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Role of platelet-derived extracellular vesicles in 
traumatic brain injury-induced coagulopathy and 
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Abstract  
Extracellular vesicles are composed of fragments of exfoliated plasma membrane, organelles or nuclei 
and are released after cell activation, apoptosis or destruction. Platelet-derived extracellular vesicles 
are the most abundant type of extracellular vesicle in the blood of patients with traumatic brain 
injury. Accumulated laboratory and clinical evidence shows that platelet-derived extracellular vesicles 
play an important role in coagulopathy and inflammation after traumatic brain injury. This review 
discusses the recent progress of research on platelet-derived extracellular vesicles in coagulopathy 
and inflammation and the potential of platelet-derived extracellular vesicles as therapeutic targets for 
traumatic brain injury.
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Introduction 
Traumatic brain injury (TBI) progresses through several phases. The initial 
injury, caused by mechanical forces, disrupts the functional and structural 
integrity of the brain. A series of subsequent reactions, including peroxide 
release, ischemia, coagulopathy and inflammation, leads to secondary 
injury in patients with TBI (Zhao et al., 2017). Secondary injury, especially 
coagulopathy, is the main cause of high mortality and disability rates in 
patients with TBI (Stein et al., 2002; Cap and Spinella, 2011; Zhao et al., 2020). 
However, the mechanisms of TBI-induced coagulopathy are complex and 
remain poorly understood. 

Injury to the blood-brain barrier releases procoagulant materials that 
quickly and widely activate the exogenous coagulation pathway (Kurland et 
al., 2012; Joseph et al., 2014). Thus, TBI-induced coagulopathy manifests 
as a consumptive hypocoagulable state after rapid transition from a 
hypercoagulable state (Stein et al., 2002; Cap and Spinella, 2011; Yang et al., 
2021), resulting in progressive bleeding and poor clinical outcomes. 

Inflammation is another factor responsible for poor clinical outcomes in 
patients with TBI (Bonsack et al., 2020; Cheng et al., 2020). However, the 
mechanisms of TBI-induced inflammation remain poorly understood, as TBI-
induced inflammation is also associated with central nervous system cells, 
such as astrocytes, neurons and glial cells.

Recently, the roles of extracellular vesicles (EVs), especially platelet-derived 
EVs (pEVs), in TBI-induced coagulopathy and inflammation have been of 
increasing interest. pEVs carry a variety of components, such as lipids, 
proteins (e.g., IL-1β, IL-6, IL-8 and tumor necrosis factor (Balvers et al., 
2015)), nucleic acids (e.g., microRNAs (Nagalla et al., 2011)) and organelles 
(e.g., mitochondria (Boudreau et al., 2014)), which are involved in various 
biological processes, including hemostasis, inflammation (Puhm et al., 2021), 
angiogenesis (Hayon et al., 2012b) and intercellular delivery (Sprague et 
al., 2008). pEVs are a by-product of platelets (Wolf, 1967) and have similar, 
identical, and even more comprehensive functions than platelets. However, 
there is increasing support in the literature for the involvement of pEVs in 
pathological roles, such as in trauma, rheumatoid arthritis, atherosclerosis, 
sepsis, breast cancer and Huntington’s disease. pEVs are associated 
with disease severity in conditions such as trauma and systemic lupus 
erythematosus (SLE) (Milasan et al., 2016; Gomes et al., 2017; Denis et al., 
2018; Fröhlich et al., 2018; Słomka et al., 2018; Dyer et al., 2019; French et al., 
2020; Kerris et al., 2020; Kong et al., 2020; Tessandier et al., 2020). As patients 

with TBI often show platelet activation and release of pEVs, we suspect that 
an abnormally high number of pEVs may be responsible for poor outcomes in 
these patients. This review focuses on the systemic impact of pEVs released 
after TBI, with specific emphasis on TBI-associated coagulopathy and 
inflammation.

