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Abstract: Drug-induced liver injury (DILI) is a major concern for drug developers, regulators, and
clinicians. However, there is no adequate model system to assess drug-associated DILI risk in humans.
In the big data era, computational models are expected to play a revolutionary role in this field. This
study aimed to develop a deep neural network (DNN)-based model using extended connectivity
fingerprints of diameter 4 (ECFP4) to predict DILI risk. Each data set for the predictive model was
retrieved and curated from DILIrank, LiverTox, and other literature. The best model was constructed
through ten iterations of stratified 10-fold cross-validation, and the applicability domain was defined
based on integer ECFP4 bits of the training set which represented substructures. For the robustness
test, we employed the concept of the endurance level. The best model showed an accuracy of 0.731, a
sensitivity of 0.714, and a specificity of 0.750 on the validation data set in the complete applicability
domain. The model was further evaluated with four external data sets and attained an accuracy
of 0.867 on 15 drugs with DILI cases reported since 2019. Overall, the results suggested that the
ECFP4-based DNN model represents a new tool to identify DILI risk for the evaluation of drug safety.

Keywords: drug-induced liver injury; DILI; deep neural network; DNN; ECFP4; in silico model;
applicability domain; substructure space; endurance level; machine learning

1. Introduction

One of the major challenges for pharmaceutical industries and clinical researchers is
to address safety concerns in humans [1]. According to recent studies, most drug failures
happen due to the fact of safety issues, with approximately 25% of clinical failures in phase
II and 14% in phase III, whereas 31% are associated with new drug or biological license
application failures [2–4]. DILI is the main cause of acute liver failure (ALF) in the United
States [5]. Drug-induced ALF accounts for approximately 20% of ALF in children and a
higher percentage of ALF in adults [6]. Although the incidence rate of DILI is typically
less than 1 in 100,000 to 1 in 10,000 patients, it is sometimes higher [6]. Importantly, DILI
is one of the major causes of drug withdrawal from preclinical tests, clinical studies, and
post-marketing stages [7,8]. DILI is usually characterized by the unexpected harmful
effects that drugs exert on the liver, leading to damage of liver cells and other cells in
the liver. DILI can be divided into two classes: intrinsic and idiosyncratic. Intrinsic DILI
occurs in a dose-dependent manner, from a few hours to days after drug exposure. In
contrast, idiosyncratic DILI is evoked by the combination of patient or environmental
factors and drugs or drug metabolites [9], with a longer latency period from a few days
to several months [10]. However, no specific in vivo, in vitro, or in silico model has been
applied yet to predict the potential of new drug candidates to cause DILI in humans.
Currently, the determination of the DILI risk of compounds, although quite challenging, is
urgently required.

Molecules 2021, 26, 7548. https://doi.org/10.3390/molecules26247548 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-9499-7571
https://doi.org/10.3390/molecules26247548
https://doi.org/10.3390/molecules26247548
https://doi.org/10.3390/molecules26247548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26247548
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26247548?type=check_update&version=2


Molecules 2021, 26, 7548 2 of 16

The FDA has published a reference drug list for DILI risk, called DILIrank, which is
the largest annotated DILI data set [11]. It is composed of 1036 FDA-approved drugs that
were defined from drug labels and an evaluation of causality evidence in the literature.
This encouraged the development of computational models to predict DILI risk based on
chemical structures. For DILI prediction, in silico approaches are attractive to researchers
because they can have more benefits than in vitro or in vivo models in terms of time and
expense. Therefore, many in silico models have been developed using their own character-
istic descriptors and unique algorithms. Machine learning algorithms, such as Bayesian
classification, support vector machine (SVM), and random forest (RF), have been used
extensively for the development of predictive models of DILI risk. Liew et al. developed an
ensemble model of 617 base classifiers to achieve an accuracy of 0.75, a sensitivity of 0.819,
a specificity of 0.646, and an area under the receiver operating characteristic curve (AUC)
of 0.595 for an external data set of 120 compounds [12]. Korsampasakou et al. produced
a two-class prediction model for DILI based on an RF algorithm with 192 2D molecular
descriptors [13]. Evaluation of the model showed an accuracy of 0.60, a sensitivity of 0.67, a
specificity of 0.67, and an AUC of 0.64 for a merged test set of 966 compounds. Zhang et al.
generated the best SVM-based model with an FP4 fingerprint, showing an accuracy of 0.75,
a sensitivity of 0.932, a specificity of 0.379, and an AUC of 0.667 for an 88 external data
set [14]. Ai et al. utilized SVM, RF, and extreme gradient boosting algorithms to create an
ensemble model with 12 molecular fingerprints. The ensemble model achieved an accuracy
of 0.843, a sensitivity of 0.869, a specificity of 0.754, and an AUC of 0.904 [15]. He et al. also
built an ensemble model with eight algorithms for predicting the DILI risk of xenobiotics,
and the model attained an accuracy of 0.773, a sensitivity of 0.658, a specificity of 0.730,
and an AUC of 0.716 on an entire external data set that consisted of the three external data
sets reported in Ai et al. [15], Zhang et al. [14], and Kortsampasakou et al. [13].

