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Abstract

Phenotypes extracted from Electronic Health Records (EHRs) are increasingly prevalent in

genetic studies. EHRs contain hundreds of distinct clinical laboratory test results, providing

a trove of health data beyond diagnoses. Such lab data is complex and lacks a ubiquitous

coding scheme, making it more challenging than diagnosis data. Here we describe the first

large-scale cross-health system genome-wide association study (GWAS) of EHR-based

quantitative laboratory-derived phenotypes. We meta-analyzed 70 lab traits matched

between the BioVU cohort from the Vanderbilt University Health System and the Michigan

Genomics Initiative (MGI) cohort from Michigan Medicine. We show high replication of

known association for these traits, validating EHR-based measurements as high-quality

phenotypes for genetic analysis. Notably, our analysis provides the first replication for 699

previous GWAS associations across 46 different traits. We discovered 31 novel associa-

tions at genome-wide significance for 22 distinct traits, including the first reported associa-

tions for two lab-based traits. We replicated 22 of these novel associations in an

independent tranche of BioVU samples. The summary statistics for all association tests are

freely available to benefit other researchers. Finally, we performed mirrored analyses in

BioVU and MGI to assess competing analytic practices for EHR lab traits. We find that using

the mean of all available lab measurements provides a robust summary value, but alternate

summarizations can improve power in certain circumstances. This study provides a proof-

of-principle for cross health system GWAS and is a framework for future studies of quantita-

tive EHR lab traits.
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Author summary

Electronic Health Records (EHRs) have emerged as an abundant data source for deriving

phenotypes used in genetic association studies. EHRs provide a broad range of clinical

data in large health system cohorts and are readily incorporated into large-scale meta-

analyses. The abundance of available data in EHRs introduces unique technical challenges,

particularly longitudinal clinical lab measurements which lack the structure of more com-

monly used disease diagnosis codes. Conflicting strategies exist in the literature and it is

not clear how portable these strategies are across health systems. In this study we per-

formed a proof-of-principle meta-analysis of 70 clinical lab traits in two large-scale health

systems: BioVU from Vanderbilt University and the Michigan Genomics Initiative from

Michigan Medicine. Despite the challenges of matching labs across the two health sys-

tems, we observed a high replication rate for known genetic variants. Further, we identi-

fied 31 novel associations, 22 of which replicated in an independent BioVU cohort,

indicating the potential for future meta-analyses. Finally, we explored the impact of vari-

ous analytic strategies, looking for consistent effects between our two cohorts, to deter-

mine optimal strategies for future genetic analysis of EHR-derived lab traits.

Introduction

Laboratory testing is a key component of modern medicine. Laboratory measurements pro-

vide a glimpse into the functioning of the human body, allowing clinicians to diagnose and

monitor disease. In most health systems, lab measurements are routinely captured in patient

Electronic Health Records (EHRs) alongside disease diagnoses, free text notes and medical

procedures to provide a detailed, longitudinal health history [1]. EHRs present exciting

research potential by providing broad phenotyping on large cohorts with minimal cost [2,3].

Several large-scale genetic studies have already leveraged biobanks linked to EHRs, such as

the UK Biobank [4], Japan Biobank [5], FinnGen [6] and HUNT [7], as sources of phenotypes

for Genome-wide Association Studies (GWAS) [4–7]. The phenotypes are typically based on

International Classification of Diseases (ICD) codes mapped to dichotomous traits [8].

Although disease is often thought of in all-or-nothing binary states, many diseases exist on a

continuum with the ultimate clinical diagnosis occurring once a relevant quantitative labora-

tory measurement exceeds a pre-determined threshold. For example, hypercholesteremia, dia-

betes mellitus and chronic kidney disease are each diagnosed almost entirely on

measurements of low density lipoprotein (LDL), glycated hemoglobin (or glucose) and creati-

nine, respectively. Laboratory measurements can therefore be a more sensitive measure of

underlying health than diagnosis and may provide a more powerful outcome for analysis. As

an example, the hypercholesterolemia and coronary artery disease risk locus PSCK9 was ini-

tially discovered based on quantitative LDL measurement rather than clinical diagnosis [9,10].

In contrast to binary disease phenotypes, there are fewer examples of genetic analyses of EHR-

derived quantitative lab values [11–13]. Hereafter, we use the term lab traits to refer to quanti-

tative biomarkers assayed through clinical laboratory testing (e.g., “creatinine", "LDL choles-

terol"), and the term lab measurements to refer to realized values of these tests stored in

patient EHRs.

The rich source of quantitative lab measurements in EHR cohorts comes with unique con-

cerns. Quantitative traits collected specifically for research purposes typically use a controlled

experimental design to ensure consistency among samples. In contrast, lab measurements
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contained in EHRs are a historical record of medical care. As such, patients may have hun-

dreds of lab measurements for some traits and none for others, depending on their specific

health history and utilization of the health system. The measurements can be collected in times

of sickness or good health leading to substantial variation in measurements for the same lab.

Lab measurements can also be artificially modified by prescription medication, such as statin

use for lowering LDL cholesterol. Moreover, recruitment mechanisms and health system

demographics can dramatically shape the overall health of the biobank cohort, which in turn

dictates lab measurements available for analysis. The broad impact of using such “real world”

measurements for genetic association studies is unclear. Questions remain over the effect and

robustness of analytic choices made when analyzing EHR-based lab traits including how best

to summarize complicated, longitudinal lab measurements and whether comorbid diseases

highly correlated with lab measurements must be considered. Prior studies are not consistent

in addressing these concerns. For example, GWAS of EHR-derived quantitative traits in Bio-

bank Japan enrolled patients with at least 1 of 47 diagnoses and controlled for all 47 diagnoses

while testing each lab [11]. In contrast, an analysis of labs within the Geisinger EHR did not

control for underlying disease states [14]. The variety of methods to summarize lab measure-

ments and models to test for genetic association indicates that the question of how to analyze

these data remains unsettled.

In this paper we explore strategies for analyzing quantitative lab measurements extracted

from EHRs and describe the first large-scale meta-analysis of EHR-derived lab traits across

independent health systems. We used lab measurements and genetic data from two academic

health systems: the BioVU cohort from Vanderbilt University [15] and the Michigan Geno-

mics Initiative (MGI) from Michigan Medicine [16]. Meta-analysis offers a mechanism to

increase sample size and power for detecting genetic risk variants but comes with distinct chal-

lenges for EHR lab traits, particularly matching lab traits between health systems and deter-

mining specific analysis protocols. The cohorts differ dramatically in their recruitment

mechanisms, patient composition and recording format for lab measurements: MGI was pre-

dominantly recruited through inpatient surgical encounters at Michigan Medicine whereas

BioVU recruitment required outpatient appointments at Vanderbilt University Medical Cen-

ter. As a result, MGI is enriched for diseases treated surgically such solid tumors [16]. This het-

erogeneity reflects the reality of EHR-based phenotyping, and strategies must be developed for

future collaborative work on the growing number of EHR-linked biobanks.