Search Strategy
The articles used in this narrative review were retrived by replicating the 
search terms of Boilard et al. (2010) and Zhao et al. (2017). We performed 
an electronic search of the PubMed database (https://pubmed.ncbi.nlm.nih.
gov/) for literature describing animal models of traumatic brain injury from 
1967 to 2021 using the following medical subject headings (MeSH) search 
terms: TBI AND (models, animal) AND inflammation AND coagulants AND 
animal experimentation. In addition, we performed an electronic search of 
the PubMed database for methods of inducing plasticity by pEVs in humans. 
We included publications prior to May 2021, with the following search terms: 
traumatic brain injury (TBI), platelets, microvesicles, and inducing plasticity. 

Platelet-Derived Extracellular Vesicles in 
Traumatic Brain Injury-Induced Coagulopathy
Tissue factor (TF), a membrane-transfer glycoprotein expressed by healthy 
fibroblasts, combines clotting factor VII (FVII) and Ca2+ to form the activated 
FVII (FVIIa)-TF complex, which can act as a bridge between the exogenous 
coagulation pathway and the intrinsic coagulation pathway (Butenas et al., 
2009; D’Alessandro et al., 2018; Grover and Mackman, 2018) (Figure 1). 
However, the amount of TF in circulating blood is not sufficient to cause 
clotting. 

It has been shown that phosphatidylserine (PS) and phosphatidylethanolamine 
regulate the function of TF (Morrissey et al., 2010). Intriguingly, Rosas et al. 
(Rosas et al., 2020) demonstrated by mass spectrometry that pEVs express 
high levels of PS on their external leaflets, suggesting that pEVs exert an 
influence on coagulation through PS (Tripisciano et al., 2017). Additionally, 
the exposure of PS on pEVs promotes coagulation via another pathway that 
involves the transformation of TF from a quiescent form into a biologically 
active state (Chen and Hogg, 2013; Ansari et al., 2016; Bengtsson and 
Rönnblom, 2017; Grover and Mackman, 2018). Therefore, the procoagulant 
activity of pEVs is partly related to increasing activity of TF (Rosas et al., 2020). 
In addition, Tripisciano et al. (2017) found that pEVs are unable to facilitate 
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the production of thrombin in the presence of corn trypsin inhibitor that 
specifically inhibits the activity of factor XII; however, in the absence of corn 
trypsin inhibitor, large amounts of thrombin are produced, suggesting that 
pEVs also promote clotting directly through the intrinsic coagulation pathway. 
Overall, pEVs significantly increase the amount of prothrombin complex 
through both intrinsic and exogenous coagulation pathways.

Boudreau et al. (2014) found that mitochondria can be incorporated into pEVs 
after platelet destruction. Interestingly, the inner membrane of mitochondria 
contains cardiolipin, which has a homologous structure to PS. Therefore, 
mitochondria promote coagulation by regulating the function of TF (Zhao et 
al., 2016). In addition to the effect of the contents of pEVs on coagulation, 
pEVs can directly bind to fibrin fibers to promote the generation of thrombin 
and formation of clotting through CD61+ (Zubairova et al., 2015; Figure 2).

The role of pEVs in promoting coagulation has been demonstrated in many 
diseases. For example, patients with idiopathic thrombocytopenic purpura 
(ITP) have fewer platelets and therefore have a higher risk of bleeding than 
healthy people; however, some patients with ITP do not bleed more easily 

owing to the presence of considerably higher numbers of pEVs than in 
patients with ITP and increased bleeding (Jy et al., 1992; Álvarez-Román et 
al., 2016). Therefore, pEVs may have a protective effect on patients with ITP 
by promoting coagulation. However, high levels of pEVs are associated with 
an increased risk of thrombotic conditions, such as in cancer, atherosclerosis, 
SLE and arthropathy (Levi et al., 2013; Boilard, 2017; Lacroix et al., 2019; 
Matsumura et al., 2019; Puhm et al., 2021). Conversely, PS exposure and 
dysfunction of EV release may result in severe hemorrhagic diseases, such 
as Scott syndrome (Zwaal et al., 2004). Stormorken syndrome, also called 
inverse Scott syndrome (Ridger et al., 2017), is a representative example of 
a condition presenting with mild bleeding even with high concentration of 
pEVs and is associated with either a gain-of-function mutation in the STIM1 
gene (Misceo et al., 2014) or a loss-of-function mutation in the ORAI calcium 
release-activated calcium modulator 1 gene, a calcium channel pore-forming 
protein (Nesin et al., 2014). 

