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OBJECTIVE—Hypothalamic nutrient sensing regulates glucose
production, but the neuronal circuits involved remain largely
unknown. Recent studies underscore the importance of N-
methyl-D-aspartate (NMDA) receptors in the dorsal vagal com-
plex in glucose regulation. These studies raise the possibility that
hypothalamic nutrient sensing activates a forebrain-hindbrain
NMDA-dependent circuit to regulate glucose production.

RESEARCH DESIGN AND METHODS—We implanted bilat-
eral catheters targeting the mediobasal hypothalamus (MBH)
(forebrain) and dorsal vagal complex (DVC) (hindbrain) and
performed intravenous catheterizations to the same rat for
infusion and sampling purposes. This model enabled concurrent
selective activation of MBH nutrient sensing by either MBH
delivery of lactate or an adenovirus expressing the dominant
negative form of AMPK (Ad-DN AMPK �2 [D157A]) and inhibition
of DVC NMDA receptors by either DVC delivery of NMDA
receptor blocker MK-801 or an adenovirus expressing the shRNA
of NR1 subunit of NMDA receptors (Ad-shRNA NR1). Tracer-
dilution methodology and the pancreatic euglycemic clamp tech-
nique were performed to assess changes in glucose kinetics in
the same conscious, unrestrained rat in vivo.

RESULTS—MBH lactate or Ad-DN AMPK with DVC saline
increased glucose infusion required to maintain euglycemia due
to an inhibition of glucose production during the clamps. How-
ever, DVC MK-801 negated the ability of MBH lactate or Ad-DN
AMPK to increase glucose infusion or lower glucose production.
Molecular knockdown of DVC NR1 of NMDA receptor via
Ad-shRNA NR1 injection also negated MBH Ad-DN AMPK to
lower glucose production.

CONCLUSIONS—Molecular and pharmacological inhibition of
DVC NMDA receptors negated hypothalamic nutrient sensing
mechanisms activated by lactate metabolism or AMPK inhibition
to lower glucose production. Thus, DVC NMDA receptor is
required for hypothalamic nutrient sensing to lower glucose
production and that hypothalamic nutrient sensing activates a
forebrain-hindbrain circuit to lower glucose production.
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H
ypothalamic nutrient and hormonal sensing
regulate glucose and lipid homeostasis (1–7).
Although much effort has been put in by labo-
ratories to elucidate the neuronal circuits in-

volved in glucose regulation, an experimental challenge
remains in assessing whether extrahypothalamic regions
are involved in relaying the hypothalamic signal(s) to the
liver to regulate glucose production.

The dorsal vagal complex (DVC) within the hindbrain
processes peripheral signals to regulate homeostasis (8–
11). N-methyl-D-aspartate (NMDA) receptor–mediated
neurotransmission in the DVC has recently been shown to
be sufficient (12) and necessary for gut nutrient sensing
(13,14) to regulate glucose production. Although one study
reports that hypothalamic lipid sensing elucidates DVC
neuronal activation in association with an inhibition of
glucose production (15), the necessity of the DVC neuro-
nal activation and the neuronal population involved in
hypothalamic regulation of glucose production remain
unknown.

We here attempted to elucidate in conscious, unre-
strained rodents whether direct activation of hypotha-
lamic nutrient sensing by either an enhancement of
hypothalamic lactate metabolism (16,17) or a molecular
knockdown of hypothalamic AMP-activated protein kinase
(AMPK) (18) triggers a forebrain-hindbrain NMDA–depen-
dent axis to lower glucose production. To address this, we
inhibited NMDA receptor–mediated neuronal transmission
in the DVC hindbrain in the same rats whose nutrient
sensing in the forebrain hypothalamus was activated and
examined whether glucose regulation was affected
accordingly.