In this study, we obtained an approximately equal number of DILI-positive and
DILI-negative drugs from the DILIrank and the LiverTox databases [16] to exclude the
development of a biased model and prepared an extra data set for model validation. Al-
though the data size was not sufficient for deep learning, we selected the deep neural
network (DNN) algorithm for DILI classification, which was expected to contribute to a
more accurate and reliable model, since new combinations of molecular features to discrim-
inate DILI-positives and DILI-negatives would be created during model training processes
owing to their ability to unearth complex features from high-dimensional data [17]. More-
over, to define the applicability domain of the developed model, we used integer ECFP4
fingerprint bits, each corresponding to a specific substructure. All integer bits extracted
from the training data set were regarded as the applicability domain of the model, and
the ratio of integer bits outside this domain was defined as the endurance level of each
compound in the validation data set. By applying this concept to each data set, we could
develop a more reliable model.

For model development with the training data set, stratified cross-validation [18,19]
was performed to suppress overfitting, which is one of the principal issues in DNNs [20],
and after ten iterations of cross-validation, the best model was chosen for testing loss.
Additionally, to verify the usefulness of the model, four external data sets and 15 DILI
case-reported drugs were retrieved and evaluated for DILI potential. The model developed
in this study showed a fairly good performance, especially with respect to sensitivity, and
its potential to identify compounds associated with a high DILI risk was proven.

2. Results
2.1. Preparation of Data Sets and Applicability Domain

For the development of the DILI-prediction model using a DNN algorithm, the
retention of well-annotated DILI data sets is essential. Among the many DILI-related
drug lists, the DILIrank data set, the LiverTox data set, the data set from Xu et al. (Xu
data set) [21], and that from Greene et al. (Greene data set) [22] were chosen for this
study. Following data preprocessing, such as the removal of mixtures, metal-containing



Molecules 2021, 26, 7548 3 of 16

drugs, and redundant compounds, the first two data sets were integrated into the training
data set, and the remaining two data sets were used for validation (Table 1). In the
DILIrank data set, drugs classified as vMost-DILI-Concern or vLess-DILI-Concern were
considered DILI-positives and those classified as vNo-DILI-Concern were considered
DILI-negatives [23]. In the LiverTox data set, drugs with a likelihood score of “A” or “B”
were grouped as DILI-positives, while those with a score of “E” or “E*” were grouped as
DILI-negatives. All compounds in the Xu data set were already classified as DILI-positives
or DILI-negatives. The Greene data set categorized the compounds into four classes; only
drugs in the classes of “no evidence (NE)” and “human hepatotoxicity (HH)” were chosen
and classified as DILI-negatives and DILI-positives, respectively. Overall, the training data
set consisted of 479 DILI-negatives and 461 DILI-positives, and the validation data set
included 74 DILI-negatives and 105 DILI-positives.

Table 1. Data sets used to generate the drug-induced liver injury (DILI)-prediction model in
this study.

Data Sets DILI-Negatives DILI-Positives Total

Training
data set

DILIrank data set 245 439 684
LiverTox data set 234 22 256

SUM 479 461 940

Validation
data set

Greene data set 64 92 156
Xu data set 10 13 23

SUM 74 105 179

To define the applicability domain of the model (see Section 4), integer ECFP4 bits
were used. In the training data set, 6310 unique bits were found in DILI-negatives and
5606 were found in DILI-positives, and the number of unique substructures shared be-
tween the two classes was 2387. However, in the validation data set, DILI-negatives had
1317 unique substructures, DILI-positives had 1677 unique substructures, and the two
classes were found to share 536 unique substructures. The number of substructures that
occurred in the validation data set but not in the training data set was 814 (Figure 1).
The most prevalent substructures in the validation data set were “CC(N)C(=O)[O–]” and
“CN(C)C(C(=O)[O–])C(C)(C)S”, both of which were found in six compounds, namely,
azlocillin sodium, cloxacillin sodium, mezlocillin sodium, methicillin sodium, and di-
cloxacillin sodium, which are DILI-positive, and penicillin G sodium, which is DILI-
negative. The second most-frequent substructures were six in number and identified
in four drugs for each substructure. Specifically, “ccn(cn)CC” was detected in sulcona-
zole nitrate, miconazole, butoconazole nitrate, and econazole nitrate, whereas “CNCCN”,
“CCNC(C)C”, “CC(N)CN(C)c”, “CC(N)CN(c)C”, and “CNC(C)CN” were found in lome-
floxacin HCl, gatifloxacin, temafloxacin, and grepafloxacin. In addition, 15 substructures
were identified in three compounds for each, and 53 substructures were discovered in two
compounds per substructure. The full list of substructures is shown in Table S1.
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Figure 1. Venn diagram of unique integer ECFP4 fingerprint bits in the training data set and validation data set.