As platelets are activated and pEVs are released after TBI, we speculate 
that pEVs are one of the important components present in the complex of 
procoagulant materials that are released after TBI. An early hypercoagulation 
response is followed by considerable depletion of coagulation-related 
factors, causing consumptive coagulation disorders and, eventually, delayed 
intracerebral hemorrhage. 

Thus, pEVs are involved in both procoagulation and anticoagulation (Tans et 
al., 1991; Dahlbäck et al., 1992). However, the conditions and mechanisms 
behind the involvement of pEVs in procoagulation and anticoagulation remain 
to be studied further.

Platelet-Derived Extracellular Vesicles in 
Traumatic Brain Injury-Induced Proinflammatory 
Response
TBI is accompanied by inflammation. Damage to brain cells results in the 
release of brain-derived microparticles (BDMPs), including microparticles 
derived from astrocytes, neurons, glial cells and mitochondria (Zhao et al., 
2016). In particular, adenosine triphosphate release from damaged brain 
cells stimulates the release of microvesicles from microglial cells (immune 
cells of the central nervous system) (Bianco et al., 2005), and subsequently, 
IL-1β, a proinflammatory cytokine and a component of the microglial 
microvesicles, is released after cleavage by its processing enzyme caspase 
1 (Bianco et al., 2005). Similarly, astrocytes release microvesicles that 
contain IL-1β after stimulation by adenosine triphosphate (Figure 2) (Bianco 
et al., 2009). In addition, Hayakawa et al. (2016) showed that astrocytes 
release mitochondrial microparticles in a calcium-dependent manner that 
involves signals from CD38 and cyclic adenosine diphosphate ribose. This 
process increases the release of reactive oxide species and activation of 
caspases, inducing nerve cell apoptosis and subsequent release of neuronal 
microparticles containing IL-1β and miRNA-21, which ultimately leads to 
neuroinflammation and nerve injury after TBI (Cheng et al., 2012; Harrison 
et al., 2016). In contrast, we observed that mice treated with lactadherin, 
an apoptotic cell-scavenging factor that promotes the clearance of BDMPs 
(Zhou et al., 2018), had improved TBI prognosis compared with BDMP-
treated mice. Lactadherin increased the expression of the anti-inflammatory 
factor IL-10 and decreased the expression of the proinflammatory factor IL-1 

Figure 1 ｜ An overview of the coagulation process. 
(A) Exogenous coagulation pathway: Sufficient TF, released after tissue injury, combines 
with FVII and Ca2+ to form the FVIIa-TF complex. The complex can either activate FX to 
FXa, or it can activate FIX to form FIXa as a bridge between the exogenous and intrinsic 
coagulation pathways. (B) Intrinsic coagulation pathway: FXII can be activated by foreign 
material to form FXIIa. FXIIa activates FXI to form FXIa, and then FXIa activates FIX to 
form FIXa. FIXa combines with FVIIIa, phospholipid and Ca2+ to form a complex that 
activates FX to form FXa. FXa combines with FVa, phospholipid and Ca2+ to form the 
prothrombinase complex that activates FII (prothrombin), which subsequently activates 
FI to form FIa. FI: Clotting factor I/fibrinogen; FIa: activated clotting factor I/fibrin; FIX: 
clotting factor IX/plasma thromboplastin; FV: clotting factor V/proaccelerin; FVIIIa: 
activated clotting factor VIII/antihemophilic factor; FX: clotting factor X/stuart-prower 
factor; FXI: clotting factor XI/plasma thromboplastin precursor; FXIa: activated clotting 
factor XI; FXIIa: activated clotting factor VII/Hageman factor; TF: tissue factor.

