

(Singanayagam et al., median 4 days; van Kampen et al., median

8 days; Arons et al., 6–9 days; Wölfel et al., <8 days; COVID-19

Investigation Team, <9 days).65,66,78–80 We have assumed, for

our model, that infectiousness decreases sharply due to both

viral decay and virus neutralization. Of note, patients with severe
or critical illness may shed infectious virus considerably longer81

(van Kampen et al., up to 20 days; Jeong et al., up to 15 days;

Xiao et al., 18 days),66,72,82 as may immunocompromised indi-

viduals (Koff et al., 20 days; Choi et al., 143 days).70,76 Therefore,

in the setting of severe disease or immunocompromise, de-isola-

tion may be approached differently, for example, conditioned on

a negative PCR test. In addition to these patient-specific differ-

ences, a number of other factors can contribute to apparent het-

erogeneities observed in the analyzed studies (Figure 1C).

Among those may be differences in the definition of symptom

onset, differences in sampling (samples from either upper or

lower respiratory tract), the time lapse between sample deduc-

tion and culture experiment, and intrinsic variabilities in virus

deduction from swabs (discussed further below), as well as dif-

ferences in the analyzed cohort. For example, van Kampen

et al.66 describe the duration of infectiousness in hospitalized

elderly patients (severe cases, median age 65, 20% immuno-

compromised), whereas Singanayagam et al.65 analyze mildly

symptomatic cases (average age ~52).

Our model captures the time-dependent sensitivity of diag-

nostic assays. For PCR, we modeled the ‘‘clinical sensitivity,’’

which takes into account (1) analytical sensitivity (which depends

on technical performance parameters and is extremely high) and

(2) common pre-analytical issues (e.g., inadequate specimen

collection), which may lead to insufficient quantities of virus ge-

netic material and ultimately false negative results.83 While the

quantities of genetic material obtained through swabbing may

correlate with individual viral loads, they are confounded by

‘‘random effects’’ associated with the specimen collection pro-

cess (type of swab used and accessibility of sampling site).

Our modeling demonstrates that these random effects or

‘‘noise’’ are considerable (Fig. SN2 in the supplemental experi-

mental procedures) andmay limit our ability to detect differences

between, e.g., age or risk groups.

For antigen-based RDTs, we assumed that sensitivity ki-

netics resemble those of PCR, albeit with lower analytical

sensitivity.49,84,85 This approach was chosen because clinical

data on the kinetics of RDT sensitivity are currently limited.86

For anterior-nasal antigen tests, the sensitivity parameters of

the model can be adjusted. Typically, sensitivity would be

measured with regard to the gold standard (‘‘PCR’’), as imple-

mented in the software (tab ‘‘Parameters’’). Current estimates
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Table 3. Calculated percentage relative risk for isolation and time-dependent informative value of the PCR based on default

parameters, with extreme values in parentheses

Duration of

isolation (days) Percentage relative risk PtðPCR+ Þ PPV NPV

5 34.25 (0.11, 56.50) 0.79 (0.61, 0.80) 0.91 (0.01, 0.99) 0.13 (<0.01, 0.99)

6 23.20 (0.00072, 47.85) 0.78 (0.54, 0.80) 0.77 (<0.01, 0.98) 0.32 (0.03, 1.00)

7 14.41 (0.00037, 39.37) 0.75 (0.48, 0.80) 0.60 (<0.01, 0.95) 0.55 (0.08, 1.00)

8 8.22 (1.7 3 10�5, 31.55) 0.70 (0.42, 0.79) 0.42 (<0.01, 0.89) 0.75 (0.18, 1.00)

9 4.32 (<1 3 10�10, 24.33) 0.65 (0.37, 0.77) 0.27 (<0.01, 0.80) 0.87 (0.32, 1.00)

10 2.10 (<1 3 10�10, 18.15) 0.59 (0.33, 0.75) 0.16 (<0.01, 0.70) 0.94 (0.48, 1.00)

11 0.96 (<1 3 10�10, 13.02) 0.53 (0.29, 0.72) 0.09 (<0.01, 0.59) 0.98 (0.63, 1.00)

12 0.41 (<1 3 10�10, 9.00) 0.47 (0.25, 0.67) 0.05 (<0.01, 0.47) 0.99 (0.76, 1.00)