RESEARCH DESIGN AND METHODS

All study protocols were approved by the Institutional Animal Care and Use
Committee of the University Health Network. Eight-week-old male SD rats
were used and were housed in individual cages and maintained on a standard
light-dark cycle with access to standard rat chow and water ad libitum. Rats
were stereotaxically implanted with indwelling bilateral catheters into both
the mediobasal hypothalamus (MBH) (3.1 mm posterior of bregma, 0.4 mm
lateral from midline, and 9.6 mm below skull surface) (19) and dorsal vagal
complex (DVC) (0.0 mm on occipital crest, 0.4 mm lateral to midline, and 7.9
mm below skull surface) (12). After 1 week of recovery, rats underwent
intravenous catheterization where the internal jugular vein and carotid artery
were catheterized for infusion and sampling.
MBH/DVC infusion and pancreatic-euglycemic clamp. Four days post
intravenous catherization, animals whose food intake and body weight had
recovered back to within 10% of baseline underwent the clamp studies. Rats
were restricted to �55 kcal of food the night before the experiment to ensure
the same nutritional status during the clamps, which lasted 210 min. At t � 0
min, MBH/DVC infusions were initiated and maintained throughout the
clamps at 0.33 �l/h. The groups wereas follows: MBH saline � DVC saline,
MBH saline � DVC MK-801 (0.06 ng/min), MBH lactate (5 mmol/l) � DVC
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saline, and MBH lactate (5 mmol/l) � DVC MK-801 (0.06 ng/min, with 2 h
preinfusion starting at t � � 120 min). A primed continuous infusion of [3-3H]
glucose (40 �Ci bolus, 0.4 �Ci/min; Perkin Elmer) was initiated at 0 min and
maintained throughout. A pancreatic (basal insulin)-euglycemic clamp was
started at t � 90 min until 210 min. Somatostatin (3 �g/kg/min) was infused
along with insulin (0.8 mU/kg/min) to replace insulin back to basal (supple-
mental Table S1, available in the online appendix [http://diabetes.
diabetesjournals.org/cgi/content/full/db10-0994/DC1rsqb]). A 25% glucose
solution was started and periodically adjusted to maintain plasma glucose
levels (Table S1). Samples for the determination of [3-3H] glucose specific
activity and insulin levels were obtained at 10-min intervals. At the end, the
rats were anesthetized and 3 �l diluted bromophenol blue (BPB) was
injected through each side of the MBH catheter to ensure the correct
placement of the catheter upon dissection of an MBH wedge that contains
the entire mediolateral and dorsoventral extent of the arcuate nuclei while
minimizing ventromedial nucleus tissue. In parallel, the DVC was sampled
by injecting 3 �l (volume found to be restricted locally to the DVC) of BPB
via the DVC cannulae and cutting coronally across the medulla. Upon
verifying that the location of the BPB staining in the coronal sections was
anatomically representative of the DVC, DVC tissues were obtained by
dissecting the BPB-stained regions. To a different set of rats, we also
performed tracer infusion to verify cannuale location. Radioactive glucose
tracer [3-3H] was administrated via the bilateral cannulae into the MBH or