Figure 2 ｜ Role of pEVs to facilitate 
coagulopathy and inflammation after TBI. 
Brain damage promotes platelet activation 
and release of pEVs that contain a variety of 
components, including mitochondria, nucleic 
acids, cytokines and chemokines that facilitate 
coagulation via both intrinsic and exogenous 
coagulation pathways in the blood. pEVs can 
penetrate the blood-brain barrier to reach 
the central nervous system and promote 
neuroinflammation by inducing an immune 
response. These inflammatory and clotting 
responses reinforce each other, resulting in a 
vicious spiral. ATP: Adenosine triphosphate; 
BBB: blood-brain barrier; CL: cardiolipin; DAMP: 
damage-associated molecular pattern; FVII: 
clotting factor VII/proconvertin; FXIIa: activated 
clotting factor XII/Hageman factor; GPIbα: 
platelet surface glycoprotein receptor Ibα; IL: 
interleukin; mtMP: mitochondrial microparticle; 
pEV: platelet-derived extracellular vesicle; PS: 
phosphatidylserine; TBI: traumatic brain injury; 
TF: tissue factor.
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(Chen et al., 2019), providing further evidence that BDMPs are key players in 
inflammation.

Many publications report that pEVs promote inflammation via inflammatory-
mediated molecules and receptors (Semple and Freedman, 2010; Morrell 
et al., 2014; Kapur et al., 2015), including platelet surface glycoprotein 
receptor Ib α chain, cytokines, lipid mediators, chemokines (e.g., regulated 
on activation, normal T cell expressed and secreted), ligands, nucleic acids, 
transcription factors and damage-associated molecular patterns (DAMPs) 
(Lindemann et al., 2001; Ray et al., 2008; Boilard et al., 2010; Sahler et 
al., 2011; Laffont et al., 2013; Duchez et al., 2015; Boilard, 2018; Maugeri 
et al., 2018) (Figure 2). DAMPs are intracellular molecules released after 
tissue injury and cell death to initiate and propagate sterile inflammation 
(Seong and Matzinger, 2004; Rubartelli and Lotze, 2007). DAMPs include 
the heterodimeric protein S100A8/A9, the DNAbinding protein high mobility 
group protein B1, and mitochondrial DNA (mtDNA) (Zhang et al., 2010; 
Boudreau et al., 2014; Wang et al., 2014; Vogel et al., 2015). DAMPs facilitate 
activation of endothelial cells and innate immune cells, adhesion and transfer 
of white cells, monocyte maturation, and generation of cytokines and reactive 
oxide species (Boilard et al., 2010), causing an innate immune response and 
directly or indirectly initiating the adaptive immune response. Therefore, 
there is growing interest in DAMPs, and many studies have revealed 
that mitochondrial DAMPs, such as mtDNA, are closely associated with 
inflammation (Hajizadeh et al., 2003; Nakahira et al., 2013; Boudreau et al., 
2014; Caielli et al., 2016; Garcia-Martinez et al., 2016; Lood et al., 2016; Zhao 
et al., 2016; Marcoux and Boilard, 2017; Simmons et al., 2017). For example, 
in a series of studies of adverse reactions to platelet concentrate transfusion, 
including hemolysis, anaphylaxis and non-hemolytic febrile transfusion 
reactions, the levels of mtDNA, soluble CD40L, CD41 and soluble P-selectin 
in platelet concentrates were higher in patients with non-hemolytic febrile 
transfusion reactions than in those without adverse reactions (Boudreau et 
al., 2014; Lee et al., 2014; Cognasse et al., 2016; Yasui et al., 2016; Simmons 
et al., 2017). In addition, reports have revealed that mitochondria, CD40L, 
CD41 and CD62P are components of pEVs (Dean et al., 2009), suggesting 
that pEVs are a likely source of mtDNA (Marcoux et al., 2019). Moreover, 
CD41 and CD45 have been used experimentally to label pEVs and leukocytes, 
respectively, and pEVs can combine with leukocytes to induce inflammation 
through platelet-type lipoxygenase 12 and group IIA phospholipase A2 carried 
by pEVs (Boilard et al., 2010; Duchez et al., 2015).

French et al. (2020) showed that pEVs can penetrate bone marrow (BM) 
in response to promacrophages to directly promote megakaryocyte 
regeneration in BM and to signal the occurrence of inflammation in BM. 
Changes also occur to pEVs in response to the plasma environment, so pEVs 
may transfer non-normal components to BM that interact with BM cells to 
influence their function. This process explains how BM cells can respond 
quickly to inflammation (French et al., 2020).