2.2. Development and Validation of DNN-Based DILI-Prediction Model

We trained the DNN model for DILI prediction with stratified 10-fold cross-validation,
which is commonly used to avoid the overfitting problem for a small data set by partitioning
data to reduce variability [24]. To create the best DNN model, four fingerprints, namely,
the extended connectivity fingerprint 4 (ECFP4), ECFP6, functional class fingerprint 4
(FCFP4), and FCFP6 were tested and compared. Each descriptor was separately applied,
and each model was generated through ten iterations of cross-validation. The best model
was selected based on the loss values obtained by testing the holdout test set. The best
model for ECFP4 was generated at iteration 6of the cross-validation, with a loss value
of 0.0837 and a mean accuracy of 0.940 ± 0.0859 (Tables 2 and S2). ECFP6 developed
the best model with a loss value of 0.0768 and a mean accuracy of 0.958 ± 0.0768 at
iteration 3. The loss value and mean accuracy for the best model created with the two FCFP
fingerprints were 0.0566 and 0.952 ± 0.0837, respectively, at iteration 6 for FCFP, and 0.0516
and 0.948 ± 0.0748 at iteration 4 for FCFP6 (Table S2).

The performance of the models was assessed based on the metrics of accuracy, sensi-
tivity, specificity, and F1 score with subsets of the validation data set that were selected at a
variety of endurance levels, which were defined by integer bits of each fingerprint (Table 3).
The ECFP-based models showed a better predictive performance than FCFP-based models
in most of the measured metrics. The ECFP6-based model had slightly higher specificity
values than the ECFP4-based model. However, the ECFP4-based model showed a better
performance in all metrics except for specificity, although it attained slightly lower accu-
racies at the 0% and 5% levels. The ECFP4-based model achieved the best sensitivity of
0.778 at the 5% level, and the sensitivities were sustained above 0.71 across all endurance
levels. Overall, the accuracies of the model varied from 0.607 (30%) to 0.731 (0%), the
sensitivities varied from 0.714 (0%) to 0.778 (5%), the specificities varied from 0.397 (30%)
to 0.750 (0%), and the F1 score varied from 0.686 (30%) to 0.741 (0%). The most outstanding
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performance of the ECFP4-based model was achieved in the absolute applicability domain
(at an endurance level of 0%), based on which we determined the ECFP4 model to be the
best DNN model and used it for further evaluation. As the endurance level increased,
the metrics tended to decrease, thereby supporting the fact that the applicability domain
was well established and could not contribute to the assessment of the model. The overall
process of generating the best DNN model is illustrated in Figure 2.

Table 2. Stratified 10-fold cross-validation results with ECFP4 over ten iterations.

Iteration ACC Best Loss

1 0.873 ± 0.0957 0.2271
2 0.864 ± 0.1074 0.1713
3 0.945 ± 0.0834 0.1264
4 0.918 ± 0.0725 0.1066
5 0.939 ± 0.0778 0.1276
6 0.940 ± 0.0859 0.0837
7 0.835 ± 0.1557 0.1858
8 0.927 ± 0.0788 0.1102
9 0.889 ± 0.0943 0.1258

10 0.814 ± 0.1928 0.2245
ACC: accuracy; DILI+: drug-induced liver injury (DILI)-positive; DILI−: DILI-negative. Bold represents the best
model selected due to the lowest loss values.

Table 3. Comparison of the deep neural network models by molecular fingerprints.

Endurance
Level

ECFP4 ECFP6
ACC SE SP F1 ACC SE SP F1

0% 0.731 0.714 0.750 0.741 0.750 0.500 1.000 0.667
5% 0.667 0.778 0.524 0.724 0.706 0.667 0.750 0.706
10% 0.648 0.744 0.500 0.719 0.615 0.667 0.556 0.651
15% 0.642 0.742 0.488 0.706 0.608 0.607 0.609 0.630
20% 0.632 0.763 0.434 0.706 0.571 0.571 0.571 0.593
30% 0.607 0.758 0.397 0.686 0.540 0.507 0.591 0.574

Endurance
Level

FCFP4 FCFP6
ACC SE SP F1 ACC SE SP F1

0% 0.548 0.556 0.538 0.609 0.650 0.600 0.700 0.556
5% 0.553 0.635 0.452 0.630 0.618 0.632 0.600 0.611
10% 0.552 0.663 0.390 0.640 0.614 0.677 0.538 0.613
15% 0.531 0.638 0.379 0.622 0.586 0.640 0.513 0.626
20% 0.515 0.616 0.375 0.601 0.575 0.652 0.471 0.629
30% 0.517 0.606 0.392 0.600 0.551 0.629 0.449 0.604

ACC: accuracy, SE: sensitivity, SP: specificity, F1: F1 score.