Our initial challenge was identifying which labs to meta-analyze between the health sys-

tems. Accurately matching labs is complicated by the fact that no standardized coding scheme

exists for lab measurements. Dichotomous disease traits are readily matched between health

systems using the ubiquitous ICD coding system for disease diagnoses [17]. Although the Logi-

cal Observation Identifiers Names and Codes (LOINC) system offers the promise of interoper-

ability for lab traits, it is cumbersome and maps poorly onto other ontologies [18]. For

example, there are 21 distinct codes for blood glucose which might not be used consistently

between institutions. Moreover, health systems may adopt their own idiosyncratic internal ter-

minology for electronic recording of lab results. Based on a methodical manual review of EHR

text descriptions and lab measurements, we identified 70 lab traits between BioVU and MGI

that could be matched with high confidence. We extracted previously identified variants for

these lab traits from the GWAS catalog to serve as true positive variants for assessing subse-

quent analyses. Our meta-analysis replicated nearly 75% of these true positive variants, validat-

ing both the accuracy of lab matches across health systems and the overall quality of the EHR

lab data. Further, we discovered 31 novel lab-associated variants across 22 labs, including the

first reported associations for the saliva and pancreatic enzyme amylase and bicarbonate CO2,
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a gaseous waste product from metabolism carried in the blood. We immediately replicated 22

(71%) of these novel associations using an independent second set of BioVU samples.

The meta-analysis required several strategic choices regarding data preparation and statisti-

cal analysis. We explored the consequences of various analytic choices using a series of mir-

rored analyses performed in MGI and BioVU. In particular, we varied the summary statistic

for lab measurements and the inclusion of covariates to control for comorbid diseases in the

GWAS. We compared the results between the independent biobank cohorts to assess consis-

tency of effects. We hypothesized that alternative summary statistics to the basic mean could

provide more powerful genetic analyses. We considered: the median lab measurement due to

robustness against data recording errors and extreme measurements, the first available lab

measurement to mitigate the effects of prescription drugs on modifiable lab traits, and the

maximum recorded measurement to magnify variation in extreme measurements. The comor-

bidity analysis compared GWAS results from models that included indicator covariates for a

wide array of diseases to models that did not.

The complete set of GWAS summary statistics from this analysis are broadly available to

the research community. We encourage others to use this data to replicate their own GWAS

findings and perform hypothesis-driven lookups on specific SNPs or lab traits of interest. Our

results are viewable through an interactive PheWeb web browser [19] at http://pheweb.sph.

umich.edu/mgi-biovu-labs and available for bulk download at https://phewascatalog.org/

labwas and ftp://share.sph.umich.edu/mgi_biovu_labwas/.

Methods

Datasets

We analyzed data from two university hospital biobanks that link electronic health records

with genetic data: BioVU from Vanderbilt University and the Michigan Genomics Initiative

(MGI) from Michigan Medicine. We restricted our analysis to unrelated patients of European

ancestry because of insufficient patient sample sizes and a paucity of known variants in non-

European populations.

The BioVU cohort has been described previously [15]. Briefly, DNA was extracted from

surplus blood samples and genotyping data was linked to de-identified EHR data. For this

study, we used a cohort of 20,515 individuals genotyped on the Multi-Ethnic Genotyping

Array (MEGA) from Illumina and estimated to be of European ancestry by admixture [20].

We included 843,242 SNPs that passed standard marker QC filters and had a minor allele fre-

quency>1%. We retrieved all available lab measurements in this cohort that occurred when

the subject was at least 18 years of age.

The MGI cohort has also been described previously [16]. Briefly, MGI samples were recruited

primarily through surgical encounters at Michigan Medicine and provided consent for linking of

their EHRs and genetic data for research purposes. MGI samples were genotyped on customized

Illumina HumanCoreExome v12.1 bead arrays. European samples were identified using Principal

Component Analysis. We used a data freeze consisting of 37,354 unrelated European individuals

for this analysis. MGI samples were imputed to the Haplotype Reference Consortium using the

Michigan Imputation Server [21], providing ~14 million SNPs with a minimac imputation qual-

ity R2>0.3 and an allele frequency greater than 1e-6. We analyzed the set of ~800K overlapping

SNPs between the MGI imputed genotypes and the BioVU MEGA array for this study.

Harmonization of labs between health systems and the GWAS Catalog

We extracted all available clinical lab measurements and metadata from the electronic health

records of MGI samples and BioVU samples. We collapsed distinct labs when obvious
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duplications were present (e.g., “Eosinophils” and “EOSINOPHILS”). Available metadata dif-

fered slightly between the health systems but included brief text descriptions, unit of measure-

ments, and range for normal values. We excluded individual lab measurements taken outside

the health system labelled as “External.” In cases where multiple tests examined the same ana-

lyte, e.g. blood glucose, we removed point of care (POC) tests which are more susceptible to

technical artifacts and tend to be deployed in intensive care or emergency settings where acute

disease or treatment effects supervene determinants of the underlying baseline [22,23]. Lab

traits were matched between the Vanderbilt and Michigan health systems based on manual

curation of the metadata including recorded lab names, clinical descriptions, measurement

units, range of measurements, and patient count.

Disease phenotypes

In order to study the effect of underlying health conditions we extracted ICD9 and ICD10

diagnosis codes from the EHR of the BioVU and MGI cohorts. We searched for diagnosis for

42 diseases with the potential to alter a clinical lab measurement (S1 Table). We started with

the disease list used in the BioBank Japan lab analysis [11] and removed diseases which do not

occur in our population (e.g. febrile seizures of infancy) and those expected to have minimal

effect on labs (e.g. cataracts). We supplemented their list with chronic diseases expected to

have a large impact on labs due to their prevalence (e.g. hypertension). We created an indicator

variable for each disease (1 if the sample had at least one qualifying ICD code for the specific

disease and a 0 otherwise) to include as covariates in GWAS regression analyses.

Statistical analysis

Intra-cohort Genome-wide Association Studies. We first performed GWAS analysis of

each lab trait separately in the MGI and BioVU cohorts. We performed multiple GWAS for

each lab, varying the statistic used to summarize the longitudinal lab measurements for each

sample (mean, median, first available measurement and maximum available measurement)

and the inclusion of binary indicators for diagnosis comorbid diseases in the GWAS

regression.

For each GWAS, the distribution of lab summary statistics was inverse normalized sepa-

rately within the MGI and BioVU cohorts prior to regression analysis. In a separate analysis of

the BioVU cohort, we determined that inverse normalization of lab values performed better

than applying no transformation, or a log or square root transformation for controlling

GWAS type I error. Genome-wide association tests were performed on the inverse normalized

traits using additive linear regression models containing age, sex and four principal compo-

nents as covariates. The comorbidity model controlled for disease status by inclusion of an

additional 42 covariates for the binary disease phenotypes. The regression analyses were per-

formed in the BioVU cohort using PLINK [24] and in the MGI cohort using epacts 3.3.0 [25].

Comparison of p-values across cohorts. We treated the GWAS of mean trait value with

no disease covariates as the default. We quantified the impact of each alternate analysis strategy

relative to the default analysis by computing the log fold change in p-value between the alter-

native and default analysis for each analyzed SNP. That is, for each SNP we compute the quan-

tity

Dp ¼ � log10ðp� value for alternative analysis=p� value for default analysisÞ

for the MGI analysis and the BioVU analysis separately. A positive value of Δp indicates a SNP

that increases in significance (smaller p-value) for the alternate summary statistic. A negative

value of Δp indicates a decrease in significance for the alternate analysis. Scatterplots of Δp
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computed in MGI and BioVU summarize the magnitude and consistency of change in p-value

significance between the cohorts (Fig 1, S1 Fig). We performed LD-pruning on non-catalog

SNPs to simplify the scatterplots. Since most SNPs are not associated with the lab trait of inter-

est, alternative summarizations simply result in independent noise between the two cohorts,

resulting in a diamond shaped pattern centered at the origin.