13 0.17 (<1 3 10�10, 6.01) 0.42 (0.22, 0.63) 0.02(<0.01, 0.37) 0.99 (0.84, 1.00)

14 0.06 (<1 3 10�10, 3.88) 0.37 (0.20, 0.58) 0.01 (<0.01, 0.28) 0.99 (0.91, 1.00)

We assumed symptom onset at day 0, with pt0 ðxj;iÞ= 1 for ðj; iÞ= ð3;1Þ and 0 for all other ðj; iÞ: We report the probability of a positive PCR, PtðPCR+ Þ,
as well as its positive and negative predictive value (PPV, NPV) with regard to detecting infectious individuals at the end of the isolation period.
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are 74% relative sensitivity,87 but this may depend on the spe-

cific RDT used.88 Moreover, sensitivities may be different in

different groups, especially in pre- and asymptomatic individ-

uals. The available model implementation63 can be refined

with regard to test-sensitivity dynamics as soon as robust

data are available.

The presented model allows us to compute the infection

prevalence based on the recent COVID-19 incidence history

in the setting of interest (compare Figure 4) and to incorporate

this knowledge into the rational design of testing strategies.

For prevalence estimation, the model is simulated using the

incidence values for the preceding 5 weeks at initial values.

Moreover, one can define the percentage of SARS-CoV-2

cases that have actually been diagnosed. The ‘‘percentage

diagnosed’’ has been the focus of intense research with highly

conflicting predictions.89–94 To date, there is no reliable esti-

mate of this parameter, which is likely influenced by changes

in testing strategies and variations in testing capacities over

time. In a related, entirely genomics-driven approach, we

are quantifying the temporal change in this parameter; the re-

sulting data will be used in conjunction with the model pre-

sented here.

In addition to the already presented calculation examples in

Figures 3 and 5 and Table 3, the following general statements

can be made for NPI strategies:

d Testing, when conducted at time points with high diag-

nostic sensitivity, can substantially reduce the duration

of quarantine while offering equivalent risk reduction.

This corroborates finding by Wells et al.59 and is due

to the fact that testing facilitates the identification of in-

fected individuals, regardless of whether they develop

symptoms or not. Not all such asymptomatic or pre-

symptomatic individuals may be removed from the in-

fectious pool by quarantine alone. Of note, to ensure

equivalent risk reduction, the use of less sensitive tests

entails a smaller reduction in quarantine duration. This

may have important implications with respect to anti-

gen-based RDTs. We observed that testing can reduce

the uncertainty in the percentage relative transmission
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risk; this is an additional benefit of a combined testing

and quarantine strategy.

d Diagnostic testing for reducing the duration of isolation re-

quires a differentiated approach: A negative test can be

informative regarding the non-infectiousness of an individ-

ual (high NPV) only after a minimum isolation time has

passed (approximately 10 days). In contrast, a positive

test does not necessarily imply infectiousness. However,

testing viral replication as a surrogate for infectiousness,

as suggested by Huang et al.,95 or integrating information

about the viral loads might facilitate a combined testing

and de-isolation approach in the future. Also, RDTs could

be more suitable than PCR for de-isolating individuals.

d Releasing pre-symptomatic, infected individuals from

quarantine bears a much larger risk of onward transmis-

sion, because these individuals can potentially infect

others over a longer time period compared with de-iso-

lated individuals, whose infectiousness is already

decreasing. On the other hand, only a fraction of individ-

uals in quarantine are actually infected, whereas a majority

of isolated individuals are infectious.
Scope, limitations, and future advancements
The focus of the presented work is to estimate the efficacy of

NPIs at the level of the individual, i.e., the presented model al-

lows quantification of the efficacy of different NPIs in reducing

the risk emanating from a potentially infected individual. Often,

epidemiological models focus on the population impact by

considering the spreading process on compartmental models

(e.g., SEIR [susceptible, exposed, infectious, recovered]) or

more realistic agent-based approaches.92,96–98 The efficacy

terms derived herein (e.g., relative risk) can easily be incorpo-

rated as scaling parameters in such epidemiological models to

estimate, e.g., country- or city-specific NPI efficacies. Along

these lines it is then also possible to project the effects of NPIs

on Rt or the concomitant effects of both NPIs and vaccination

on the pandemic, or to use the presented model in contexts

where the effectiveness of contact tracing99,100 with subsequent

NPIs is modeled.
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As a future perspective, the model could also be used to

explore travel behavior, i.e., inferring the time of infection with re-

gard to travel, when only the times of positive PCR and symptom

onset in returning travelers are available.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Max von Kleist (kleistm@rki.de).