When the models were tested with the validation data set, they showed high sen-
sitivities but moderate accuracies. This was attributable to relatively low specificities;
we hypothesized that these patterns could arise from the greater structural diversity of
DILI-negatives than of DILI-positives. To prove this, we calculated the Tanimoto distance
of the ECFP4 fingerprint between each of the same classes in the training data set and
validation data set (Figure 3 and Table S3). For each compound in the validation data
set, the maximum similarity with compounds in the same class of the training data set
was calculated. The average similarity between DILI-negatives was 0.363 ± 0.1712, and
that between DILI-positives was 0.414 ± 0.1866. The statistical difference between the
two similarities was proven to be significant, with a p-value of 0.0319 in a one-tailed t-test.
Therefore, these results demonstrated that the DILI-negatives were more diverse than the
DILI-positives in terms of chemical structures.
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Figure 2. Overall workflow for model creation and evaluation. Models were created based on chemical structure-based
fingerprints using various algorithms and subsets from validation data sets selected by the applicability domain, which was
defined by the endurance level.

Figure 3. Histogram of maximum similarities for each DILI class. The graph indicates that the DILI-negatives in the
validation data set had a more biased distribution of the maximum similarity, ranging from 0.2 to 0.3, than DILI-positives in
the same data set. This indicates that the DILI-negatives structurally varied more than the DILI-positives.
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2.3. Performance Comparison of the Best DNN Model with Machine Learning Models

We then compared the performance of the ECFP4-based DNN model with that of
representative machine learning (ML) models such as the Bernoulli naive Bayesian (NB),
SVM, and RF models (Table 4). Model performance was evaluated based on accuracy,
sensitivity, specificity, and the F1 score. Except for the fact that the NB model achieved
the best specificities (0.767–0.810) at endurance levels ranging from 5% to 30%, the DNN
model showed better predictive results than the three tested ML models in all metrics at all
endurance levels. It is especially notable that no ML model showed a better performance
than the DNN model in the complete applicability domain. In contrast, the NB model had
the lowest specificity, and the SVM and RF models showed a moderate performance. These
results proved that the DNN model can be superior to ML models at the single model level.

Table 4. Evaluation results of the naive Bayesian, SVM, and RF models by endurance levels.

Endurance
Level

Naive Bayesian SVM RF
ACC SE SP F1 ACC SE SP F1 ACC SE SP F1

0% 0.538 0.643 0.417 0.600 0.577 0.571 0.583 0.593 0.577 0.500 0.667 0.560
5% 0.604 0.778 0.381 0.689 0.583 0.630 0.524 0.630 0.604 0.667 0.524 0.655

10% 0.606 0.767 0.357 0.702 0.592 0.651 0.500 0.659 0592 0.651 0.500 0.659
15% 0.606 0.803 0.302 0.711 0.615 0.667 0.535 0.677 0.578 0.652 0.465 0.652
20% 0.602 0.825 0.264 0.714 0.602 0.688 0.472 0.675 0.564 0.675 0.396 0.651
30% 0.589 0.810 0.279 0.697 0.601 0.684 0.485 0.667 0.571 0.674 0.426 0.646

ACC: accuracy; SE: sensitivity; SP: specificity; SVM: support vector machine; RF: random forest.

2.4. Performance Test of the DNN Model on the External Data Sets from Prior Studies

Next, we tested the performance of the DNN model on four external data sets that
were tested in previous studies [12–15]. The compounds to be tested in each external data
set were newly chosen by endurance levels. Table 5 shows the test results for compounds
within the 0% and 100% levels; the whole test results are shown in Table S4.

The validation data set from Liew et al. [12] (Liew data set) was composed of three
kinds of data sets: valBLACK, valPAIR, and valRANDOM. The valBLACK contains
23 drugs withdrawn from the market or with a black box warning for hepatotoxicity
and 24 nontoxic compounds. The valPAIR consists of ten pairs of structurally similar
compounds which, however, exhibit different toxicities. valRANDOM, which consists of
48 negative and 72 positive compounds, was generated through stratified sampling of the
pre-trained data. By applying the endurance level of 0%, the valBLACK data set decreased
to 38, the valPAIR data set to 14, and the valRANDOM data set to 62 compounds. For
performance comparison, validation results generated by the five-fold cross-validated kNN
(k = 9) model were chosen, because the model was referred to as the best-performing model
in Liew et al. [12]. As compared to the model of Liew et al. [12], our model accomplished
better predictive results with respect to all metrics, except for the specificity for valPAIR
and valRANDOM at an endurance level of 0%. However, the metrics measured at an
endurance level of 100% were similar to or lower than those reported in Liew et al. [12]. In
addition, the model performance on the entire Liew data set also showed better results at
the 0% than at the 100% level.

