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Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by effacement of
normal hematopoiesis by undifferentiated myeloid blasts and failure of mature blood cell production.1

Frontline anti-AML therapy has not changed substantially for decades and, despite recent therapeutic pro-
gress, the disease remains lethal to the majority of sufferers.2-4 Furthermore, and unlike many other lethal
cancers, it has not previously been considered plausible to prevent or delay the development of AML.
Recent advances have revealed that AML commonly evolves from the benign phenomenon of clonal
hematopoiesis (CH), the expansion of a hematopoietic stem cell and its progeny in association with
leukemia-associated somatic mutations.5-8 This fate is uncommon and befalls only �1% of individuals with
CH; however, it has been shown that cases of CH at high risk of AML can be identified years in
advance,9,10 raising hopes that AML prevention may be plausible.11 The concept has received further
support from preclinical reports that targeted interventions may delay or avert leukemic progression to
NPM1-mutant AML, the most common AML subtype.12 However, NPM1 mutations are thought to be
AML defining13 and have not been previously identified prior to the onset of myeloid malignancy,5-10,14

raising doubts about whether they can be detected in time for preventive interventions to be administered.

To investigate whether individuals with NPM1 mutations can be identified robustly and in a time and
manner that could facilitate interventions to prevent AML development, we applied a bespoke approach
to analyze whole exome sequencing (WES) of blood DNA from 200453 UK Biobank (UKBB) partici-
pants, for whom detailed linked health records are available.15 In particular, we exploited the fact that
over 98% of NPM1 mutations are in the form of a 4-nucleotide insertion/duplication,16-18 a change that
cannot easily be generated by sequencing error. To maximize sensitivity for detecting every read
reporting these mutations, we first constructed reference sequences for the 3 most common NPM1
somatic variants, namely type A (c.863_864insTCTG), type B (c.863_864insCATG), and type D
(c.863_864insCCTG) (supplemental Table 1), which together represent �90% of all NPM1 mutations
in AML.17 WES reads were aligned to the human genome assembly GRCh38 using Burrows-Wheeler
Aligner Maximal Exact Match (BWA-MEM) 0.7.17.19 Reads aligned to NPM1 (chr5:171381,174-
171416,825) were extracted with Samtools 1.920 and realigned to the constructed sequences using
BWA-MEM 0.7.17.19 After realignment, reads matching any of the 3 mutation types were identified by
scanning the “CIGAR string” and “optional field” of the BWA output using customized scripts. Additional
myeloid gene mutations in individuals with NPM1 mutations were identified using Mutect2 (https://gatk.
broadinstitute.org) and a modified version of RNAmut.21 Complete blood count data for female partici-
pants aged 55 to 65 were extracted from the UKBB. For details, also see supplemental Methods.

Our analysis identified only 2 individuals with sequencing reads reporting an NPM1 hotspot mutation:
case 1, with 4 of 32 reads reporting the canonical type A and case 2, with 1 of 19 reads reporting a
type D NPM1 mutation (Figure 1A-B). To search for other AML-associated somatic gene mutations in
cases 1 and 2, we analyzed their blood DNA WES data using Mutect2. This identified a mutation in
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Identification of NPM1-mutant reads by alignment to reference mutant sequences
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Figure 1. Detection and significance of NPM1 mutations in blood DNA of healthy individuals. (A) Approach used to identify NPM1 gene mutations in WES of

blood DNA from 200453 UKBB participants. (B) Alignment of sequencing reads from the 2 cases with NPM1 mutations against reference type A (left) and type D (right)

NPM1 mutations. This identified 4 reads reporting the type A mutations in case 1 (left) and 1 read reporting the type D mutation in case 2 (right). Mutant reads (black
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DNMT3A in both cases, namely DNMT3A c.2645G.A
(p.Arg882His) in case 1 (variant allele fraction (VAF) 5 0.24) and
DNMT3A c.1627G.T (p.Gly543Cys) (VAF 5 0.18) in case 2
(supplemental Table 2). Expectedly, Mutect2 only identified the
NPM1 mutation in case 1 (NPM1 c.863_864insTCTG; VAF 5