DVC at the same infusion rate (0.33 �l/h) and duration (210 min) as the
clamps. MBH, DVC, and cortical tissue samples were obtained and
homogenized for counting.
MBH/DVC adenoviral infection and pancreatic-euglycemic clamp. Im-
mediately poststereotaxic surgery, rats were injected with 3 �l adenovirus per
side of cannulae into the MBH and/or DVC as previously described (12,18,20).
The adenoviral infected groups were as follows: MBH GFP � DVC saline,
MBH GFP � DVC MK-801, MBH dominant negative (DN) AMPK � DVC
saline, MBH DN AMPK � DVC MK-801, MBH GFP � DVC mismatch control
(mm), MBH GFP � DVC shRNA NR1, MBH DN AMPK � DVC mm, and MBH
DN AMPK � DVC shRNA NR1. We had previously validated the specificity of
brain injections of these adenoviruses (12,18). Green fluorescent protein
(GFP) was localized in the MBH with 40% colocalized with AgRP-positive
neurons and another �40% colocalized with proopiomelanocortin-positive
neurons in MBH Ad-GFP–injected rats (18). Furthermore, MBH Ad-DN AMPK
injection decreased hypothalamic AMPK activity by �50% (18). DVC injection
of Ad-shRNA NR1 decreased NR1 protein levels in the DVC but not in the MBH
wedges (12). This was confirmed by immunohistochemistry showing that NR1
expression within the DVC was reduced in rats injected with DVC shRNA-NR1
(12). Four days post intravenous catherization, animals with MBH GFP � DVC
null and MBH AMPK � DVC null were infused with either DVC saline or
MK-801 from t � 0 min to 210 min at 0.33 �l/h. Initially, MK-801 was given at
0.03 ng/min because it was previously shown that DVC MK-801 negated the gut
lipid-sensing mechanism to lower glucose production (13,14). However, when
this dose of MK-801 was infused in DN AMPK-infected rats, it only partially
blocked the glucose production–lowering effect (glucose production suppres-
sion �42.5%). Given this, MK-801 dose was doubled (0.06 ng/min in 210 min;
12 ng) and was found to fully abolish the GP-lowering effect of DN AMPK (Fig.
2D and E), whereas no effect on cumulative food intake was detected (Fig.
4C). Hence, this dose of DVC MK-801 was used for all studies.
Fasting-refeeding experiment. Seven days poststereotaxic surgery (DVC
cannulae), animals whose food intake and body weight had recovered back to
baseline underwent the fasting-refeeding studies. Rats were fasted for 40 h.
Thirty minutes before completion of the fast, rats began a DVC infusion of
either saline or MK-801, and upon completion of the fast rats were fed ad
libitum on regular chow diet. Blood glucose levels and food intake were
measured.
Biochemical analysis. Plasma glucose concentrations were measured by the
glucose oxidase method (Glucose Analyzer GM9; Analox Instruments, Lunen-
bertg, MA). Plasma insulin levels were determined by radioimmunoassay
(RIA) (Linco Research, St. Charles, MO).
Statistical analysis. Statistical analysis was done by two-way ANOVA to
compare across the groups, followed by a Tukey post hoc test to compare
between groups. Statistical analysis was accepted as significant with a P value
of �0.05. Data are presented as means � SE.