The validation data set from Zhang et al. [14] (Zhang data set) was collected from the
liver toxicity benchmark database of the FDA named the Liver Toxicity Knowledge Base
(LTKB) [8]. Zhang’s data set consisted of 28 DILI-negatives and 57 DILI-positives. Among
them, 80 compounds (53 DILI+ and 27 DILI−) were identified within an endurance level
of 0%, and the test results showed an accuracy of 0.950, a sensitivity of 1.000, a specificity
of 0.926, and an AUC of 0.957. At the 100% level, our model achieved similarly remarkable
predictive results compared to Zhang’s model based on the SVM method, while our model
had a better predictive ability, especially regarding specificity and AUC.

The external validation data set of Ai et al. [15] (Ai data set) was also prepared from
LTKB and contained 221 DILI-positives and 65 DILI-negatives. After deletion of drugs that



Molecules 2021, 26, 7548 8 of 16

appeared in the training data set, a total of 121 compounds remained, and 84 compounds
were collected at the 0% endurance level. The test results on these data sets also proved
that the predictive performance of our model was slightly better than that of the ensemble
model from Ai et al. [15]. Specifically, the increased specificities of 0.810 (at the 0% level)
and 0.852 (at the 100% level) compared to 0.754 in the Ai data set were thought to contribute
to better accuracies (0.881 at the 0% level and 0.893 at the 100% level compared to 0.843).

Table 5. Performance comparison of the DNN-based model with external data sets.

References Level *
(%)

Training
Data Set

Size
ACC SE SP AUC

Liew et al. (entire data set) [12]

0% 114
(68+/46−) 0.789 0.838 0.717 0.853

100% 187
(105+/82−) 0.642 0.724 0.537 0.742

valBLACK
0%

38 0.974 0.955 1.000 0.955
(22+/16−) (0.809) (0.957) (0.667) (0.924)

100% 47
(23+/24−) 0.830 0.957 0.708 0.937

valPAIR
0%

14 0.500 0.857 0.143 0.551
(7+/7−) (0.550) (0.800) (0.300) (0.450)

100% 20
(10+/10−) 0.450 0.700 0.200 0.525

valRANDOM
0%

62 0.742 0.769 0.696 0.836
(39+/23−) (0.750) (0.819) (0.646) (0.595)

100% 120
(72+/48−) 0.600 0.653 0.521 0.687

Zhang et al. [14]
0%

80 0.950 1.000 0.926 0.957
(53+/27−) (0.750) (0.932) (0.379) (0.667)

100% 85
(57+/28−) 0.941 0.982 0.857 0.952

Ai et al. [15]
0%

84 0.881 0.905 0.810 0.920
(63+/21−) (0.843) (0.869) (0.754) (0.904)

100% 121
(94+/27−) 0.893 0.904 0.852 0.911

Kotsampasakou et al. [13]
0%

151 0.636 0.595 0.687 0.672
(84+/67−) (0.600) (0.670) (0.520) (0.642)

100% 973
(524+/449−) 0.585 0.635 0.526 0.605

* Endurance level. ACC: accuracy; SE: sensitivity; SP: specificity; AUC: area under the receiver–operating characteristic curve. The data in
parentheses are validation results from each reference.

The external validation data set of Kotsampasakou et el. [13] (Kotsampasakou data
set) that was collected from three data sources (Liew et al. [12], Chen et al. [11], and
Mulliner et al. [25]) had 541 DILI-positives and 455 DILI-negatives. After removal of drugs
duplicated with the training data set, 973 compounds (524 positives and 449 negatives)
were retained, and after applying the endurance level of 0%, 151 compounds (84 DILI-
positives and 67 DILI-negatives) were selected. As a test result, our model achieved a better
performance with respect to accuracy, specificity, and AUC but a lower sensitivity than
the Ai model at an endurance level of 0%. However, our model showed a slightly lower
performance at an endurance level of 100%.

These comparisons demonstrated that the DNN-based model had a better perfor-
mance than the referred to ML-based models. Moreover, the applicability domain de-
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fined by the endurance level of integer ECFP4 bits contributed to significantly enhance
model performance.