We implemented a heuristic to formally distinguish the SNPs with largest changes in p-

value between the alternative and default analysis methods from those with movement due

simply to random noise. The heuristic generates a bounding quadrilateral polygon around the

diamond cluster of points, generated using simulated annealing to determine the bounding

coordinates of a polygon containing 99.9% of all SNPs. We defined SNPs outside the

Fig 1. Scatterplot of Δp in MGI and BioVU when using the first available measure rather than the mean measurement in a GWAS of Cholesterol level. Δp is the

-log fold change in p-value at a SNP for using an alternate analysis, in this case the first available lab measurement. Each dot is a SNP, with red dots indicating GWAS

catalog SNPs for the specific lab trait. The white diamond contains 99.9% of SNPs and is used to identify SNPs with the largest changes in p-value due to the alternate

analysis. SNPs outside the bounding diamond in the top right (green) quadrant show a concordant increase in significance in both MGI and BioVU, that is, SNPs for

which the alternative strategy increases significance in both cohorts. Conversely, SNPs in the bottom left (blue) quadrant show a concordant decrease in significance in

both MGI and BioVU. SNPs in either the top left or bottom right (yellow) quadrants have a discordant effect, indicating a large increase in p-value in one cohort but a

large decrease in p-value in the second cohort. In this example, one catalog SNP showed a concordant increase in significance when using the first available lab measure,

11 catalog SNPs had a concordant decrease in significance and one SNP had discordant effects. The complete set of scatterplots for each analyzed lab and alternative

analysis strategy (summary statistic and comorbidity model) are included in the S1 Fig. Tables 3 and 4 summarize the movement of catalog SNPs for each lab and

analysis strategy.

https://doi.org/10.1371/journal.pgen.1009077.g001
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boundaries of the polygon as those with largest simultaneous changes in p-values in both

cohorts. Catalog SNPs located outside the bounding polygon were classified as having either a

concordant increased effect if p-value significance increased in both MGI and BioVU, a con-

cordant decrease effect if p-value significance decreased in both MGI and BioVU or a discor-

dant effect if the p-value increased in significance in one cohort but decreased in the other.

Meta-analysis. We meta-analyzed the GWAS results from the MGI and BioVU default

analysis (mean trait value, no disease covariates). The meta-analysis was performed using

METAL by combining study-specific GWAS effect size estimates and standard errors [26]. We

computed genomic control inflation factors (λGC) on a set of LD-pruned SNPs for each meta-

analyzed lab.

GWAS catalog variants. We created a list of previously identified genetic associations for

each analyzed lab trait using the GWAS catalog [27] (downloaded 9/27/2017). We searched

the catalog for quantitative phenotypes matching our analyzed labs using pattern matching in

the DISEASE_TRAIT, MAPPED_TRAIT, and P_VALUE_TEXT columns. We searched for

each lab using multiple potential string patterns, for example “AST”, “aspartate aminotransfer-

ase”, “SGOT”, and “serum glutamine oxaloacetic aminotransferase”. For purposes of replica-

tion, we limited our catalog search to studies of European cohorts performed on adults of both

sexes without disease-based sampling (e.g. glucose measurements in type 2 diabetes samples)

and required a reported p-value of at least 5e-8. We considered a catalog association replicated

if the meta-analysis p-value for our corresponding lab was < 0.05 and the BioVU and MGI

studies had the same direction of effect.

Definition of novelty. We report novel lab-SNP associations as those reaching genome-

wide significance that have not been previously reported in European populations and are not

reasonably expected based on existing SNP-lab associations in similar labs. We used the fol-

lowing criteria: meta-analysis p-value <5e-8, consistent direction of effect between MGI and

BioVU and at least 1 megabase from any previously reported SNP for the given lab or a related

lab in the GWAS catalog. Here, we define related labs as those which are commonly ordered as

part of a panel of correlated tests (e.g. AST and ALT for liver function) or arithmetically-

dependent traits (e.g. LDL and total cholesterol), and therefore likely to indicate the same bio-

logical association. We report the “peak” or most significant SNP when a group of novel SNPs

are in linkage disequilibrium.

Replication of novel associations. We performed a replication analysis of novel associa-

tions identified in the meta-analysis using an independent cohort of BioVU samples that

became available after the original meta-analysis was performed. This replication cohort con-

sisted of 29,043 European ancestry adult individuals with extant lab data recruited using the

same procedure as the initial BioVU cohort, genotyped on the same MEGA genotyping array,

and subjected to the same data QC procedure. We declared a novel association to be replicated

if the replication p-value was<0.05 and the direction of effect was consistent with that from

the meta-analysis.

Ethics statement

Data were collected according to Declaration of Helsinki principles. MGI study participants’

consent forms and protocols were reviewed and approved by the University of Michigan Med-

ical School Institutional Review Board (IRB ID HUM00099605 and HUM00155849). Opt-in

written informed consent was obtained for each MGI participant. BioVU is Vanderbilt Uni-

versity’s biobank of DNA extracted from leftover and otherwise discarded clinical blood speci-

mens. BioVU operates as a consented biorepository; all individuals must sign the BioVU

consent form in order to donate future specimens.
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Results

We extracted all available clinical lab measurements from the electronic health records (EHRs)

for genotyped samples in two academic biobank cohorts: the Michigan Genomics Initiative

[16] (MGI) at Michigan Medicine and the BioVU [15] at Vanderbilt University. In total, this

consisted of 35,785,074 lab measurements in 50,743 MGI samples, and 28,929,660 lab mea-

surements in 61,378 BioVU samples. We focused on samples of European ancestry in both

cohorts due to insufficient sample sizes in other ancestry groups. Genetic analyses were per-

formed on the set of ~800K overlapping SNPs between the MGI imputed genotypes and the

BioVU MEGA array genotypes.

We analyzed 70 labs matched with high confidence between the health systems and having

at least 1,000 samples with the lab measured in each health system (Table 1). We searched the

GWAS catalog for known genetic associations among the 70 lab traits to serve as “true posi-

tive” variants to validate the data and assess competing analysis strategies (S2 Table). We iden-

tified 4,140 such associations, of which, 1,313 (32%) across 48 different traits were in the set of

overlapping markers tested in the meta-analysis. Many lab traits have been well studied [28,29]

and provided many testable catalog SNPs. LDL, for example, had 84 catalog SNPs that could

be directly tested in our meta-analysis. Alternatively, several labs had relatively few or no cata-

log SNPs, including labs for which either no variant was reported in the catalog or the catalog

variants were not typed in at least one of our cohorts.

Meta-analysis of Labs in MGI and BioVU

The 70 EHR-derived lab traits were first analyzed separately in the cohorts using the mean

measurement as the individual-level outcome. The meta-analysis sample size differed between

labs, ranging from 7,429 for uric acid to 46,382 for hematocrit (Fig 2), reflecting the frequency

with which different labs are administered in health systems. Several labs have previously been

studied in much larger cohorts, including the differential panel of 10 white blood cell mea-

sures, analyzed in >170K samples in the UK BioBank [29]. However, this meta-analysis pro-

vides the largest sample size for 34 labs, including 14 clinical lab traits with no previously

reported study in the GWAS catalog at the time of our analysis. Genomic control lambda val-

ues (λGC) confirmed the meta-analyses were well-controlled [30]. The mean λGC across all labs

was 1.035, ranging between 0.995 and 1.103. Consistent with polygenicity [31], traits with a

larger numbers of catalog variants had, on average, larger λGC values. The mean λGC for labs

with zero testable catalog SNPs was 1.020. Labs with one to twenty testable Catalog SNPs had

mean λGC of 1.028 and labs with greater than 20 testable Catalog SNPs had mean λGC of 1.066.