0.13; supplemental Table 1) as case 2 only had a single mutant
read. In addition, we used a modification of the bespoke mutation
detection software RNAmut21 to specifically search for internal tan-
dem duplications in the FLT3 gene (FLT3-ITD), a mutation that com-
monly cooccurs with mutant NPM122 but can be missed by
mutation callers.21 This identified a FLT3-ITD mutation in case 1
(VAF 0.09; supplemental Figure 1).

Strikingly, both case 1 and case 2 developed AML 133 and 168
days after blood sample donation and, unfortunately, died 36 and
536 days after diagnosis, respectively (Figure 1C). Both were previ-
ously well and had no significant past medical history. Their com-
plete blood count results at the time of donation showed only mild
abnormalities such as a raised MCV (Table 1; Figure 1D) that would

not ordinarily trigger hematological investigations. Nevertheless, the
short latency between detection of mutant NPM1 and frank AML
leaves open the possibility that these individuals already had early-
stage AML rather than preleukemia.

Two key requirements for any future program to prevent NPM1-
mutant AML are (1) the ability to identify NPM1 mutations robustly
and reliably and (2) an understanding of their clinical significance in
people without overt leukemia. Here, we provide proof-of-principle
that NPM1 mutations can be identified in blood DNA of healthy indi-
viduals several months prior to the onset of frank AML with 0 false
positive calls among the 200453 WES datasets analyzed. Further-
more, the only 2 individuals with NPM1 mutations in their blood
DNA both went on to develop AML, underlying the grave signifi-
cance of finding these mutations in the blood of healthy individuals.
By contrast, “high risk” CH driven by mutations in genes such as
U2AF1, SRSF2, TP53, IDH1, and IDH2 does not always progress
to myeloid malignancy or only does so after a much longer
latency.9,10

Table 1. Baseline characteristics and blood counts

Case 1 Case 2

Controls*

(n 5 48.775) Reference range†

Age 56 63 55-65

Sex Female Female Females

White blood cell (leukocyte) count 3109 cells/L 6.84 5.17 6.58 (4.1-10.65) 3.53-9.57

Red blood cell (erythrocyte) count 31012 cells/L 3.35‡ 3.94 4.35 (3.72-5) 3.96-5.50

Hemoglobin concentration, g/dL 11.89 13.41 13.6 (11.81-15.33) 12.14-16.27

Hematocrit percentage, % 35.05 39.62 39.59 (34.3-44.71) 35.39-47.19

Mean corpuscular volume, fL 104.5‡ 100.5‡ 91.16 (82.8-99.1) 76.9-94.7

Mean corpuscular hemoglobin, pg 35.44‡ 34 31.37 (28-34.38) 25.69-32.95

Mean corpuscular hemoglobin concentration, g/dL 33.92 33.84 34.33 (32.77-36.23) 33.34-35.47

Red blood cell (erythrocyte) distribution width, % 16.06‡ 13.4 13.36 (12.2-15.47) 12.09-15.19