2.5. DILI Prediction on Drugs That Have Case Reports on Liver Injury

Next, we evaluated the DNN model using drugs that were not included in the data
set during data set preparation but had case reports related to DILI since 2019 when the
DILI rank data set was released. Although it is risky to classify drugs as DILI-positives
based on case reports only, they were nevertheless regarded as DILI-positives in this study.
In total, 15 drugs were collected by a literature survey and tested for DILI risk using the
pre-trained DNN model. The prediction results for the drugs are listed in Table 6. All drugs
were present within an endurance level of 10%. We classified drugs as DILI-positive if
the prediction probability was over 0.5; otherwise, drugs were classified as DILI-negative.
Overall, all drugs except two, namely, ulipristal acetate and nilotinib, were classified as
DILI-positive by the model; thus, test accuracy (sensitivity) for the external data set was
calculated to be 0.867, and 60% (nine drugs) of the whole number of drugs showed a higher
prediction probability than 0.9. These results implied that our model had a good predictive
performance to accurately identify DILI drugs.

Table 6. Evaluation results of the DNN model using 15 drugs with case reports.

Drugs CID Endurance
Levels Prediction Prediction

Probability

Flucloxacillin [26] 21,319 6.7% DILI-positive 0.999
Aliskiren [27] 5,493,444 7.0% DILI-positive 0.999

Rilpivirine [28] 6,451,164 5.0% DILI-positive 0.994
Escitalopram [29] 146,570 5.0% DILI-positive 0.989

Nilotinib [30] 644,241 7.6% DILI-positive 0.982
Olmesartan [31] 158,781 6.3% DILI-positive 0.974
Mesterolone [32] 15,020 4.1% DILI-positive 0.971

Levothyroxine [33] 5819 3.9% DILI-positive 0.965
Zanubrutinib [34] 135,565,884 6.4% DILI-positive 0.922

Phenprobamate [35] 4770 2.8% DILI-positive 0.896
Apixaban [36] 10,182,969 5.5% DILI-positive 0.804
Fasiglifam [37] 24,857,286 7.0% DILI-positive 0.660

Pirfenidone [38] 40,632 2.6% DILI-positive 0.608
Ligandrol [39] 44,137,686 4.6% DILI-negative 0.378

Ulipristal acetate [40] 130,904 6.5% DILI-negative 0.036
DILI, drug-induced liver injury.

3. Discussion

The first prerequisite for a deep learning model is a sufficient number of data sets with
a wide variety of properties to make the model work accurately [41]. For this reason, we
retrieved the drug lists from two rich data sources that contained >1000 drugs, namely, the
DILI rank data set [11] that uses FDA drug label information and the LiverTox data set [16]
that is based on clinical evidence, and assigned them to the training data set. Two other data
sources that have frequently been referenced in the literature [23], namely, the Xu [21] and
Greene data sets [22], were utilized for the validation data set. Deep learning-based models
are subjected to the generation of complicated feature extraction through intensive yet
complex encoding layers and can produce a skewed model due to the unbalanced training
data [42–45]. To overcome this, we aimed to prepare the same number of compounds for
each DILI class and acquired a training data set that consisted of 479 DILI-positives and
461 DILI-negatives.

For a more reliable prediction, we newly defined the applicability domain of our
models using integer ECFP4 bits. The domain was determined as the entire pool of
substructures in the training data set. The endurance level for a drug indicates the ratio
of substructures not defined in the domain. This concept was applied to all validation
data sets to retrieve subsets acceptable to each endurance level, and we demonstrated
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the usefulness of this concept by showing that the best performance of our model was
achieved at an endurance level of 0% for our validation data sets, and the Liew, Zhang, and
Kotsampasakou data sets (Table 5). This was also true for other fingerprint-based models
(Table 3). This new method to define an applicability domain is expected to improve
model performance.

Overall, our model tended to perform better with respect to sensitivity than specificity,
especially for our validation data set. One of the reasons for this might be that DILI-
negatives have a more diverse chemical structure than DILI-positives. We proved this
through the comparison of the maximum similarity between the two classes using a one-
tailed t-test with the Tanimoto distance of ECFP4 fingerprints. The results showed that
DILI-negatives were less similar than DILI-positives. This indicates that our model lacked
coverage for DILI-negatives, and newer and more diverse DILI-negatives need to be added
to the training data set to strengthen our model.