Materials availability

This study did not generate new materials.

Data and code availability

All datasets used during this study were previously published, with the excep-

tion of the in-house data, which are available from the lead contact on request.

The software is available at https://github.com/CovidStrategyCalculator/

COVIDStrategyCalculator.

Model of infection dynamics

We modeled the time course of SARS-CoV-2 infection using a stochastic

transit compartment model based on the Markov jump process formalisms

(discrete state, continuous time), as depicted in Figure 1A. Herein, an individ-

ual is modeled as a random variable whose state changes through time. The

nodes xj of the model reflect the states of infection that an individual will

progress through after a random waiting time. This formalism can be used

to sample thousands of individual infection trajectories and compute the

ensemble statistics thereof (e.g., proportion of individuals who are infectious

at a given time instance), akin to Duwal et al.101,102 Below, we will derive a

set of ordinary differential equations that compute these probabilities straight

away without the need for sampling, allowing one to model inter-individual

differences in, e.g., time to detectability or time to infectiousness.

We distinguish five different states by whether (1) the virus is detectable, (2)

the individual has symptoms, and (3) the individual may be infectious (Table 1).

These three attributes describe a minimal set of properties important to eval-

uate SARS-CoV-2 non-pharmaceutical control and testing strategies, allowing

one to select time points for testing, incorporate symptom-based screening,

and quantify the residual risk at the end of a testing or quarantine strategy.

Notably, asymptomatic infections are also included in our simulations. For

asymptomatic individuals, we assume the same infection dynamics without

displaying symptoms.

To control the shape of the infection time course, we introduce the notion of

a ‘‘phase.’’ In our model, a phase j is defined as a set of nj subsequent nodes

xj;i. The transition rates rj between the nodes xj;i in phase j are trivially related to

the average duration that an infected individual stays in a phase, themean resi-

dence time tj :

rj =
nj

tj
: (Equation 1)

However, the shape of this residence time changes with the number of

compartments. Given the mean residence time of a phase, we can change

the skewness of the transitioning times by adjusting the number of compart-

ments in that phase until the model reflects the statistical attributes of the

SARS-CoV-2 time course of infection sufficiently well. An example is shown

in Figure S1, where the addition of nodes to the phase introduces a ‘‘shoul-

der’’ without affecting the mean duration of the phase. Because the model is

descriptive, the sub-compartments of a phase have no clear physical

interpretation.

The equations that model the probability that individuals are in phase j =

1.5 at time t is given by:

d

dt
ptðx1;1Þ= � r1 ,ptðx1;1Þ;

.= .
(Equation 2)

d

dt

pt

�
x1;n1

�
= r1 ,pt

�
x1;n1�1

�� r1,pt

�
x1;n1

�
; (Equation 3)
d

dt

ptðx2;1Þ= r1,pt

�
x1;n1

�� r2,ptðx2;1Þ;
.= .

(Equation 4)

d

dt

pt

�
x5;n5

�
= r4,pt

�
x4;n4

�
: (Equation 5)

Here, ptðxjÞ=
Pnj
i = 1

ptðxj;iÞ and the last phase j = 5, the ‘‘post-detection phase,’’

is a one-node absorbing state. In matrix notation, the model is given by
d
dt
ptðxÞ = A,ptðxÞ, with:

A =

0
BBBBBBBBBB@

�r1 0 / / 0
r1 �r1 «
0 r1 �r1
« 1 1

r1 �r2
1 1

« r4 �r4 «
0 / / 0 r4 0

1
CCCCCCCCCCA
: (Equation 6)

Therefore, the system can be solved analytically with:

ptðxÞ = et,A,pt0 ðxÞ; (Equation 7)

where et,A denotes the matrix exponential and p0ðxÞ denotes the initial condi-

tion of the system.