Several inflammatory diseases are associated with pEVs. In rheumatoid 
arthritis, platelets penetrate BM and are stimulated to release pEVs by 
platelet glycoprotein VI, a collagen receptor expressed on the surface of 
platelets (Boilard et al., 2010). Furthermore, IL-1 carried by pEVs induces 
fibroblast-like synoviocytes to release inflammatory cytokine IL-6 and 
the neutrophil chemoattractant IL-8 in a dose-dependent manner, which 
promotes inflammation by affecting innate and adaptive immune cells (Bester 
and Pretorius, 2016). Therefore, pEVs play a significant role in inflammation 
through IL-1-mediated activation of synovial cells. Bester and Pretorius have 
suggested that IL-1β, IL-6 and IL-8 facilitate inflammation. 

The pathogenesis of SLE, an autoimmune disease characterized by the 
production of autoantibodies that typically target nucleic acids, is similar to 
that of TBI-induced inflammation. Apoptosis and the clearance of apoptotic 
cells and microvesicles are dysregulated in SLE (Mahajan et al., 2016; 
Bengtsson and Rönnblom, 2017). Accumulating evidence suggests that pEVs 
may serve as an antigenic pool owing to their components (Fortin et al., 
2016). In particular, mitochondria and their components, such as mtDNA, 
have been confirmed as antigens in the pathogenesis of SLE. Mitochondria 
influence inflammation by activating receptors related to the innate 
immune system, such as Toll-like receptors, formyl peptide receptors and 
cytosolic pattern recognition receptors (Sandhir et al., 2017). In addition, 
the adaptive immune system participates in proinflammatory processes 
through antimitochondrial antibodies (Berg and Klein, 1986). mtDNA can 
be contained by immune complexes; these extracellular DNA-containing 
immune complexes are captured by Fcγ receptors, thereby activating the 
cyclic guanosine monophosphate/adenosine monophosphate synthase-
stimulator of interferon gene pathway and promoting the production of 
type I interferons, a hallmark of SLE (Pisetsky, 2012; Sun et al., 2013). The 
concentration of pEVs is associated with disease activity in SLE (Kanai et al., 
1989; López et al., 2017; McCarthy et al., 2017), and different subtypes of 
pEVs are associated with distinct clinical manifestations (Bester and Pretorius, 
2016). Similarly, disease activity is attenuated during platelet depletion and 
inhibition of platelet function in lupus-prone mice (Linge et al., 2018), which 
further supports the role of pEVs in the occurrence and development of 
inflammation.

Interestingly, the number of pEVs is increased in infections caused by severe 
acute respiratory syndrome coronavirus 2, dengue virus and H1N1 influenza 
virus, and pEVs may serve as a biomarker of severe acute respiratory 
syndrome coronavirus 2 infection (Cappellano et al., 2021). 

pEVs may exert an inhibitory effect on inflammation by reducing the 
production of tumor necrosis factor-α released by macrophages and IL-8 
released by plasma dendritic cells (Ceroi et al., 2016). Thus, similar to 
coagulopathy, pEVs may exert bidirectional effects on inflammation depending 
on the conditions (Johnson et al., 2021).