To further confirm the performance of the DNN model, we created a new external
data set composed of 15 DILI drugs with case reports, based on a literature search covering
the most recent three years (Table 6); the drugs were flucloxacillin (brand name: Floxapen
(Actavis UK, UK), antibiotics), apixaban (brand name: Eliquis (Bristol-Myers Squibb, New
York, NY, USA), anticoagulant), aliskiren (brand name: Tekturna (Novartis, Switzerland)
and Rasilez (Novartis, Switzerland), anti-hypertension drug), olmesartan (brand name:
Benicar (Daiichi Sankyo, Tokyo, Japan), anti-hypertension drug), levothyroxine (brand
name: Levothroid (Lloyds Pharmaceutical, UK), synthetic thyroxine), phenprobamate
(brand name: Carisoprodol (Mylan Specialty LP, Morgantown, WV, USA), skeletal muscle
relaxant), pirfenidone (brand name: Esbriet (Genentech, South San Francisco, CA, USA),
immunosuppressants), escitalopram (brand name: Lexapro (Allergan, Dublin, Ireland) and
Cipralex (Sandoz, Switzerland), antidepressant drug), ligandrol (not approved), rilpivirine
(brand name: Edurant (Janssen, Belgium) and Rekambys (Janssen, Belgium), HIV drug),
zanubrutinib (brand name: Brukinsa (BeiGene, Cambridge, MA, USA), antineoplastic
agents), fasiglifam (antidiabetic drug), mesterolone (brand name: Proviron, an androgen
and anabolic steroid), ulipristal acetate (brand name: Ella (HRA Pharma, France), a medi-
cation used for emergency contraception), and nilotinib (brand name: Tasigna (Novartis,
Switzerland), a medication for chronic myelogenous leukemia). A few case reports could
not verify the drugs as DILI-positive; nevertheless, they were considered to have DILI
potential and, hence, all drugs were treated as DILI-positives. These drugs showed limited
diversity within the 10% endurance level, and a maximum level of 7.6% was observed
with nilotinib. Although they had various indications, the DILI test results demonstrated
that, except for ulipristal acetate and ligandrol, all drugs were predicted correctly as
DILI-positives with a mean accuracy of 0.867. In particular, three of the 15 drugs, namely,
fasiglifam, ulipristal acetate [46], and flucloxacillin [47], showed liabilities for idiosyn-
cratic DILI. Fasiglifam was suggested to be idiosyncratic due to the delayed increase in
alanine aminotransferase in some patients [48]. For ulipristal acetate, it was due to the
structural features shared with telapristone acetate [49] and onapristone [50], which had
been demonstrated to be idiosyncratic. Flucloxacillin HLA-B*57:01 is indicated as a clinical
risk factor for idiosyncratic DILI [47]. However, the DNN model identified only fasiglifam
and flucloxacillin as DILI-positives; the DILI properties of the two drugs might arise from
their structures, although there has been no supportive report in that regard. Considering
that the DNN model was built with the structural features of drugs, the results simply
implied that hidden structural factors might cause idiosyncratic DILI.

The DNN model developed in this study exhibited a fairly high performance, espe-
cially for compounds that share structural properties with those of the training data set.
For some drugs for which DILI cases have been reported recently, the model demonstrated
an outstanding prediction capability. Therefore, the DNN model could potentially be used
as a screening tool to identify and eliminate compounds that have DILI-causing potential
in early stages of drug development and to promote drug discovery in the pharmaceutical
industry ensuring human safety.
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4. Materials and Methods
4.1. Data Set Preparation and Curation

The compounds with DILI annotation for humans were collected from four public
sources: the DILIrank [11], LiverTox [16], Xu [21], and Greene data sets [22]. The first two
were integrated into the training data set, and the other two were used as validation data
sets. All individual data sets were combined into a single database. The CID of all drugs
was updated by matching compound names from PubChem [51] using the Python package
PubChemPy (https://pubchempy.readthedocs.io/en/latest/index.html, version 1.0.4).
When multiple CIDs were assigned to one compound, the first one was selected. When the
class labels were conflicting, the DILIrank label or LiverTox label was assigned. After re-
trieving the canonical SMILES for each drug based on their CIDs, all mixtures, compounds
containing metals, and compounds without SMILES structures were eliminated. If any,
ions and salts were removed from the compound structures. Duplicate compounds were
removed from only the LiverTox, Xu, or Greene data sets. After preprocessing, a training
data set consisting of 479 DILI-negative and 461 DILI-positive drugs was created, and the
external data set had 74 DILI-negatives and 105 DILI-positives. Additionally, an external
test data set was prepared from a literature search; it was composed of 12 drugs with at
least one clinical case report of DILI since 2019. All were regarded as DILI-positive (Table 1).
The four external validation data sets were prepared through removal of compounds that
have the same SMILES structures or the same PubChem ID with the training data set.
The PubChem ID for the validation data set were retrieved from PubChem [51] with their
SMILES using PubChemPy.

4.2. Model Development and Architecture of the DNN Model

An ECFP4 of 1024 bits was used as the molecular descriptor for all drugs in the data
sets. Fingerprints were obtained from the “GetMorganFingerprintAsBitVect” function with
a radius parameter of 2 in the RDKit library (https://www.rdkit.org, version 2021.03.4) of
Python (version 3.9.5). To prevent the weights of zero bits from not being updated during
the model training, all 0 bits were changed to −1 bit. Each DILI label of the drugs was
converted to a one-hot encoded vector of size 2, where the first bit was for DILI-negatives
and the second bit was for DILI-positives.