This model structure allows sufficient flexibility to resemble clinically

observed infectiondynamics and enables the direct use of publishedquantities

in model simulations, such as the ‘‘mean duration of the incubation phase.’’
Calculation of relative risk and risk reduction

The goal of NPIs, such as quarantine or isolation, is to reduce the risk of on-

ward transmission. The risk of onward transmission is related to the probability

that the individual is—or may become—infectious and to the duration of this

infectious period. In our model, we assume that the area under the curve of

the time-dependent probability of being infectious,
RN
t

PsðinfÞds; is proportional
to the risk of onward transmission. To calculate the integral, we augment the

matrix A, such that:

~A =

�
A

0 y 0

���� 00
�
; (Equation 8)

with yj = 1 in the last row of the matrix for all ‘‘infectious states,’’ j = 2; 3. When

solving for pNð~xÞ = es,
~A,

�
ptðxÞ
0

�
; s/N, using standard numerical schemes

(e.g., the Higham scaling and squaring algorithm),103 the risk
RN
t

PsðinfÞds is

given by the last entry of the derived vector, i.e., pNð~xN+ 1Þ.
We use this method to calculate the residual risk: the risk that an individual

who is released from an NPI is able to spread the disease. We define

ptendðx jNPIÞ as the probability state vector conditioned on the implementation

of an NPI that ended at time tend. To assess the efficacy of an NPI we calculate

the relative risk104 with regard to the baseline risk (the setting without any NPI

or other restrictions):

relative riskðtendÞ =
RN

tend
PsðinfjNPIÞ dRN

0
PsðinfjBÞ ds ; (Equation 9)

where
RN
tend

PsðinfjNPIÞds integrates over the conditional probability of being in-

fectious after release from quarantine at time tend, whereas
RN
0

PsðinfjBÞ ds in-

tegrates over the probability of being infectious in the case where the person

had not been isolated or put into quarantine (baseline risk). Herein, we assume

no additional (e.g., behavioral) differences between the two settings. As both

the denominator and the nominator in Equation 9 use the same initial condition,
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pt0 ðxÞ, the initial prevalence factors out (compare Equation 13 below). This al-

lows us to compare the efficacy of NPI strategies in a prevalence-independent

manner. In the discussion, we explain how the relative risk may be computed

with regard to different baselines. Conversely, the fold risk reduction is calcu-

lated as:

fold risk reductionðtendÞ = 1

relative riskðtendÞ : (Equation 10)

To account for incomplete adherence to the NPI with fraction

w, the relative risk can be computed as relative riskðtendÞ =
w,
RN

tend
PsðinfjNPIÞds + ð1�wÞ,

RN

0
PsðinfjBÞdsRN

0
PsðinfjBÞds .
Modeling non-pharmaceutical interventions

Formally, we define three mutually exclusive situations for an individual to be

in: non-contained, quarantined, or isolated. Of these, only non-contained indi-

viduals pose the risk of onward transmission.

Quarantine is a measure that applies to symptom-free individuals without a

confirmed infection, whereas isolation applies to individuals with symptoms or

a confirmed infection. We further define two key strategic tools to use in com-

binationwith quarantine or isolation: symptomatic screening and testing. In the

case of symptomatic screening, individuals who develop symptoms are

assumed to go into isolation. For testing, we assume that a positive test implies

that the tested individual stays in, or goes into, isolation. These assumptions

correspond to those used in current WHO guidelines.44,45,49 The case of

non-adherence to these basic guidelines is covered as described above.

Symptomatic screening acts upon the transition from the second phase

(pre-symptomatic) to the third phase (symptomatic): instead of transitioning

to the third phase, the individuals who develop symptoms go into isolation.

Asymptomatic individuals, however, do transition and continue to pose a

risk. To model symptomatic screening, we update A (and by extension ~A) to

depend on fs (=fraction of symptomatic cases) and the Boolean variable

SCR (whether or not symptomatic screening is performed):

AðSCR; fsÞ =

0
BBBBBBBBBB@

�r1 0 / / 0
r1 �r1 «
0 r1 �r1
« 1 1

ð1� fs,SCRÞ,r2 �r3
1 1

« r4 �r4 «
0 / / 0 r4 0

1
CCCCCCCCCCA
:

(Equation 11)