RESULTS

We first developed a model that received bilateral
catheters into both the MBH and DVC (Fig. 1A and B).
On day 7, [3-3H] glucose was infused at the same rate as
hypothalamic lactate or DVC MK-801 either into the
MBH or DVC (Fig. 1A and B). MBH [3-3H] glucose

selectively increased radioactive counts in the MBH but
not in the DVC of the same rats (Fig. 1C). DVC [3-3H]
glucose increased radioactive counts in the DVC but not
MBH (Fig. 1C). Counts were not detected in cortex
samples (Fig. 1C). Thus, a rat model is developed that
enabled concurrent delivery of substances of interest
directly into the MBH and DVC, but with no direct
infusate contact between the two brain regions, and
examination of neuronal communication between the
MBH and the DVC in glucose regulation in vivo.
Pharmacological inhibition of DVC NMDA receptors
abolishes hypothalamic lactate metabolism to lower
glucose production. We inhibited DVC NMDA receptors
via DVC delivery of MK-801 at a concentration that
blocked DVC NMDA receptor agonist to lower glucose
production (12). We infused DVC MK-801 and lactate into
MBH (Fig. 1A and B). During the clamps, MBH lactate �
DVC saline increased glucose infusion (Fig. 1D) and
decreased glucose production (Fig. 1E and F) compared
with MBH/DVC saline in the presence of similar plasma
insulin levels (Table S1) and glucose uptake (Fig. 1G). In
contrast, DVC MK-801 abolished the ability of MBH lactate
to increase glucose infusion (Fig. 1D) and decrease glu-
cose production (Fig. 1E and F) in the presence of similar
plasma insulin levels (Table S1). These data suggest that
DVC NMDA receptors mediate hypothalamic lactate me-
tabolism to lower glucose production.
Pharmacological inhibition of DVC NMDA receptors
abolishes hypothalamic AMPK inhibition to lower
glucose production. To alternatively activate hypotha-
lamic nutrient sensing and evaluate the necessity of DVC
NMDA receptors, DVC MK-801 was infused to rats that had
hypothalamic expression of the dominant negative form of
AMPK via MBH injection of adenovirus expressing the
dominant negative form of AMPK (Ad-DN AMPK �2
[D157A] [21]) during the clamps (Fig. 2A and B). In the
presence of similar plasma insulin levels (Table S2), MBH
DN-AMPK rats with DVC saline had higher glucose infu-
sion (Fig. 2C) and lower glucose production (Fig. 2D and
E) compared with MBH GFP rats with DVC saline. This is
consistent with our recent findings indicating that MBH
DN-AMPK lowers glucose production independent of
changes in food intake and body weight (18) and strength-
ens the claim that DVC surgery itself does not affect
glucose regulation. DVC MK-801 negated the increase in
glucose infusion (Fig. 2C) and decrease in glucose produc-
tion (Fig. 2D and E) in MBH DN-AMPK rats. Glucose
uptake was comparable in all groups (Fig. 2F). Thus, DVC
NMDA receptors are required for hypothalamic AMPK
inhibition to lower glucose production.
Molecular inhibition of DVC NMDA receptors abol-
ishes hypothalamic AMPK inhibition to lower glucose
production. The NMDA receptor is composed of NR1 and
NR2 subunits (22). We recently constructed an adenovirus
expressing the shRNA of NR1 (Ad-shRNA NR1) and in-
jected this Ad-shRNA NR1 into the DVC of rats to knock
down DVC NR1 (12). Here, we injected the same Ad-
shRNA NR1 into the DVC to inhibit DVC NMDA receptor–
mediated neurotransmission and tested whether
hypothalamic nutrient sensing activated by MBH Ad-DN
AMPK is impaired (Fig. 3A and B). MBH DN AMPK/DVC
Ad-mm rats required higher glucose infusion compared
with MBH GFP/DVC mm rats to maintain euglycemia (Fig.
3C) due to an inhibition of glucose production (Fig. 3D and
E) rather than changes in glucose uptake (Fig. 3F) or
plasma insulin levels (Table S3). MBH DN AMPK/DVC
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FIG. 1. DVC MK-801 abolished the glucose production–lowering effect induced by hypothalamic lactate infusion. A: Schematic representation of
working hypothesis. Infusion of NMDA antagonist MK-801 in the DVC negates the glucose production–lowering effect of MBH lactate. B: Schematic
representation of experimental design. MBH and DVC stereotaxic surgery was performed on male Sprague-Dawley rats (�240–280 g). After 1 week of
recovery (day 7), vascular surgery (i.e., intravenous catherization) was performed. Rats were given 5 recovery days until clamp studies (day 11), upon
which DVC infusion of saline or MK-801 was given to MBH lactate-infusing animals. To verify the anatomical placement of cannulae and to confirm that
infusion was localized, radioactive tracer administered in the MBH or DVC via the bilateral cannulae was found to be contained within the respective
tracer-infused tissues (C). DVC administration of MK-801 in lactate-infused animals prevented the expected increase in glucose infusion rate (D) and
lowering in glucose production (E) found to be elicited by MBH lactate. �, basal glucose production; f, clamp glucose production. F: suppression of
glucose production (GP) during the clamp period was expressed as percent decrease from basal glucose production. G: glucose utilization was
comparable in all groups: MBH saline � DVC saline (n � 5), MBH saline � DVC MK-801 (n � 5), MBH lactate � DVC saline (n � 5), and MBH lactate �
DVC MK-801 (n � 6). *P < 0.01; �P < 0.001.
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shRNA-NR1 rats did not have this elevated glucose infu-
sion (Fig. 3C) or a drop in glucose production (Fig. 3D and
E) compared with the corresponding control in the pres-
ence of similar plasma insulin levels (Table S3). These
studies demonstrate that DVC NR1 subunit of the NMDA
receptor is required for hypothalamic AMPK inhibition to
lower glucose production.