Role of Platelet-Derived Extracellular Vesicles in 
Angiogenesis in Traumatic Brain Injury 
pEVs play a unique role in the treatment of intractable injuries, such as 
burns, tympanic membrane regeneration and chronic wounds caused 
by diabetes, by promoting angiogenesis and re-epithelialization (Guo 
et al., 2017; Huang et al., 2021; Schulz et al., 2021). Kim et al. (2004) 
identified that the lipids present in pEVs regulate proliferation, migration 
and tube formation in human umbilical vein endothelial cells, and Brill 
et al. (2005) demonstrated that the proteins present in pEVs contribute 
to revascularization, including vascular endothelial growth factor, basic 
fibroblast growth factor and platelet-derived growth factor. The benefits 
of angiogenesis and re-epithelialization promoted by pEVs have been 
demonstrated under a variety of conditions. For example, outcomes for an 
animal model of stroke can be improved by enhancing the differentiation 
potential of neural stem cells to form glial cells and nerve cells after addition 
of pEVs (Hayon et al., 2012a, b). Several studies have confirmed that pEVs 
positively modulate growth, migration and the differentiation potential 
of BM mesenchymal stem cells by upregulating the gene expression of 
human telomerase reverse transcriptase (Torreggiani et al., 2014; Rivera 
et al., 2015) to prolong the lifespan of mesenchymal stem cells (Johnson 
et al., 2021). Qu et al. (2020) recently reported in mice with acute liver 
injury that the density of megakaryocytes increased with an increase in 
circulating pEVs, but the amount of thrombopoietin was not upregulated. 
Co-culture of pEVs and hematopoietic stem/progenitor cells promotes the 
differentiation of hematopoietic stem/progenitor cells into megakaryocytes 
and the subsequent generation of platelets by transferring miR-1915-3p 
to target cells to inhibit the expression of Rho-related GTP-binding protein 
RhoB, which is the only gene that downregulates the differentiation of 
megakaryocytes (Qu et al., 2020). A report suggest that proteins, lipids 
and nucleotides present in pEVs act as new effectors of tissue regeneration 
(Johnson et al., 2021).

In addition to contributing to adverse reactions of proinflammation and 
coagulation during the acute phase of TBI, pEVs also play a significant role in 
improving the outcomes of patients with TBI through vascular regeneration 
and nerve repair in the later phase. However, further investigations into the 
molecular mechanisms that connect pEVs with vascular regeneration are 
necessary.

Therapeutic Potential of Platelet-Derived 
Extracellular Vesicles
EV-based therapies have attracted a lot of attention, but attaining clinical 
application remains difficult (Lukomska et al., 2019). Most EV experiments 
to date have used mesenchymal stromal cell-derived EVs, and the use of 
platelets as a source of EVs has received relatively little attention (Johnson et 
al., 2021).

pEVs have several advantages compared with free platelets. pEVs improve 
hemodynamic stability (Lopez et al., 2019) and possess biological activity 
even after a freeze-thaw cycle of storage; the addition of pEVs to platelet 
suspensions overcomes the past challenges of storage and transportation 
of platelets, allowing platelets to be used within their half-life (Lopez et al., 
2019). A variety of biological structures are expressed on the surface of EV 
membranes and allow the targeting of EVs to pathological sites to change 
the behavior of target cells (Agrahari et al., 2019b; Kao and Papoutsakis, 
2019; Mathieu et al., 2019). As pEVs play significant roles in coagulopathy, 
inflammation and angiogenesis, the findings above further signify the 
therapeutic potential of pEVs.

Accumulating evidence supports the potential of pEVs for delivery of 
therapeutics and activation of downstream pathways. According to a study 
by Kong et al. (2020) in the field of environmental science, pEVs can deliver 
particles smaller than 2.5 μm to human umbilical vein endothelial cells, 
leading to vascular endothelial injury. According to another study, pEVs 
can carry MCC950 to inflammation sites and inhibit the development of 
atherosclerosis, thereby solving the problem of coronary artery stenosis 
in the treatment of coronary heart disease (Ma et al., 2021). MCC950 is a 
nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-
containing-3 inflammasome inhibitor that blocks IL-1β release induced by 
nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-
containing-3 activator (Coll et al., 2019). Moreover, in the treatment of acute 
lung injury, pEVs selectively alleviate pneumonia progression by delivering 
[5-(p-fluorophenyl)-2-ureido]thiophene-3-carboxamide, which inhibits the 
production of inflammatory factors (Ma et al., 2020).