Replication of GWAS Catalog SNPs. We first performed a replication analysis of the

1,313 GWAS catalog SNPs to validate the EHR-derived lab traits. Overall, we replicated 982 of

the GWAS catalog SNPs, giving an overall replication rate of 74.8% (Table 1). Replication rates

varied across the individual labs; however, we did replicate at least one catalog SNP for each of

the 48 traits with a testable catalog SNP. Replication rates were high for several previously

well-studied traits, including red blood cell indices (MCHC, MCH, MCV), metabolic mea-

sures (glucose and HgbA1C) and creatinine. The lowest replication rates occurred for the dif-

ferential panel of white blood cell traits (neutrophils, lymphocytes) which included catalog

SNPs discovered in the much larger UK Biobank cohort [4]. Interestingly, replication rates dif-

fered among the well-studied lipid panel traits. We replicated a lower percentage of catalog

SNPs for LDL cholesterol and total cholesterol compared to triglycerides and HDL cholesterol.

Several factors influenced our ability to replicate individual catalog SNPs (Fig 3), each con-

sistent with statistical power rather than adequate matching of labs as the primary limiting fac-

tor. Replication increased sharply with the number of publications reporting the association,
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Table 1. Summary of clinical lab traits tested, including meta-analysis samples size, number of testable GWAS catalog SNPs, number of replicated catalog SNPs

and replication rate.

Lab Name Category Description Meta-Analysis

Sample Size

Number of Testable

GWAS Catalog

SNPs

Number of Catalog SNPs

Replicated in Meta-

Analysis

Replication

Rate (%)

Alb Liver function Albumin, most abundant blood protein 39,513 5 4 80

AlkP Liver function Alkaline phosphatase, bile duct and bone

enzyme released by damage

39,809 3 1 33

ALT Liver function ALanine aminoTransferase, liver enzyme

released by damage

40,116 0 0 N/A

Amyl Pancreas Amylase, digestive pancreas enzyme released

by damage

10,368 0 0 N/A

AST Liver function ASpartate aminoTransferase, liver enzyme

released by damage

40,176 0 0 N/A

BasoAB Differential Basophils, white blood cell type (absolute

number)

29,653 19 12 63

BasoRE Differential Basophils, white blood cell type (relative

proportion)

32,578 11 7 64

BEAR Blood gas Base Excess ARterial, Acid-base measure of

metabolic acidosis or alkalosis

8,895 0 0 N/A

Bili Liver function Total Bilirubin, heme byproduct excreted by

liver

38,416 4 4 100

BNP Heart failure Brain Natriuretic Protein, Signaling protein

from heart under stress

9,369 1 1 100

BUN Renal function Blood Urea Nitrogen Protein byproduct

excreted by kidneys

45,922 0 0 N/A

Ca Electrolytes Calcium, blood electrolyte 46,100 9 7 78

Chol Lipid panel Total cholesterol 23,642 91 60 66

CKMBRe Cardiac markers Creatine Kinase Muscle Brain isoform, relative,

Enzyme in heart released by damage

10,964 0 0 N/A

Cl Electrolytes Chloride, blood electrolye 45,920 0 0 N/A

CPK Cardiac markers Creatine PhosphoKinase, enzyme in skeletal

and cardiac muscle released by damage

15,150 0 0 N/A

Creat Renal function Creatinine, creatine byproduct excreted by

kidneys

46,027 36 29 81

CRP Inflammatory C-reactive protein, marker of inflammation 12,447 16 7 44

EoAB Differential Eosinophils, white blood cell type (absolute

count)

29,912 31 25 81

EoRE Differential Eosinophils, white blood cell type (relative

proportion)

26,980 28 18 64

Ferrit Iron Ferritin, iron storage protein 11,744 6 1 17

FT4 Thyroid

function

Free tetraiodothyronin, active thyroid hormone 15,868 0 0 N/A

Gluc Metabolic Blood glucose 46,027 18 16 89

HCO3

(CO2)

Blood gas Bicarbonate, main blood pH buffer 45,932 0 0 N/A

HCT Complete blood

count

Hematocrit, measure of blood oxygen carrying

capacity

46382 36 20 56

HDL Lipid panel High density lipoprotein cholesterol 23,318 101 84 83

Hgb Complete blood

count

Hemoglobin, oxygen carrying protein 46,159 34 18 53

HgbA1C Metabolic Hemoglobin A1C, measure of blood glucose

over previous 90 days

17,407 11 10 91

IGranAB Differential Immature granulocytes, immature white blood

cell type (absolute count)

30,744 0 0 N/A

(Continued)
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Table 1. (Continued)

Lab Name Category Description Meta-Analysis

Sample Size

Number of Testable

GWAS Catalog

SNPs

Number of Catalog SNPs

Replicated in Meta-

Analysis

Replication

Rate (%)

IGranRE Differential Immature granulocytes, immature white blood

cell type (relative proportion)

30,683 0 0 N/A

INR Coagulation International Normalized Ratio, derivative of

PT used to dose anticoagulants

33,695 0 0 N/A

Iron Iron Iron 11,317 4 3 75

K Electrolytes Potassium, blood electrolyte 45,941 0 0 N/A

LAC Blood gas Lactic acid, marker of tissue hypoxia 8,792 0 0 N/A

LDH Tumor markers Lactate dehydrogenase, enzyme found in many

cell types released by damage

9,734 0 0 N/A

LDL Lipid panel Low density lipoprotein cholesterol 22,896 84 58 69

Lipase Pancreas Lipase, digestive pancreas enzyme released by

damage

12,649 2 2 100

LymphAB Differential Lymphocytes, white blood cell type (absolute

count)

32,548 35 22 63

LymphRE Differential Lymphocytes, white blood cell type (relative

proportion)

32,553 20 10 50

MCH Red cell indices Mean corpuscular hemoglobin, used to

differentiate causes of anemia

46,159 64 57 89

MCHC Red cell indices Mean corpuscular hemoglobin concentration,

used to differentiate causes of anemia

46,157 20 19 95

MCV Red cell indices Mean corupuscular volume, used to

differentiate causes of anemia

46,153 77 68 88

Mg Electrolytes Magnesium, blood electrolyte 22,773 4 4 100

MonoAB Differential Monocytes, white blood cell type (absolute

count)

32,587 43 32 74

MonoRE Differential Monocytes, white blood cell type (relative

proportion)

32,594 15 12 80

MPV Coagulation Mean platelet volume 40,058 84 73 87

Na Electrolytes Sodium, blood electrolyte 45,933 0 0 N/A

pCO2 Blood gas Arterial partial pressure of CO2, measure of

ventilation

9,516 0 0 N/A

pH Blood gas Arterial pH 10,279 0 0 N/A

Phos Electrolyte Phosphorus, blood electrolyte 21,618 5 4 80

PLT Complete blood

count

Platelet count, clot forming measure 46,145 102 84 82

PMNAB Differential Neutrophils, white blood cell type (absolute

count)

32,595 35 15 43

PMNRE Differential Neutrophils, white blood cell type (relative

proportion)