DVC NMDA receptor blockage disrupts glucose ho-
meostasis during refeeding. We addressed the physio-
logical relevance of the ability of DVC NMDA receptor to
integrate nutrient sensing to regulate glucose homeostasis
using a fasting-refeeding nonclamp protocol. When fasted
rodents are subjected to refeeding, the rise in plasma
glucose levels is restrained as a result of an inhibition of
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FIG. 2. DVC MK-801 abolished the glucose production–lowering effect induced by hypothalamic expression of DN AMPK. A: Schematic
representation of working hypothesis that infusion of NMDA antagonist MK-801 in the DVC negates the glucose production–lowering effect of
MBH DN AMPK. B: Schematic representation of experimental design. MBH and DVC stereotaxic surgery was performed on male Sprague-Dawley
rats (�240–280 g). Virus-injected animals were administered 3 �l GFP or DN AMPK–expressing adenovirus per side of cannulae immediately
postsurgery. After 1 week of recovery (day 7), vascular surgery (i.e., intravenous catherization) was performed. Rats were given 5 recovery days
until clamp studies (day 11), upon which DVC infusion of saline or MK-801 was given to MBH virus–injected rodents. DVC administration of
MK-801 in adenoviral-DN AMPK–injected rodents prevented the expected increase in glucose infusion rate (C) and lowering in glucose
production (GP) (D) found to be elicited by DN AMPK. �, basal glucose production; f, clamp glucose production. E: Suppression of glucose
production (GP) during the clamp period was expressed as percent decrease from basal glucose production. F: Glucose utilization was
comparable in all groups: MBH GFP � DVC saline (n � 5), MBH GFP � DVC MK-801 (n � 6), MBH DN AMPK � DVC saline (n � 6), and MBH
DN AMPK � DVC MK-801 (n � 5). #P < 0.01; �P < 0.001.
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gluconeogenesis (23). We reasoned that if the nutrient
sensing–related signal(s) activated by refeeding is inte-
grated at the DVC NMDA receptors to regulate glucose
homeostasis (as suggested by the above hypothalamic as
well as the recent gut [13,14] nutrient sensing studies),

direct inhibition of DVC NMDA receptors during refeeding
should disrupt glucose homeostasis. We first subjected our
rats to a fast after 1 week of DVC surgery (Fig. 4A and B).
Plasma glucose levels (Fig. 4B) and cumulative food
intake (Fig. 4C) rose, respectively, after refeeding for the

A B

C D

E F

MBH            DVC
DN AMPK NMDA Receptor 

Activation

ShRNA-
NR1

NR1 NR2

↓ Glucose 
Produc�on

MBH+NTS Surgeries  
± Viral Injection

Day 0 7 11

Vascular 
Surgery

Clamp 
Study

MBH (3µl/30sec/side)
• DN AMPK (1.1x1013pfu/ml)
• GFP (1.4x109pfu/ml)
NTS (3µ l/30sec/side)
• MM (4.0X1011pfu/ml)
• ShRNA-NR1 (4.0X1011pfu/ml)

0 min 90 210

[3-3H] Glucose (0.4 µCi/min)

Insulin (0.8 mU/kg/min)
Somatostatin (3 µg/kg/min)

Glucose (as needed)

Clamp
Study

90 2

0

2

4

6

8

10

12

DVC MM DVC ShRNA-
NR1

DVC MM DVC ShRNA-
NR1

MBH GFP MBH DN-AMPK

G
lu

co
se

 In
fu

si
on

 R
at

e 
(m

g/
kg

/m
in

)

0

2

4

6

8

10

12

14

16

DVC MM DVC ShRNA-
NR1

DVC MM DVC ShRNA-
NR1

MBH GFP MBH DN-AMPK

G
lu

co
se

 P
ro

du
ct

io
n 

(m
g/

kg
/m

in
)

-70

-60

-50

-40

-30

-20

-10

0
DVC MM

DVC ShRNA-
NR1 DVC MM

DVC ShRNA-
NR1

MBH GFP MBH DN-AMPK

G
P 

Su
pp

re
ss

io
n 

(%
)