To model the effect of testing, we define the matrix diagðFORðxÞÞ with the

state-dependent false omission rates FORðxÞ as its diagonal entries:

diagðFORðxÞÞ =
0
@1

FORðxj;iÞ
1

1
A: (Equation 12)

The false omission rates themselves depend on the clinical specificity and

sensitivity of the diagnostic test being used. Individuals in the pre-detection

phase are—or will become—infectious, but are not detectable yet. Therefore,

we define FORðxj;iÞ= specificity,xj;i for nodes belonging to the pre-detection

phase (j = 1, 2). Nodes in the post-detectable phase are not infectious

anymore, hence FORðxj;iÞ= 0 for the post-detectable phase (j = 5). For all other

nodes, we have FORðxj;iÞ = ð1 � sensitivityÞ,xj;i .
The state probabilities at the end of an intervention tend can then be deter-

mined by:

ptend ðxjNPIÞ =
 Y

i

diagðFORðxÞÞ , eDti,AðSCR;fs Þ
!
,eðtend�tnÞ,AðSCR;fsÞ,pt0 ðxÞ;

(Equation 13)

where Dti˛½t1; t2 �t1; .tn �tn�1� denotes the time spans between the start of

the quarantine/isolation and the first test at time t1 and between any two

consecutive tests until tn (last test). The residual risk is then determined by

computing:
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pNð~xjNPIÞ = es, ~AðFalse; fSÞ ,
�
ptend ðxjNPIÞ

0

�
; s/N; (Equation 14)

and given by the last entry of the derived vector, i.e., pNð~xN+1

����NPIÞ as out-

lined above.

Prevalence estimation

The proposed model can also be used to estimate the prevalence from a user-

provided incidence history. In addition to being informative in their own right,

prevalence estimates can be used to evaluate NPI strategies for, e.g.,

incoming travelers. In doing so, we assume that an incoming traveler is

exposed to the history of infection risks that the model user provides. These

risks may relate to incidence reports from the country of origin of an incoming

traveler, or they may relate to a mixture of exposure risks before and during

traveling.105 This allows one to (1) calculate the initial risk of infection at the

moment of entry and (2) assess whether an individual is more likely to have ac-

quired the infection recently or in the past.

To calculate the initial risk of infection at the moment of entry (the preva-

lence), we use the infection dynamics from Equation 7 together with the inci-

dence reports of the preceding weeks and the probability of case detection/re-

porting, PðdetectÞ, for the country or setting of interest. Using these factors we

can calculate the probability distribution over the different model compart-

ments at the time of travel tentry as:

ptentry ðxÞ =
Xtentry
s=�T

eðtt�sÞ,AðFalse;fsÞ ,psðxÞ; (Equation 15)

where (�T Þ is the time horizon before the date of travel. We evaluate the pre-

ceding 5 weeks. Five weeks was shown to be a sufficient time horizon to cap-

ture the dynamics of themodel. The initial condition psðxÞ for s days prior to the

date of travel is computed from the user-provided incidence history and cor-

rected for PðdetectÞ. Weekly incidence numbers are uniformly distributed

over the days of the week, e.g., to account for within-week reporting delays.

For example, if s˛ week 3 prior to the week of travel, then:

X4
j = 1

psðxjÞ = p�Dw3
ðinfectÞ

7,PðdetectÞ ; (Equation 16)

where p�Dw3
ðinfectÞ denotes the number of reported cases per week and per

100,000 inhabitants (the incidence) in week 3 prior to the week of travel. The

individual probabilities assigned to the different phases are distributed accord-

ing to the duration of the distinct phases:

psðxjÞP4
j = 1psðxjÞ

=
tjP4
j = 1tj

; (Equation 17)

where tj denotes the mean residence time in phase j. The probabilities within

the sub-compartments of each phase are uniformly distributed.

Parameter estimation

We estimated the number of sub-compartments per phase and the mean resi-

dence time per phase (model parameters nj and tj ) simultaneously from clinical

time-course data in three steps (also see Table 2). First, parameters of the incu-

bation phase (=pre-detection +pre-symptomatic, j = 1; 2 ; compare Table 2) of

themodel are fitted. For this,we use ameta-analysis byWei et al.64 that encom-

passes 56 studies on the incubation period of SARS-CoV-2. Subsequently, the

optimal parameters for the symptomatic phase of the model (j = 3) are esti-

mated independent of those of the incubation phase. We estimate the param-

eters based on the consensus of five studies that report on viral load, Ct values,

and relative infectivity, three ofwhich are published,65–67 in addition to in-house

data (supplemental information) and data that have been kindly provided to us

by the Consultant Laboratory for CoronavirusesGermany (Drosten LabCharite

Berlin) (T.C. Jones, personal communication). Last, the parameters of the

post-infectious phase of the model (j = 4) are estimated. We fix the estimated

parameters for theproceeding threephases, j = 1; 2; 3, andfit the totalmodel to

the time-dependent PCR sensitivity profile reported by Kucirca et al.,68 as well

as the decrease in detection probability from symptom onset, as reported in



ll
OPEN ACCESSArticle
Borremans et al.,69 effectively estimating the mean residence time in the post-

symptomatic phase. The procedure and the resulting parameters are depicted

in Table 2.