29,435 21 7 33

pO2 Blood gas Arterial partial pressure of oxygen, measure of

oxygenation

9,557 0 0 N/A

PT Coagulation

panel

Prothrombin time, clot forming measure 33,671 1 1 100

PTT Coagulation

panel

Partial Thromboplastin Time, clot forming

measure

30,972 9 6 67

RBC Complete blood

count

Red Blood Cell count, measure of blood oxygen

carrying capacity

46,158 50 31 62

RDW Red cell indices Red cell Distribution Width, measure of

variability in MCV, used to differentiate causes

of anemia

44,281 29 21 72

(Continued)
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Table 1. (Continued)

Lab Name Category Description Meta-Analysis

Sample Size

Number of Testable

GWAS Catalog

SNPs

Number of Catalog SNPs

Replicated in Meta-

Analysis

Replication

Rate (%)

%SAT Iron Transferrin saturation, measure of available

iron transport capacity

10,180 4 3 75

SedRat Inflammatory

markers

Erythrocyte Sedimentation Rate (ESR), non-

specific marker of inflammation

13,945 5 5 100

TIBC Iron Total Iron Binding Capacity, measure of iron

transport capacity, used to calculate transferrin

saturation

10,397 1 1 100

TProt Liver function Total Protein in blood 38,352 2 2 100

Trigs Lipid panel Triglycerides, tested as part of cholesterol

panels

23,963 73 63 86

Troponin Cardiac markers Troponin I, heart protein released by damage 10,106 0 0 N/A

TSH Thyroid

function

Thyroid Stimulating Hormone, test of thyroid

function and feedback

27,441 1 1 100

UCrea Renal function Urine creatinine, measure of kidney function 10,522 0 0 N/A

UricA Gout Uric acid, nucleotide breakdown product

elevated in gout

7,429 17 14 82

Vi-B12 Nutrition Vitamin B12, used in DNA synthesis 12,506 7 7 100

Vit-D Nutrition Vitamin D storage form, regulates calcium and

phosphorus

12,250 6 6 100

WBC Complete blood

count

White Blood Cell count 46,100 33 27 82

TOTAL 1313 982 74.8

https://doi.org/10.1371/journal.pgen.1009077.t001

Fig 2. Sample sizes for 70 clinical lab traits from the meta-analysis of BioVU and MGI EHRs (red triangles) and the previous largest reported GWAS in a

European cohort (black circles). Our meta-analysis provides the largest GWAS for 34 lab traits, including the first for 14. Asterisks along the bottom row

indicate labs for which we identified a novel genetic association.

https://doi.org/10.1371/journal.pgen.1009077.g002
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as quantified using the PMID citation count from the GWAS catalog (Fig 3A). Associations

reported only once in the catalog are a mix of true unreplicated associations and false positives,

whereas associations reported more than once have already been replicated and are likely real.

We replicated 70% (699 of 1000) of associations reported only a single time. That rate

increased to 77% (196 of 256) for associations reported twice, 91% for associations reported

three times and nearly 100% (56 of 57) for associations reported four or more times. Impor-

tantly, this analysis provides the first replication for 699 previously reported quantitative lab

trait associations, increasing the likelihood that these are true genotype-phenotype associations

(S2 Table).

Replication rate was also dependent on both the best previously reported p-value for the

association and the sample size of the study reporting the association (Fig 3B & 3C). Our

replication rate was lowest, between 55%-65%, for associations whose best reported p-value

was just above genome-wide significance of 5e-8 but increased sharply thereafter. We repli-

cated ~85% of catalog SNPs with best reported p-value <1e-15 and over 90% of catalog

SNPs with best p-value <1e-20. Replication rate increased with the relative size of our

meta-analysis compared to the largest reported study. We replicated approximately 90% of

catalog SNPs for which our meta-analysis was at least as large as prior studies reporting the

association.

Novel associations. We identified 264 SNP-lab trait pairs representing potentially novel

associations. Based on visual inspection, these SNPs corresponded to 31 distinct peaks for

which we report the lead SNP having the strongest association signal at each peak (Table 2).

We performed a replication analysis of the 31 lead SNPs using an independent cohort of

29,043 BioVU patients that became available after the initiation of our primary analysis. One

SNP potentially novel for both immature granulocytes measures failed QC filtering in the rep-

lication cohort and could not be tested for replication. In total, we replicated 22 of the 31

(71%) novel associations (Table 2). Among the 24 replicated novel SNPs are the first associa-

tions for amylase (Amyl) and bicarbonate (CO2). We identified and replicated additional asso-

ciations for alanine aminotransferase (ALT), alkaline phosphate (AlkP), Relative count of

basophils (BasoR), total bilirubin (Bili), calcium (Ca), creatinine phosphokinase (CPK), glu-

cose (gluc), mean corpuscular hemoglobin concentration (MCHC), lipase, and thyroid stimu-

lating hormone (TSH).

Fig 3. Replication rates for GWAS catalog SNPs of clinical labs increased with (A) the number of times an association was reported in the GWAS catalog, (B) the most

significant p-value previously reported for the association, and (C) the ratio of sample size in our meta-analysis to that of the previous largest study.

https://doi.org/10.1371/journal.pgen.1009077.g003
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Several of our novel findings have biological or existing evidence that support the associa-

tion. Three of the associations have recently been identified for the same lab in non-European

cohorts. rs855791, a missense variant in TMPRSS6 (transmembrane serine protease 6), and

rs8022180, an intronic variant in TRAF3, were shown to be associated with bilirubin and

serum total protein level, respectively, in a Japanese population [11]. rs112574791 is in the glu-

tamic—pyruvic transaminase gene GPT, a gene associated with alanine aminotransferase levels

in the Korea Biobank [32]. Our results confirm these prior findings and suggest a cross-ethnic

effect in European populations.

The intronic variant rs8051363 in CTRB1 was associated with both amylase and lipase, clin-

ical assays of pancreas function used to diagnose pancreatitis. While the SNP itself has previ-

ously been linked to blood protein measurements [33], the CTRB1 gene encodes

chymotrypsin, a component of digestive enzyme secreted by the pancreas, and was previously

shown to be associated with alcoholic chronic pancreatitis [34]. A second novel SNP for lipase,

Table 2. Summary of Novel findings.

MGI-BioVU Meta-Analysis BioVU Replication Cohort

Lab SNP Chr:Pos Allele 1 Allele 2 N Beta P-Value N Beta P-Value Replicated

AlkP rs3843738 17:43739194 A G 39,809 0.04 2.51E-08 22,920 0.01 3.58E-01 No

AlkP rs73004933 19:19675696 T C 39,809 0.08 4.47E-09 22,730 0.05 7.14E-03 Yes

ALT rs112574791 8:145730221 A G 40,116 0.18 3.02E-08 23,007 0.15 5.80E-04 Yes

Amyl rs1930212 1:104324819 A G 10,368 -0.25 1.48E-45 3,573 -0.18 4.69E-09 Yes

Amyl rs8051363 16:75255217 A G 10,368 0.10 1.07E-10 3,564 0.09 4.51E-04 Yes

BasoRE rs386785158 15:70744437 T C 29,653 0.06 7.94E-13 16,191 0.04 2.10E-04 Yes

Bili rs855791 22:37462936 A G 39,890 0.04 2.34E-08 22,918 0.04 1.00E-05 Yes

BUN rs10516957 4:95949206 T C 45,922 -0.06 1.35E-08 25,245 0.01 6.11E-01 No

Ca rs6727384 2:97400324 A G 46,100 -0.04 5.13E-10 25,200 -0.05 2.06E-07 Yes

Ca rs2839899 9:80350999 A G 46,100 0.04 6.76E-09 25,194 0.03 9.47E-03 Yes

Cl rs1030025 2:103105611 A T 45,920 0.05 4.68E-10 25,204 0.02 9.16E-02 No

FT4 rs10122824 9:139109861 T G 15,868 0.07 1.00E-09 9,721 0.07 7.28E-07 Yes

Glucose rs7607980 2:165551201 T C 46,027 -0.05 4.27E-09 25,312 -0.04 2.09E-03 Yes