DNNs are fully connected networks consisting of input layers, hidden layers, and
output layers [52]. Each layer has nodes that are connected to all nodes in the next layer
with weights that can be trainable. Our model consisted of one input layer, five hidden
layers, and one output layer. The input layer had 1024 nodes of the same length as the size
of the ECFP4 fingerprint. The first, second, and third hidden layers had nodes of the same
size as the input layer. The fourth and fifth hidden layers had 128 and 64 nodes, respectively.
Each hidden layer had a batch normalization layer for stable training, a dropout layer with
a ratio of 0.25 to limit overfitting, and a leaky rectified linear unit with a slope coefficient
of 0.1, as the activation function. The output layer had two nodes corresponding to the
one-hot encoded vectors of the DILI label (Figure 4).

Bernoulli NB, SVM, and RF models were implemented with the same training data
sets to compare the performance of each model with that of the DNN model. For all ML
methods, the Python scikit-learn package (https://www.scikit-learn.org/, version 0.24.2)
was utilized to create each model. For the naive Bayes classification, the multivariate
Bernoulli model was run with the BernoulliNB class from the package, where alpha was
set to 1.0 as a smoothing parameter and fit_prior was set to “True” to allow the learning
of class prior probabilities. The SVM model was created using the “SVC” class with the
regularization parameter of 1.0, the kernel parameter of “rbf”, degree of polynomial kernel
function as 3, and the gamma parameter of “scale” for the kernel coefficient. The RF model
was constructed using the “RandomForestClassifier” class with the number of trees at 100,
a max_depth of 10, and criteria of “gini” to designate the function of measurement of the
quality of a split and other parameters to default.

https://pubchempy.readthedocs.io/en/latest/index.html
https://www.rdkit.org
https://www.scikit-learn.org/
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Figure 4. The deep neural network architecture of the DILI prediction model.

4.3. Model Training

Model training, testing, and evaluation were performed using the Python package
TensorFlow (version 2.5). At first, all weights in the DNN model were initialized with the He
uniform initializer (https://www.tensorflow.org/api_docs/python/tf/keras/initializers/
HeUniform) for better training. The Adam optimizer was used for weight optimization
with a learning rate of 10−5. Categorical crossentropy was applied as the loss function for
DILI classification. The number of epochs was set to 200, and the batch size was set to 64.

We implemented stratified 10-fold cross-validation for model training using the “Strat-
ifiedKFold” function of the Python scikit-learn library (https://www.scikit-learn.org/).

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform
https://www.scikit-learn.org/
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With cross-validation, the training data set was divided into ten subsets while preserving
the percentage of samples for each class; nine subsets were used to train the DNN model,
while the remaining subset was used for validation. The procedure was repeated until
every subset served as the test data set. In every round, if the loss of the test data set did
not drop for ten consecutive epochs, the training process was forced to stop and a new
training process was started. These cross-validation processes were repeated ten times,
and the best trained model was selected based on the loss value of the test data sets. The
best model was used for further studies, such as performance comparison, depending on
molecular descriptors or model algorithms and evaluation of the validation data set and
the external test data set.

4.4. Applicability Domain and Model Evaluation

We defined the applicability domain of the DNN model as the pool of substructures
extracted from the training data set. Among the compounds from the validation data set
or external data set, drugs that have at least one substructure absent from the pool can be
classified as outliers. The substructures were represented as the integer ECFP4 bits that
were calculated using the “GetMorganFingerprint“ function in the “AllChem” package of
the RDKit library. We created a unique substructure pool from the entire training data set,
and the substructures of each drug in the validation data set or the external test data set
were compared with the pool to examine whether they were outliers.

The concept of endurance was introduced to test the robustness of the DNN model.
It was defined as the ratio of substructures away from the applicability domain to all
substructures of a drug. Different endurance levels were applied to evaluate the best DNN
model with the validation data set or the external test data set. Six test subsets from the
data set were prepared with endurance levels of 0%, 5%, 10%, 15%, 20%, or 30%, and the
evaluation metrics for each test subset were calculated.

To further evaluate the performance of the DNN model, some DILI case-related
drugs were collected from a literature survey using keywords such as “drug-induced liver
toxicity” and “case reports”. From the search results, case reports from the last three years
(since 2019) were chosen, and 12 new drugs, some already on the market and some that
failed during clinical trials, were obtained. These drugs were tested for DILI risk to prove
the utility of the DNN model in the real world.

4.5. Evaluation Metrics

All models were evaluated based on three metrics, namely, accuracy, sensitivity, and
specificity, which were defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

sensitivity =
TP

TP + FN
(2)

speci f ity =
TN

TN + FP
(3)

precision =
TP

TP + FP
(4)

F1 score = 2 × precision × sensitivity
precision + sensitivity

(5)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false
negative, respectively. The F1 score and AUC values were calculated from the f1_score and
AUC functions in the Python scikit-learn package, respectively.
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