These findings collectively suggest that platelets absorb materials from the 
bloodstream, including proteins, liquids, nucleic acids and even harmful 
molecules, and activation of platelets stimulates the packaging of these 
molecules into EVs; the molecules then exert their effects after delivery 
by pEVs (Burnouf et al., 2014; Dovizio et al., 2018, 2020). Moreover, the 
biocompatibility and immune transparency of pEVs enable them to escape 
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removal via biological interactions with the mononuclear phagocytic system 
or complement system. In addition, platelets are enucleated, which reduces 
the risk of mutation teratogenesis (Burnouf et al., 2014; Agrahari et al., 
2019a). Therefore, pEVs have significant advantages for use in molecule 
delivery.

pEVs also have limitations. First, pEVs exert different qualitative and 
quantitative effects, depending on the method of their creation (Aatonen et 
al., 2014; Bei et al., 2016; Ponomareva et al., 2017; Ambrose et al., 2018). 
Aatonen et al. (2014) found that use of Ca2+ ionophores lead to production 
of a larger number of pEVs than by using thrombin, collagen or adenosine 
diphosphate. However, proteomic analysis showed that Ca2+-generated 
vesicles are indiscriminately packaged and can carry significantly less protein 
cargo. Therefore, it is important to establish a more suitable and reproducible 
method to produce pEVs with optimal characteristics (Johnson et al., 2021). 
Second, there are currently no therapeutic application guidelines for the use 
of pEVs or mesenchymal stem cell-derived microvesicles, and there are no 
standard procedures for the purification and characterization of pEVs. Finally, 
the concentration of pEVs cannot be accurately defined owing to the lack of 
a standardized test method, so it is more difficult to choose an appropriate 
blood concentration of pEVs to use as the treatment standard (Lopez et al., 
2018). In conclusion, pEVs have great treatment potential, and this potential 
will be able to be realized further once standardized procedures have been 
defined by the research community (Lener et al., 2015; Table 1).

Table 1 ｜ Advantages and disadvantages of using platelet-derived extracellular 
vesicles for therapy

Advantage and disadvantage Reference

Advantage
Improving hemodynamic stability Lopez et al., 2019
Possessing biological activity even after a 
freeze-thaw cycle of storage

Lopez et al., 2019

The biocompatibility and immune 
transparency and the lower risk of 
mutation teratogenesis

Burnouf et al., 2014; Agrahari et al., 2019

Delivery function Kong et al., 2020
The ability to target pathological sites Agrahari et al., 2019; Kao and Papoutsakis, 

2019; Mathieu et al., 2019
Disadvantage
Exert different qualitative and quantitative 
effects depending on their formation 
mechanisms/instability of action

Aatonen et al., 2014; Bei et al., 2016; 
Ponomareva et al., 2017; Ambrose et al., 
2018

The lack of therapeutic application 
guidelines

Lopez et al., 2018

Table 2 ｜ Constituents of platelet-derived extracellular vesicles and their effects on 
target cells 

Constituent Tissue/systemic response Reference

Lipid
Phosphatidylserine Regulate tissue factor to facilitate 

coagulation 
Morrissey et al., 2010; 
Tripisciano et al., 2017; 
Rosas et al., 2020

Glycoprotein
CD61 Bind to fibrin fibers to promote 

coagulation
Zubairova et al., 2015

CD40L Induce B cell response and IgG 
production to promote inflammation

Sprague et al., 2008

Nucleic acid
Mitochondrial DNA Recognized by Toll-like receptors 

and enhance inflammatory and 
autoimmune response in systemic 
lupus erythematosus

Berg and Klein, 1986; 
Sandhir et al., 2017

microRNA • miRNA-21 leads to 
neuroinflammation and nerve injury 
after traumatic brain injury

Cheng et al., 2012; 
Harrison et al., 2016

• miRNA-24 inhibits tumor growth 
mRNA Contribute to distinct effects through 

mRNA translation 
Linge et al., 2018

Cytokine

Interleukin-1
Interleukin-6
Interleukin-8

Several potent cytokines have effects 
on innate and adaptive immune cells

Bester and Pretorius, 
2016

Organelle
Mitochondria •Generate antigens and recognized 

by Toll-like receptors to activate the 
immune system 

Zhao et al., 2016; 
Linge et al., 2018

•Promote coagulation though 
cardiolipin exclusively located in the 
mitochondrial inner membrane 

Growth factor
Vascular endothelial 
growth factor

Regulate revascularization Brill et al., 2005; 
Guo et al., 2017

Basic fibroblast growth 
factor
Platelet-derived 
growth factor
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