Glucose rs896854 8:95960511 T C 46,027 -0.04 1.55E-09 25,311 0.01 3.64E-01 No

Glucose rs9273364 6:32626302 T G 46,027 0.05 2.63E-11 24,801 0.05 3.10E-06 Yes

HgbA1C rs3130628 6:31609272 T C 17,407 -0.08 1.23E-08 7,340 0.03 3.79E-02 No

HCO3 (CO2) rs1799913 11:18047255 T G 45,932 -0.04 5.89E-09 25,219 -0.04 7.82E-07 Yes

HCO3 (CO2) rs77375846 2:103155075 T C 45,932 -0.10 9.33E-25 25,217 -0.06 2.78E-05 Yes

IGranRE rs13284665 9:131513370 A G 30,683 0.22 6.61E-74 QC Fail N/A N/A No

IGranAB rs13284665 9:131513370 A G 30,744 0.13 6.76E-35 QC Fail N/A N/A No

K rs10039139 5:137164863 T G 45,941 0.07 8.32E-16 25,211 0.06 1.83E-06 Yes

Lipase rs9377343 6:96512220 A G 12,649 -0.10 4.79E-14 5,564 -0.08 3.60E-05 Yes

Lipase rs8051363 16:75255217 A G 12,649 0.13 2.00E-20 5,549 0.07 8.39E-04 Yes

MCHC rs12352830 9:80041132 C G 46,157 -0.04 4.37E-08 26,243 -0.04 5.77E-05 Yes

MonoRE rs117358683 12:44145965 A G 32,594 -0.23 2.69E-08 16,185 0.04 4.07E-01 No

MPV rs11212635 11:108310702 A T 40,058 0.04 9.55E-09 17,333 -0.01 3.68E-01 No

TProt rs8022180 14:103263020 A G 38,352 0.04 7.24E-10 19,665 0.03 2.63E-03 Yes

Trigs rs6847598 4:76750356 T C 23,963 -0.05 1.58E-08 12,526 -0.03 1.48E-02 Yes

TSH rs12590163 14:105223525 T C 27,441 -0.05 4.68E-08 17,042 -0.04 6.76E-04 Yes

TSH rs310766 3:12233482 A G 27,441 -0.06 1.66E-08 17,079 -0.05 1.42E-05 Yes

TSH rs9275141 6:32651117 T G 27,441 0.05 3.47E-09 17,054 0.04 8.64E-04 Yes

https://doi.org/10.1371/journal.pgen.1009077.t002
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rs9377343, is an intronic variant in FUT9, a gene that showed association with diabetic neu-

ropathy in a trans-ethnic meta-analysis [35].

The amylase-associated SNP rs1930212 resides near three amylase genes (AMY2B, AMY2A
and AMY1) on chromosome 1, each of which encodes enzymes that digest starch into sugar

[36]. Copy number variation for amylase genes is hypothesized to have been subject to selec-

tive sweeps corresponding to starch content in human diets [37]. The rs1930212 SNP tags a

known deletion of AMY2A, a pancreatic amylase enzyme, most common in populations his-

torically lacking starch rich diets [37].

One of our novel results for calcium, rs2839899, is an intronic variant in GNAQ (G protein

subunit alpha q), a signaling protein involved in response to various hormones. Variation in

GNAQ is associated with Sturge-Weber syndrome [38], a hereditary vascular malformation

syndrome which can lead to deposits of calcium (calcification) in the brain.

Three SNPs showed associations with glucose. rs7607980 is a missense variant in COBLL1
previously linked to fasting blood insulin and Type 2 diabetes [39–41]. rs9273364 is located

near HLA-DQB1-AS1, a gene associated with T2D [42]. And, although it did not replicate in

our analysis, rs896854, a variant mapping to both NDUFAF6 and TP53INP1, has recent associ-

ations with T2D [43] and eosinophil count [44] among UK biobank participants.

We note that several associations occurred within the HLA region on chromosome 6, nota-

bly for glucose, hemoglobin A1C, and TSH. These variants are likely segregating with HLA

types, which are strongly associated with various autoimmune diseases including diabetes and

autoimmune thyroiditis, which have strong effects in these particular labs.

Genetic correlation of clinical labs. We computed the genetic correlation between pairs

of labs using LD score regression [45] to learn about the shared genetic basis of these traits (Fig

4). We restricted analysis to the 50 lab traits with heritability of at least 7% based on recom-

mendations by the developers of LDscore regression that estimation of genetic correlation can

be unreliable when one of trait has heritability close to zero. We observe strong positive corre-

lations among lab traits of similar function. For example, the liver enzymes alanine amino-

transferase (ALT) and aspartate aminotransferase (AST) were strongly correlated, as were the

measures of renal function Blood Urea Nitrogen (BUN) and creatinine (Creat). Prothrombin

time (PT), a measure of clot formation time and a derivative measure International Normal-

ized Ratio (INR) were positively correlated as expected. More surprisingly, INR was also posi-

tively correlated with vitamin D. While vitamin K is known to be required for the formation of

prothrombin, the correlation with Vitamin D suggests a potential covariance in nutrition or

nutrient absorption.

A prominent cluster of labs (top right corner of the heatmap) contains primarily white

blood cell traits including measures of immature granulocytes, lymphocytes, monocytes and

neutrophils. The immature granulocytes also showed a strong correlation with ferritin (ferrit),

an iron storage and acute phase protein. Ferritin and immature granulocytes can both be ele-

vated during severe acute inflammation, explaining this correlation.

As expected, HgbA1C and glucose were strongly correlated. More interestingly, they also

clustered with Red cell Distribution Width (RDW) and Erythrocyte Sedimentation Rate

(SedRat). This cluster of labs showed negative associations with high density lipoprotein

(HDL), mean cell hemoglobin concentration (MCHC), and mean cell hemoglobin (MCH).

This supports a pathophysiology where the metabolic syndrome (obesity, elevated glucose, low

HDL) is linked by complex mechanisms to persistent low-level inflammation (elevated

SedRat), and anemia of chronic disease (elevated RDW, low MCH, low MCHC).

We identified a cluster containing red cell indices–mean cell hemoglobin concentration

(MCHC), mean cell hemoglobin (MCH), and mean cell volume (MCV)–with total bilirubin

(Bili) and transferrin saturation (%SAT). This reflects the biology of hemoglobin–iron is
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carried to red cell precursors by transferrin and incorporated into heme and thence hemoglo-

bin, red cells are filled with hemoglobin, and at the end of a red cell lifecycle, heme is broken

down into bilirubin.

Additional clusters include (1) calcium (Ca), albumin (Alb) and total protein in blood

(TProt), (2) thyroid stimulating hormone (TSH) and lactate dehydrogenase (LDH), and (3)

hematocrit (HCT), red blood cell count (RBC) and hemoglobin (Hgb) with free

Fig 4. Pairwise genetic correlation of clinical lab traits. We restricted to labs with heritability of at least 7%. Squares are colored only for correlations having a p-value

<0.05 for the null hypothesis of correlation equal to zero.

https://doi.org/10.1371/journal.pgen.1009077.g004
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tetraiodothyronine (FT4). Albumin (Alb) is the major blood protein, so Alb levels are unsur-

prisingly correlated with total blood protein (TProt). Calcium homeostasis is driven by free

calcium, while albumin acts as a calcium sink, therefore calcium (Ca) levels would reasonably

be expected to correlate with Alb [46].