Platelet count, 109 cells/L 206.9 241.5 259 (164-391) 169.06-397.10

Plateletcrit, % 0.16 0.18 0.24 (0.16-0.34) Not stated

Mean platelet (thrombocyte) volume, fL 7.66 7.45‡ 9.2 (7.58-11.84) 7.54-11.24

Platelet distribution width, % 16.54 16.21 16.38 (15.6-17.6) Not stated

Lymphocyte count, 109 cells/L 3.86 2.75 1.97 (1.04-3.45) 0.65-4.25

Monocyte count, 109 cells/L 0.67 0.27 0.41 (0.2-0.79) 0.17-1.21

Neutrophil count, 109 cells/L 2.09 2.1 3.9 (2.1-7.15) 1.47-7.06

Eosinophil count, 109 cells/L 0.21 0.03 0.12 (0-0.48) 0.03-0.77

Basophil count, 109 cells/L 0.02 0.02 0.02 (0-0.12) 0.01-0.13

Reticulocyte count, 1012 cells/L 0.08 0.11 0.05 (0.02-0.11) 0.02-0.11

*Ranges of blood counts in female UKBB participants aged 55-65 y without a hematological malignancy diagnosis. Values are represented as median (2.5 percentile to 97.5 percentile).
†Ranges provided by the manufacturer. Values represent the 2.5 to 97.5 percentile range.
‡Value outside the 2.5 to 97.5 percentile range of healthy controls and the quoted normal reference range of the automated hematology analyzer.

Figure 1 (continued) horizontal bars) match perfectly with their respective reference mutant sequences, whereas wild-type reads (colorless horizontal bars) align with a

4-nucleotide gap at the insertion/duplication hotspot. (C) Timeline, gene mutations, and outcomes of the 2 individuals with NPM1 mutations. Both cases were also found to

harbor mutations in the DNMT3A gene, whilst case 1 also harbored an internal tandem duplication in the FLT3 gene. (D) Forest plot of hazard ratios for hematological

malignancies, myeloid malignancies, AML, and MDS associated with a high MCV (MCV . 99.5 fl) in the UKBB. CI, confidence interval; HR, hazard ratio; MCV, mean

corpuscular volume; MDS, myelodysplastic syndrome.
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Nevertheless, the rarity of NPM1 mutations and the short latency
between their identification and AML onset makes the prospect of
population screening appear implausible. In fact, recruitment of the
200453 UKBB participants, aged 38 to 72 years (median 58 years),
was undertaken during 2006-2010, and of these, 261 participants
developed AML by December 2020 (an incidence of �10/100000
per year, as expected for this age group). More specifically, 15 indi-
viduals developed AML in the first year after recruitment (supple-
mental Figure 2). Although there are no molecular data on AML
subtypes among these cases, approximately one-quarter are
expected to have been NPM1-mutant, amounting to �4 cases in
year 1. This aligns well with the fact that we identified only 2 individ-
uals with NPM1 mutations in WES of their blood DNA, both of
whom developed AML within 6 months, and proposes that WES is
unlikely to detect NPM1 mutations more than 6 months before AML
diagnosis. In this context, it is important to consider that the
sequencing depth achieved with WES is very shallow. In fact, the
depth of coverage of the mutation-bearing final exon of NPM1 in
the UKBB was only 18x (95% CI, 6-30x), such that only large
clones of NPM1-mutant cells could be detected. Therefore, it is
highly probable that deep-targeted NPM1 sequencing would iden-
tify individuals with smaller clones that are earlier in disease evolu-
tion and may still be in a preleukemic phase. Also, in both cases
reported here, AML arose in the context of large DNMT3A-mutant
CH clones, proposing that individuals with such clones represent a
high-risk group that could be targeted for regular NPM1 mutation
screening.

In conclusion, our study demonstrates that NPM1 mutations can
be robustly identified in the blood of healthy individuals prior to
AML onset but also reveals that shallow sequencing methods
such as WES are unlikely to identify NPM1 mutations carriers
early enough in disease evolution to facilitate preventive interven-
tions. Future efforts to prevent, delay, or intercept this AML sub-
type will require much more sensitive approaches able to identify
NPM1 mutations in small preleukemic clones. Our findings sug-
gest that such efforts could be focused on individuals with large
CH clones, which could in turn be identified through screening
of those with subtle abnormalities in their complete blood count
results.9 However, large prospective studies are required to
enhance/refine screening methodologies and determine the opti-
mal approach to use for the timely identification of preleukemic
clones, which would in turn enable clinical studies of targeted
interventions to prevent or delay this or other types of myeloid
malignancy.11
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