Incubation (time to symptom onset)

We first estimate the parameters of the incubation phase based on the cumu-

lative distribution of the time to symptom onset for general transmission re-

ported by Wei et al.64 In our modeling framework, the cumulative distribution

of time to symptom onset is captured by 1� P2
j = 1

ptðxjÞ. To estimate the model

parameters of the incubation period, we fit our model in the temporal range t˛
½0; 30� days post-infection to the reported mean cumulative distribution yt . We

then optimize the arguments n1;t1, and t2 by minimizing the squared deviation

of our model predictions,
P2
j = 1

ptðxjÞ, in the following sense:

n�
1; t

�
1; t

�
2 = argminn1 ;t1 ;t2

 
yt �

 
1�

X2
j = 1

ptðxjÞ
!!2

; (Equation 18)

with initial conditions p0ðx1;1Þ= 1 and pt0 ðxj;iÞ= 0 for all ðj; iÞsð1; 1Þ. Fixing n2 =

1 (compare Table 1), we obtain the optimal parameters n�1 = 5; t�1 = 2:86; t�2 =

3:91. In addition to the results derived in the original study,64 this procedure

estimates which parts of the mean incubation period reported by Wei et al.

(6.9 days) are, on average, spent in the pre-detection phase and in the pre-

symptomatic phase. To estimate lower and upper extreme values for t1 and

t2, we fix n1 = 5, as well as the ratio between the residence time of the pre-

detection phase and the total incubation period from the default parameters,

t1 = 0:442,ðt1 + t2Þ. We then optimize t
upper=lower
1 and t

upper=lower
2 for the min-

imum least-squares deviation between the model prediction and respectively

the lower and upper bounds reported by Wei et al.64 From this we obtain

t
upper=lower
1 = ð2:38; 3:37Þ and t

upper=lower
2 = ð3:27; 4:62Þ days.

Infectiousness after symptom onset

Next, we estimate parameters of the infectious phase after symptom onset (or

peak virus load) from viral load kinetics by Ejima et al.,67 van Kampen et al.,66

Jones et al. (personal communication), and in-house data (supplemental infor-

mation) and based on the relationship between culture positivity and time

since symptom onset reported by Singanaygam et al.65

The in-house Ct values are transformed to viral kinetics using the methods

exemplified in the analysis of infectivity profiles in the supplemental informa-

tion. For each dataset, we fit a linear equation to the reported log10 viral ki-

netics. We first use a sliding window technique (window size of 30 consecutive

data points) to extract the average slope of the log10 viral load values to which

we then fit a linear equation by minimizing the least-squares deviation, similar

to the method exemplified in the supplemental information. For each fit, the

slope a and intercept b are used to simulate viral load data in the temporal

range t˛½0; 21� using:
log 10ðVLðtÞÞ = � t,a+b+ ε; (Equation 19)

where ε � Nð0; s2Þ is an additive error. The simulated viral loads in turn are

used to construct relative infectivity profiles based on the attack rate curve as

exemplified in the supplemental information, using the optimal parameters for

the attack rate curve zt reported therein.

In our model, such relative infectivity profiles are captured by ptðx3Þ, when

using initial conditions pt0 ðx3;1Þ= 1 and pt0 ðxj;iÞ = 0c ðj; iÞsð3;1Þ. The symp-

tomatic infectious phase of the model is fit to each relative infectivity dataset

d separately, by minimizing the sum of squared deviations. We enforce one

global n3 hyperparameter (number of sub-compartments in phase) for all data-

set fits, while allowing distinct local optima for t3d (the mean residence time):
n�
3;
h
t�3d1

; t�3d2
; t�3d3

; t�3d4
; t�3d5

i
= argminn3argmint3d1

;t3d2
;t
where Nd is the number of observations in the respective dataset d.