Hematocrit (HCT), red blood cell count (RBC) and hemoglobin (Hgb) are interrelated

measures of oxygen carrying capacity in blood and unsurprisingly correlated. In our study,

they are also correlated with free tetraiodothyronine (FT4). Anemia (low HCT, RBC, and

Hgb) may be a feature of hypothyroidism (low FT4), and tetraiodothyronine—thyroid hor-

mone—has been reported to play a role in red cell maturation [47,48].

A final cluster was identified linking thyroid stimulating hormone (TSH) to lactate dehy-

drogenase (LDH). Muscle breakdown, manifesting as weakness, is a feature of hypothyroid-

ism, and therefore other laboratory anomalies seen in hypothyroidism include release of

muscle enzymes including LDH [47,49].

Analytic strategies for EHR-derived lab traits

We explored the impact of analytic choices on downstream analysis by performing parallel

GWAS analyses in the MGI and BioVU cohorts with one of the analytic steps perturbed from

our original analysis: either the individual-level statistic used to summarize longitudinal lab

measurements (median, maximum measurement, first available measurement) or the inclu-

sion of covariates for underlying comorbid health conditions. We performed these analyses on

the 22 lab traits for which there were least 20 testable GWAS catalog SNPs, using the catalog

SNPs to interpret the effect of each analytic strategy on true risk variants.

Summary statistic. Overall, 13.3% of testable catalog SNPs showed a major change in sig-

nificance when using the median as opposed to mean value for the summary statistic

(Table 3). The median rarely resulted in a consistent improvement for both MGI and BioVU.

Only 0.4% of catalog SNPs had concordant increased effect compared to 7.6% with concordant

decreasing effect and 5.2% with a discordant effect. Creatinine was the sole lab for which using

median lab value had a greater number of catalog SNPs with concordant increased significance

than catalog SNPs with concordant decreased significance. Even here the effect was small, only

two of the 36 catalog SNPs had a concordant increase in significance.

In comparison, the first available measurement and the maximum measurement had a

greater impact on association p-values for catalog SNPs. In both cases, the alternate summary

statistic was most likely to cause a concordant decrease in significance. Using the first available

measurement resulted in concordant increase for only 3.1% of catalog SNPs, whereas 16.9% of

catalog SNPs had a concordant decrease and 4.5% had discordant changes in significance.

Using the maximum available measure had similar performance (5.6% concordant increase,

18.3% concordant decrease, 5.5% discordant).

Despite an overall trend of reducing significance of known risk variants, several related labs

for blood oxygen carrying capacity did benefit from using the first available or maximum mea-

surements. Red blood cell count (RBC), hematocrit (HCT) and hemoglobin (Hgb) each

showed concordant increase in significance for several of their respective catalog SNPs without

negatively impacting remaining catalog SNPs. This likely reflects red cell biology. Conditions

that decrease oxygen carrying capacity, such as blood loss or iron deficiency are far more com-

mon than those that increase it, polycythemia vera or severe obstructive sleep apnea, for exam-

ple. Thus, maximum measurement of an individual’s oxygen carrying capacity more likely

represents the genetically determined set point.

Controlling for comorbid disease. The comorbidity model, containing binary covariates

for 42 comorbid diseases with the potential to alter lab values, produced the largest proportion
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of catalog SNPs (6.2%) with concordant increased significance in MGI and BioVU among the

alternate analysis strategies considered (Table 4). Despite this, a roughly equal number of cata-

log SNPs had discordant effects (6.8%) between the two cohorts.

The clearest example of a substantial and consistent effect on catalog SNPs between MGI

and BioVU was for HDL and Mean platelet volume (MPV). Interestingly, in contrast to this

result for HDL, LDL had no catalog SNPs with concordant increase in significance and seven

catalog SNPs with concordant decrease.

Discussion

This study represents the first cross-health system study of EHR-derived lab traits at large

scale. We performed meta-analysis GWAS of 70 lab traits and have made these association

results easily accessible to the research community. Thoroughly dissecting each lab-SNP com-

bination is a daunting task. Here, we focused on replication of GWAS catalog variants to vali-

date our data and highlighted novel genetic associations. We anticipate that our full results,

including those which do not reach genome-wide significance will be useful in replicating

future novel results, in studies which synthesize findings across multiple SNPs, or in hypothe-

sis-driven studies which require less stringent thresholds.

Our study serves as a proof-of-principle for performing cross-health-system genetic analy-

sis of EHR-derived lab traits. The high replication rate for known GWAS variants indicates

that EHR lab traits can be well-matched between discordant health systems and that

Table 3. Classification of catalog SNPs for alternate summary statistics.

Median Measurement First Available Measurement Maximum Measurement

Lab Testable

Catalog

SNPs

Concordant

Increased

Significance

Concordant

Decreased

Significance

Discordant

Effect

Concordant

Increased

Significance

Concordant

Decreased

Significance

Discordant

Effect

Concordant

Increased

Significance

Concordant

Decreased

Significance

Discordant

Effect

Chol 91 0 12 0 1 11 1 2 4 6

Create 36 2 0 0 2 2 1 0 8 1

EoAB 31 0 6 0 0 9 0 0 2 1

EoRE 28 0 1 0 0 4 0 0 1 1

HCT 36 0 0 0 4 0 1 15 0 1

HDL 101 0 6 3 0 15 1 0 27 5

Hgb 34 0 0 0 5 0 0 12 0 0

LDL 84 0 9 1 0 9 4 2 2 6

LymphAB 35 0 0 0 0 3 1 5 1 2

LymphRE 20 0 0 0 0 0 0 0 0 0

MCHC 20 0 1 0 2 5 3 2 5 1

MCH 64 0 16 27 0 33 8 0 33 7

MCV 77 1 5 7 0 19 13 0 30 6

MonoAB 43 2 3 0 0 9 0 0 13 1

MPV 84 0 11 9 0 39 9 5 20 17

PLT 102 0 0 1 7 7 1 0 19 5

PMNAB 35 0 0 0 0 2 1 0 3 1

PMNRE 21 0 0 0 0 0 0 0 0 1

RBC 50 0 4 4 13 0 1 21 0 0

RDW 29 0 1 2 0 1 4 0 7 0

Trigs 73 0 7 0 1 15 1 0 22 0

WBC 33 0 4 5 0 7 1 0 9 0

Total 1127 5 (0.4%) 86 (7.6%) 59 (5.2%) 35 (3.1%) 190 (16.9%) 51 (4.5%) 64 (5.6%) 206 (18.3%) 62 (5.5%)

https://doi.org/10.1371/journal.pgen.1009077.t003
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measurements taken during real-life medical interactions sufficiently reflect those taken under

more idealized experimental conditions. Moreover, this implies that mechanisms underlying

variation in lab traits among healthy populations also act in a health system population with

diseased individuals, strengthening their clinical relevance. By comparing various analytic

strategies, we show that there is no optimal strategy that holds across all lab traits. In fact, we

observed many instances in which the alternate analysis simultaneously increased significance

for some risk variants and decreased significance for others. Thus, even within a given lab

trait, an optimal strategy for variant discovery might not exist. We also considered a summary

statistic based on Area Under the Curve for the longitudinal lab data [50,51]. Analysis in the

MGI cohort showed that this measure performed consistently worse than the mean lab mea-

surement (S1 Text, S3 Table). A potential area of future research would be determining if mul-

tiple versions of a lab trait can be combined into an omnibus test that simultaneously increases

power across all risk variants. We encourage researchers to use our results across the various

analysis strategies to guide decisions about how best to analyze their traits of interest.