0

2

4

6

8

10

12

14

16

DVC MM DVC ShRNA-
NR1

DVC MM DVC ShRNA-
NR1

MBH GFP MBH DN-AMPK

G
lu

co
se

 U
til

iz
at

io
n 

(m
g/

kg
/m

in
)

#

#

#

FIG. 3. Molecular knockdown of DVC NR1 negated the glucose production–lowering effect of hypothalamic expression of AMPK-DN. A: Schematic
representation of working hypothesis that molecular knockdown of the NR1 subunit of the NMDA receptor in the DVC negates the glucose
production–lowering effect of MBH DN AMPK. B: Schematic representation of experimental design. MBH and DVC stereotaxic surgeries were
performed on male Sprague-Dawley rats (�240–280 g). Animals were injected with 3 �l/side of cannulae of adenovirus into the MBH (GFP or DN
AMPK) and into the DVC (MM or shRNA-NR1) immediately postsurgery. After 1 week of recovery (day 7), vascular surgery (i.e., intravenous
catherization) was performed. Rats were given 5 recovery days until clamp studies (day 11). Animals with simultaneous disruption of both MBH
AMPK and DVC NR1 did not exhibit the expected increase in glucose infusion rate (C) or lowering in glucose production (D) of DN AMPK
animals. �, basal glucose production; f, clamp glucose production. E: Suppression of glucose production (GP) during the clamp period was
expressed as percent decrease from basal glucose production. F: Glucose utilization was comparable in all groups. MBH GFP� DVC MM (n � 5),
MBH GFP � DVC NR1 (n � 5), MBH DN AMPK � DVC MM (n � 6), and MBH DN AMPK � DVC NR1 (n � 5). #P < 0.01.

C.K.L. LAM AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 60, JANUARY 2011 111



DVC saline rats. We next infused DVC MK-801 (at the same
dose that negated the ability of hypothalamic lactate
metabolism [Fig. 1E] and DN AMPK [Fig. 2D] to lower
glucose production) and upon refeeding, plasma glucose
levels rose significantly higher than DVC saline rats (Fig.
4B) in the presence of similar cumulative food intake (Fig.
4C). Thus, our data indicate that DVC NMDA receptors
integrate nutrient sensing to regulate glucose homeostasis.

DISCUSSION

We demonstrated that hypothalamic nutrient sensing trig-
gers a forebrain-hindbrain NMDA–dependent neuronal
axis to lower glucose production. The cross-talk between
the hypothalamus and the DVC in glucose regulation,
however, remains to be clarified. For example, it is crucial
to assess whether the descending projection from the
hypothalamus to the DVC is direct or indirect through
other nuclei such as the paraventricular hypothalamus
(PVN) because a recent study reports that hypothalamic
leucine sensing activates DVC neurons via PVN oxytocin
neurons to lower food intake (24). The necessity of a
forebrain-hindbrain axis in glucose regulation by hypotha-
lamic hormonal action also warrants future investigations
because hepatic vagus is required for hypothalamic leptin
to increase hepatic insulin sensitivity as well (2).

Our findings imply that DVC neurons expressing NMDA
receptors are required specifically for the hypothalamic
nutrient sensing to lower glucose production. Inhibition of
DVC NMDA receptors, however, also negate lipid sensing
in the intestine to lower glucose production (13,14) and
food intake (9,10), while the activation of hypothalamic
nutrient sensing is absence. These studies suggest that
DVC NMDA receptor–expressing neurons integrate sig-
nal(s) derived from nutrient sensing to regulate glucose
and energy homeostasis but do not exclude the involve-
ment of other neuronal systems because a recent study
reports that serotonergic neurons in the brainstem medi-
ates leptin action to regulate food intake (25). Lastly, in
addition to the need to clarify the neuronal systems in
extrahypothalamic regions that mediate hypothalamic nu-
trient sensing to lower glucose production, it is equally
important to test for a glucose regulatory role of nutrient
sensing in MBH-proximate regions such as the dorsome-

dial and lateral hypothalamic area so that advancement in
this field is made in a better defined context.
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