We obtain optimal parameters n3 = 13 and t3 = 7:5 (taken to be the

median of the five fitted values for the individual studies). To esti-

mate lower and upper extreme values for t3, we fix n3 = 13 and mini-

mize the least-squares deviation for the lower and upper bounds of

the error range of all five data upper/lower bounds combined. From

this, we estimate t3˛ð2:79; 11:47Þ. In Figure S2A, we show the opti-

mization of parameter n3, whereas Figure S2B–S2F depicts the fits

to the individual studies.

Time-dependent assay sensitivity and detection probability for

PCR assay

Currently, PCR-based diagnostic tests are the gold standard for detecting a

SARS-CoV-2 infection. Since the utilized primers are highly specific for

SARS-CoV-2, we use a clinical specificity (Spec) of 0:999. The PCR also has

an analytical sensitivity of nearly 100% if sufficient viral material is contained

in the sample. The clinical sensitivity, however, depends on time since infec-

tion and is capped at a maximum sensitivity:68

Sensmax = max
t

½PtðPCR+ jSARSCoV2+ Þ�z80% : (Equation 21)

While the former is a result of the viral dynamics, the latter has to do with the

pre-analytics, i.e., whether the health personnel are able to get hold of suffi-

cient viral material during swab sampling. Because themodel is developed pri-

mary for comparing NPI strategies for the public, samples for PCR tests are

assumed to be from the upper respiratory tract.

The mean residence time in the post-infectious phase t4 is estimated with

the maximum sensitivity as an input parameter, such that the temporal change

in the false omission rate,68 as well as the decrease in detection probability

from symptom onset,69 is captured sufficiently.

To estimate the optimal t4 value, we fix the optimal parameters for all previ-

ous phases and set n4 = 1. The time-dependent assay false omission rate is

computed as:

FORt = Spec,ptðx1Þ+ ð1�SensmaxÞ,
X4
j = 2

ptðxjÞ; (Equation 22)

with pt0 ðx1;1Þ= 1 and pt0 ðxj;iÞ = 0 c ðj; iÞsð1; 1Þ. The relative detection proba-

bility from symptom onset is computed as:

PtðdetectÞ = ð1� diagðFORðxÞÞÞ,et,A,pt0 ðxÞ
ð1� diagðFORðxÞÞÞ,et0,A,pt0 ðxÞ

; (Equation 23)

with pt0 ðx3;1Þ= 1 and ðxj;iÞ = 0 cðj;iÞsð3;1Þ. We estimate t4 by simultaneously

fitting PtðdetectÞ to the detection probability profile for the upper respiratory

tract69 and to the temporal PCR false omission rate profile FORt published

by Kucirca et al.68 in a least-squares sense. This gives us t4 = 8 days. We fit

no upper and lower bounds for t4.

Antigen-based rapid diagnostic tests

RDTs through antigen detection are currently in development. Early validation

results from two commercially available products compared their analytic per-

formance with PCR.106 In summary, the antigen tests show a comparable

sensitivity with respect to PCR for samples with low Ct values (high virus con-

tent in sample) and appear to be less sensitive at high Ct values (low virus

content in sample).84,85,107 Overall, sensitivities of P(RDT+|PCR+) = 85%–

89%with respect to PCRwere reported for the two evaluated testing systems.

Specificity was 99.7%–100% with respect to PCR. Since no data about the

temporal changes in this relative sensitivity are available to date, we assumed

it to be comparable to the PCR and calculated the maximum sensitivity of RDT

assays as:
3d3
;t3d4

;t3d5

X
d

�
zt � pt

�
x3; n3; t3d

��2
Nd

; (Equation 20)
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Sensmax =max
t

½PtðRDT+ jSARSCoV2+ Þ
i

=max
t

h
PðRDT+ jPCR+

�
,PtðPCR+ jSARSCoV2+ Þ+ PðRDT+ jPCR�Þ,PtðPCR�jSARSCoV2+ Þ�

z70%

(Equation 24)
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We provide the model as a user-friendly software in an associated

descriptor article,63 which enables decision-makers to assess arbitrary NPI

strategies. The software allows full flexibility with regard to parameter choices

and strategy design. The default parameters of the software are set to the pa-

rameters estimated above.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100262.
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