The primary strength of our study was the access to two independent biobank cohorts.

Using two cohorts provides an increase in sample size and power over analyzing and reporting

on each cohort separately. In addition, the two-cohort design adds a built-in internal consis-

tency check to our results by requiring effect sizes to be in the same direction in both cohorts.

This additional requirement reduced the potential for unknown biases in the health system

cohorts to create spurious results when replicating GWAS catalog SNPs or novel association

discovery. Further, the independent cohorts provided the means to rigorously examine the

Table 4. Classification of catalog SNPs for the comorbidity model, which includes covariates for various lab-altering diseases.

Comorbidity Model

Lab Testable Catalog SNPs Concordant Increased Significance Concordant Decreased Significance Discordant Effect

Chol 91 2 5 2

Creat 36 1 3 2

EoAB 31 0 0 0

EoRE 28 0 0 1

HCT 36 2 0 2

HDL 101 15 2 2

Hgb 34 1 0 0

LDL 84 0 7 2

LymphAB 35 2 0 4

LymphRE 20 0 0 0

MCHC 20 2 0 2

MCH 64 1 7 26

MCV 77 9 1 4

MonoAB 43 5 0 1

MPV 84 18 0 5

PLT 102 5 1 4

PMNAB 35 0 2 1

PMNRE 21 0 0 2

RBC 50 2 0 5

RDW 29 0 1 3

Trigs 73 3 3 7

WBC 33 2 2 2

Total 1127 70 (6.2%) 34 (3.0%) 77 (6.8%)

https://doi.org/10.1371/journal.pgen.1009077.t004
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portability of analytic strategies between biobanks. A similar analysis performed in a single

cohort could produce recommendations over fitted to one specific context. Use of multiple

sites increases the generalizability of our recommendations. This study was further strength-

ened by the fortuitous availability of an independent tranche of BioVU samples that provided

an immediate replication cohort for the novel findings of our meta-analysis.

Our study has implications for the design and analysis of similar studies in the future.

Matching and analyzing lab data between health systems is difficult and requires substantial

content knowledge. This study benefited from a multi-disciplinary team consisting of clinical

experts to lead the categorization of the raw lab data extracts and statistical geneticists to guide

analytic strategies. We leaned heavily on GWAS catalog SNPs to serve as positive controls. We

recommend researchers to incorporate an explicit replication step to validate lab data prior to

testing novel hypotheses. Summarizing the longitudinal measurements simply using the mean

proved relatively robust across labs but was by no means optimal in all scenarios. Future stud-

ies can benefit from considering a summary statistic suited to the specific lab trait being evalu-

ated. Our analysis also highlights that close attention must be paid to differences in the

preparation and analysis of EHR phenotypes, particularly longitudinal lab measurements. Fail-

ing to replicate a prior finding can be due to lack of a true effect but also a variety of differences

between biobank cohorts and analytic procedures.

We were motivated to examine the effect of controlling for disease status because of its use

in the analysis of lab traits in BioBank Japan [11]. Controlling for diseases or risk factors such

as tobacco use is a common practice [29]. We considered testing the effect of each disease indi-

vidually but discarded it as cumbersome. Our strategy reflects a broad-spectrum approach in

which diagnoses that are rare or have limited effect on a lab can be rationalized as not causing

harm by remaining in the model. The effect of controlling for comorbid diseases can be unpre-

dictable. For example, within the components of a lipid panel, controlling for disease status led

to a net improvement for HDL catalog SNPs, a net worsening for LDL catalog SNPs, and had

cohort-specific impact on triglycerides. From a methodological standpoint, this argues for

careful consideration of comorbid disease covariates. From a practical standpoint, the absence

of diagnostic data should not be seen as precluding use of a clinical lab data.

A limitation of studying clinical labs in real-life cohorts is that some measurements will be

affected by medication. We were unable to formally address the effect of medication because

of unreliable measurements of medication. However, it remains an important consideration

for future EHR-based lab studies and requires further study. There was indication that in situa-

tions where a disease diagnosis is likely to be accompanied by medication, for example a diag-

nosis of dyslipidemia with lipid labs, controlling for disease status diagnosis serves as a

reasonable proxy to treatment status. As research interest in EHR phenotypes increases, we

anticipate that improved capture of prescription data will facilitate the identification of medi-

cation effects.

A further limitation of this study is the number of analyzed genetic variants. The study was

restricted to ~800K SNPs because BioVU imputed genotypes were unavailable at time of anal-

ysis. Although this limited our ability to discover novel variation, the number of SNPs was

more than sufficient to perform the primary purpose of the paper, a proof-of-principle replica-

tion analysis across a broad range of clinical labs and analytic strategies. However, there are

likely many loci remaining to be discovered for these labs, particularly the understudied traits.

In conclusion, we report the first lab-wide genome-wide association study linking data

between two independent EHR-based cohorts. We achieved a high degree of replication of

prior associations and report a modest number of new associations. In melding these data sets,

we addressed key questions in design and analysis of ‘real world’ data that are increasingly

relevant.
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Supporting information

S1 Table. List of ICD-10 codes used for defining binary trait comorbidities in MGI and

BioVU participants for the comorbidity GWAS model.

(XLSX)

S2 Table. Table of 1,313 SNPs extracted from the GWAS Catalog based on prior associa-

tions with the lab traits and SNPs considered in this study. These associations have been

reported at least once in a mixed-sex, adult, European-predominant population not selected

for the presence of any disease.

(XLSX)

S3 Table. Comparison of GWAS results based on the Area Under the Curve (AUC) sum-

mary statistic and the default mean value summary statistic.

(PDF)

S1 Text. Methodological description of the GWAS analysis of lab traits using a summary

statistic based on Area Under the Curve (AUC).

(PDF)

S1 Fig. The following set of scatterplots show the -log10 fold changes in p-value at individual

SNPs when comparing GWAS of our default summary statistic (mean) to GWAS based on

an alternative statistic (median, maximum or first available). Please refer to the Methods sec-

tion for a complete description. The x-axis corresponds the fold changes for the SNP in MGI and

the y-axis corresponds to the fold changes for BioVU. Positive log-fold changes indicate that the

alternative statistic yielded a smaller (more significant) p-value than using the mean as a sum-

mary statistic. The upper-right (green) quadrant plots SNPs that decreased in p-value in both

cohorts for the alternative statistic. The lower-left (blue) quadrant plots SNPs that increased in p-

value in both cohorts. The two remaining quadrants indicate SNPs with discordant changes in p-

value between the cohorts. GWAS catalog SNPs are plotted in red, novel SNPs for a given lab (if

applicable) are plotted in purple, and the remaining SNPs are LD-pruned (for plotting conve-

nience) and plotted in black. The white diamond displays an empirical null distribution of fold

changes for non-associated SNPs. The first 22 pages display the three alternative summary statis-

tics (maximum value, median value, and first available measurement) for a single lab. The follow-

ing six pages contain the analogous plots showing log fold change in p-values for the comorbidity

model, which includes binary covariates for various comorbid diseases with the potential to

impact lab measures, to a default analysis that does not account for comorbidities.

(PDF)

S2 Fig.

(PDF)
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